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ABSTRACT

This paper presents a new supervised algorithm for nonlinear hyper-
spectral unmixing. Based on the residual component analysis model,
the proposed model assumes the linear model to be corrupted by
an additive term that accounts for bilinear interactions between the
endmembers. The proposed formulation considers also the effect of
the spatial illumination variability. The parameters of the proposed
model are estimated using a Bayesian strategy. This approach in-
troduces prior distributions on the parameters of interest to take into
account their known constraints. The resulting posterior distribution
is optimized using a coordinate descent algorithm which allows us
to approximate the maximum a posteriori estimator of the unknown
model parameters. The proposed model and estimation algorithm
are validated on both synthetic and real images showing competitive
results regarding the quality of the inferences and the computational
complexity when compared to the state-of-the-art algorithms.

Index Terms— Hyperspectral, nonlinear unmixing, Bayesian
estimation, coordinate descent, gamma Markov random field

1. INTRODUCTION

Spectral unmixing (SU) consists of identifying the macroscopic ma-
terials (endmembers) present in a hyperspectral image and quanti-
fying the proportions (abundances) of these materials in all pixels
of the image. The linear mixture model (LMM) is the widely used
model for SU mainly because of its simplicity. However, this model
can be inappropriate for some hyperspectral scenarios, namely if
there are volumetric scattering, or terrain relief, or intimate mixtures
of materials [1]. Nonlinear (NL) mixture models (NLMM) appear
then as an alternative to better account for those effects [2, 3]. There
exists two main families for NLMMs: the first family is signal pro-
cessing based and seeks to construct flexible models that can rep-
resent a wide range of nonlinearities. The second family is physical
based which includes models accounting for multiple scattering such
as polynomial [4] or bilinear models [5–9].

This paper introduces a residual component (RC) mixture model
for nonlinear hyperspectral unmixing. The model generalizes the
well-known LMM by accounting for the spatial illumination varia-
tion and the presence of a nonlinear residual term. This term is a
modification of the polynomial term proposed in [10], to account
for the bilinear interactions between the endmembers. Estimating
the abundances associated with this mixture model is a challenging
problem. We propose here a hierarchical Bayesian model to estimate
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the parameters and hyperparameters associated with the RC model.
This hierarchical model introduces prior distributions that enforce
known physical constraints on the estimated parameters such as the
sum-to-one and positivity of the abundances, and the positivity of the
nonlinear coefficients. Moreover, the spatial correlation of the resid-
ual term has been introduced by considering Markov random fields
(MRF) [11]. Using the likelihood and the considered prior distribu-
tions, the joint posterior distribution of the unknown parameter vec-
tor is then derived. The minimum mean square error (MMSE) and
maximum a posteriori (MAP) estimators of these parameters cannot
be easily computed from the obtained joint posteriors. In this paper,
the MAP estimator is evaluated by considering a coordinate descent
algorithm (CDA) [12, 13] that sequentially updates the abundances,
the noise variances and the residual term. The proposed Bayesian
model and estimation algorithm are validated using synthetic and
real hyperspectral images. The obtained results are very promising
and show the potential of the proposed mixture and Bayesian models
and their associated inference algorithm.

The paper is structured as follows. Section 2 introduces the pro-
posed mixture model to deal with the NL. The proposed hierarchical
Bayesian model and its estimation algorithm are introduced in Sec-
tions 3 and 4. Section 5 is devoted to testing and validating the pro-
posed technique using synthetic images with known ground truth.
Section 6 shows results obtained using a real hyperspectral image.
Conclusions and future work are finally reported in Section 7.

2. MIXTURE MODEL

The LMM is widely used because of its simplicity. However, there
are a lot of situations where the linear model is not valid because
of the presence of nonlinearity or other mismodelling effects. These
effects require the elaboration of a more sophisticated model to im-
prove the abundance estimates. This paper proposes a new formula-
tion based on a residual component model [14] that is expressed as
the sum of a linear model and a residual term. The general observa-
tion model for the (L× 1) pixel spectrum yi,j is given by

yi,j = ci,jMai,j + φ
NL
i,j (M) + ei,j (1)

where ai,j = (a1,i,j , · · · , aR,i,j)
T is an (R× 1) vector of abun-

dances associated with the pixel (i, j) and satisfying the positiv-
ity and sum-to-one constraints (ar,i,j ≥ 0, ∀r ∈ {1, . . . , R}
and

∑R
r=1 ar,i,j = 1), R is the number of endmembers, ei,j ∼

N (0L,Σ) is an additive centered Gaussian noise with a diagonal
covariance matrix Σ = diag

(
σ2
)
, σ2 =

(
σ2
1 , · · · , σ2

L

)T is an
(L× 1) vector containing the noise variances, L is the number of
spectral bands, M is a fixed endmember matrix that is assumed



known (extracted using an endmember extraction algorithm) and
φNL

i,j is a residual term that account for NL interactions. Similarly
to [15, 16], model (1) includes the effect of illumination variation
via the pixel dependent illumination coefficient ci,j (we consider the
same parameter for all the endmembers). Moreover, the effect of
bilinear interactions between the endmembers is introduced by con-
sidering the following residual term

φNL
i,j (M) = c2i,jQ (M)γi,j (2)

where γi,j =
(
γ
(1)
i,j , · · · , γ

(R)
i,j , γ

(1,2)
i,j , · · · , γ(R−1,R)

i,j

)T
,∀i, j is

the (D × 1) vector of positive nonlinear coefficients, D = R(R+1)
2

,
Q (M) =

(
m1 �m1, · · · ,mR �mR,

√
2m1 �m2, · · · ,

√
2

mR−1 �mR) , is the (L×D) matrix gathering the interaction
spectra, and � denotes the Hadamard (termwise) product. Note that
model (1) reduces to the model [10] for ci,j = 1, ∀, i, j and to the
LMM for γi,j = 0, and ci,j = 1, ∀, i, j. In addition, model (1)
has a polynomial-like form as for the bilinear models (GBM [5], PP-
NMM [4], Nascimento [7], Fan [8] and Meganem [9] models). Note
finally that model (1) (with no illumination variation) has been stud-
ied in [10] when considering a Markov chain Monte-Carlo (MCMC)
approach and have shown good performance for processing hyper-
spectral images. However, the MCMC estimation algorithm was
computationally expensive, and we consider in this paper a faster
algorithm based on a coordinate descent algorithm.

3. HIERARCHICAL BAYESIAN MODEL

The unknown parameters associated with model (1) are Θ = (A, c,
Γ,σ2, ε

)
, where A (resp. Γ) gathers all the abundance vectors

(resp. nonlinear coefficients), and ε is a hyperparameter described
later in the text. A hierarchical Bayesian model is considered for the
estimation of Θ. This approach is well suited for ill-posed inverse
problems, since it accounts for the known parameter constraints us-
ing a priori distributions. The next sections present the likelihood
and the proposed parameter prior distributions.

3.1. Likelihood

Using the observation model (1), the Gaussian properties of the noise
sequence ei,j , and exploiting independence between the observa-
tions in different spectral bands, yield the following Gaussian distri-
bution for the likelihood

yi,j |ai,j , ci,j ,γi,j ,Σ ∼ N
(
µi,j ,Σ

)
. (3)

where µi,j = ci,jMai,j + φ
NL
i,j (M) and ∼ means “is distributed

according to”. The independence between the observed pixels leads
to f(Y |Θ) =

∏
i

∏
j f(yi,j |ai,j , ci,j ,γi,j ,Σ), where Y gather

all the pixels.

3.2. Parameter priors

This section introduces the prior distributions that we have chosen
for the parameters of interestA, c,Γ and Σ.

3.2.1. Abundance matrixA

The abundances should satisfy the positivity and sum-to-one (PSTO)
constraints. Akin to [5, 17], and since there is no additional infor-
mation about A, we assign the abundances a uniform prior in the
simplex S =

{
ai,j

∣∣ar,i,j ≥ 0, ∀r and
∑R

r=1 ar,i,j = 1
}

.

3.2.2. Prior for c

In absence of illumination variability, the parameter ci,j has a fixed
value #1 for all pixels [5, 18, 19]. This paper accounts for the illu-
mination variability by allowing this parameter to fluctuate around
#1. This is achieved by considering the following conjugate Gaus-
sian prior for ci,j ∼ N

(
1, η2

)
, where η2 is a small fixed variance

(η2 = 0.01 in the rest of the paper). For simplicity, we denote
“x|θ ∼ ...”, by “x ∼ ...” when the parameter θ is a user fixed pa-
rameter. Note finally that the joint prior of c is obtained by assum-
ing a priori independence between the coefficients ci,j , as follows
f (c) =

∏
i,j f (ci,j).

3.2.3. Nonlinear coefficients γi,j

Due to physical constraints, the nonlinear coefficients should satisfy
the positivity constraint. Similarly to [10], γi,j are assigned the fol-
lowing truncated Gaussian prior

γi,j |ε
2
i,j ∼ N(R+)D

(
0D, ε

2
i,jID

)
, (4)

where ID denotes the D × D identity matrix and ε2i,j is a variance
parameter that is pixel dependent. From (4), it is clear that this vari-
ance is related to the strength of the nonlinearities at the pixel (i, j)
(via the norm ||γi,j ||2). Moreover, as in [10], we assume the nonlin-
ear energies to vary smoothly from one pixel to another which will
be introduced by considering a specific prior for ε2i,j , as explained
in Section 3.3. Note finally that the joint prior of Γ is obtained by
assuming a priori independence between the nonlinear coefficients,
as follows f (Γ|ε) =

∏
i,j f

(
γi,j |ε2i,j

)
.

3.2.4. Noise variances

The noise variances are assigned a conjugate inverse gamma distri-
bution as follows: σ2

` ∼ IG (ϕ`, ψ`) ,where σ2
` are assumed a priori

independent leading to f
(
σ2
)
=
∏L

`=1 f
(
σ2
`

)
. The hyperparame-

ters ϕ` and ψ` are fixed to approximate the HySime estimated vari-
ances [20]. Note finally that the hyperparameters can also be set to
ϕ` = ψ` = 0 in absence of prior knowledge about σ2

` , leading to a
noninformative Jeffreys’ prior.

3.3. Hyperparameter priors

Due to the spatial organization of hyperspectral images, we expect
the energies of the nonlinear coefficients γi,j to vary smoothly from
one pixel to another. This behavior is obtained by introducing an
auxiliary variable w (of size Nrow × Ncol) and assigning a gamma
Markov random field (GMRF) prior for (ε,w) (see [10,11] for more
details regarding this prior). An interesting property of this joint
prior is that the conditional prior distributions of ε and w reduce
to conjugate inverse gamma (IG) and gamma (G) distributions as
follows

ε2i,j |w, ζ ∼ IG (4ζ, 4ζρ1,i,j(w)) ,

w2
i,j |ε, ζ ∼ G (4ζ, 1/(4ζρ2,i,j(ε))) , (5)

where

ρ1,i,j(w) = (w2
i,j + w2

i+1,j + w2
i,j+1 + w2

i+1,j+1)/4,

ρ2,i,j(ε) = (ε−2
i,j + ε−2

i−1,j + ε−2
i,j−1 + ε−2

i−1,j−1)/4, (6)

and ζ is a fixed coupling parameter that controls the amount of spa-
tial smoothness enforced by the GMRF. Note that (5) ensures that
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Fig. 1. Considered 1st order GMRF neighborhood structure.

each ε2i,j is connected to four neighbor elements ofw and vice-versa
(see Fig. 1). Note also that the energies ε2i,j are conditionally inde-
pendent and the 1st order neighbors (i.e., the spatial correlation) is
introduced via the interaction between ε and the auxiliary variables
w.

3.4. Posterior distributions

The joint posterior distribution of the hierarchical Bayesian model
can be computed from the following Bayes’ rule

f (Θ|Y ) ∝ f(Y |Θ)f (A) f
(
σ2) f (c) f (γ|ε) f (ε,w) , (7)

where ∝ means “proportional to” and we have assumed a priori in-
dependence between the parameters of each model. The MMSE and
MAP estimators associated with the posterior (7) are not easy to de-
termine. In this paper, and akin to [13], we propose to evaluate the
MAP estimator by using an optimization technique maximizing the
posterior (7) w.r.t. the parameters of interest.

4. COORDINATE DESCENT ALGORITHM

Because of the large number of parameters to estimate, we propose
a coordinate descent algorithm [12, 13] that sequentially updates the
different parameters. In each step of the proposed CDA-NL algo-
rithm, the posterior distribution is maximized w.r.t. one parameter,
the other being fixed. Thus, the algorithm iteratively updates each
parameter by maximizing its conditional distribution as follows (see
[21] for more details regarding the conditional distributions):

• Conditional of A: truncated Gaussian distribution (whose
one maximum is obtained with SUNSAL-FCLS1 [19])

• Conditional of Γ: positive truncated Gaussian distribution
(whose one maximum is obtained with SUNSAL-CLS [19])

• Conditional of ε : inverse gamma distribution (analytical ex-
pression of the maximum)

1SUNSAL-FCLS satisfies the PSTO constraints while SUNSAL-CLS
only ensure the positivity constraint.

• Conditional ofw : gamma distribution (analytical expression
of the maximum)

• Conditional of σ2 : inverse gamma distribution (analytical
expression of the maximum)

• Conditional of c: Gaussian distribution (analytical expression
of the mean).

Regarding the sequence generated by the coordinate descent algo-
rithm, the proposition 2.7.1 in [12] asserts that its limit points are
stationary points of (7) provided that the maximum of that function
w.r.t. Θ along each coordinate is unique. This is easily checked for
all the parameters except for cNL. Indeed, the cost function writes
as a 4-order polynomial w.r.t. cNL (leading to 3 possible maxima)
and we have chosen the one that maximizes it in the interval [0.2, 3].
Note also that the cost function is not convex, thus, the solution ob-
tained might depend on the initial values that need to be chosen care-
fully. Therefore, the abundances A are initialized with SUNSAL-
FCLS [19], the nonlinear coefficients are initialized by 0, the noise
variance is initialized by HySime [20], the illumination coefficient c
is initialized by considering the sum of the abundances that are esti-
mated using only the positivity constraint with SUNSAL-CLS [19].
With these initializations, the proposed algorithm reached minima of
good quality in the considered simulations (see Sections 5 and 6).

5. SIMULATION RESULTS ON SYNTHETIC DATA

This section evaluates the performance of the proposed CDA-NL al-
gorithm on a synthetic image denoted by I . This image contains
100 × 100 pixels, L = 207 spectral bands and has been generated
usingR = 3 endmembers extracted from the ENVI software library.
The image has also been corrupted by i.i.d. Gaussian noise for a fair
comparison with SU algorithms using this assumption. To investi-
gate the behavior of the proposed approach w.r.t. different mixture
models, image I has been generated according to 4 linear/nonlinear
models. For this, an image partition into 4 classes has been generated
by considering a Potts-Markov random field. The four spatial classes
are associated with the LMM, NL model (1) (with ε2 = 0.1), GBM
(with random nonlinear coefficients in [0.8; 1]) and PPNMM (with
b = 0.5), respectively. Note that the abundances have been clustered
inside the simplex using a Dirichlet distribution and that the illumi-
nation coefficient c increases linearly from the left to the right of the
image in [0.9, 1.15]. Table 1 compares the proposed CDA-NL al-
gorithm with the FCLS [18], SUNSAL-CLS [19], SKhype [22], and
RCA-MCMC [23] algorithms. The criteria used are the quadratic
distance between the actual and estimated abundances (RMSE), the
reconstruction error (RE) and the spectral angle mapper (SAM) be-
tween the observed and reconstructed pixel spectra. Table 1 high-
lights the good performance of CDA-NL for the different mixture
models and shows that CDA-NL has the best overall results. It also
shows that CDA-NL presents a good computational times that is
competitive with the NL unmixing algorithms SKhype and RCA-
MCMC.

6. RESULTS ON REAL DATA

This section illustrates the performance of the proposed algorithm
when applied to a real hyperspectral image. This image was ac-
quired over Moffett Field, CA, in 1997 by the AVIRIS. The consid-
ered dataset contains 100× 100 pixels, L = 152 spectral bands (af-
ter removing water absorption bands) acquired in the interval 0.4 −
2.5µm, has a spatial resolution of 100m and is mainly composed of
three components: water, soil, and vegetation (see Fig. 2 (Top-left)).



Table 1. Results on synthetic data.
RMSE (classes) (×10−2) RMSE RE SAM TimeC1 C2 C3 C4 (×10−2) (×10−2) (×10−2) (s)LMM RCA-NL GBM PPNMM

FCLS 10.24 44.72 15.48 23.98 24.76 15.74 10.64 1.7
SUNSAL-CLS 3.84 33.81 5.68 8.45 16.55 4.17 7.57 0.07

SKhype 1.67 11.92 2.21 2.81 5.87 − − 547
RCA-MCMC 5.87 6.29 5.44 3.93 5.66 − − 9009

CDA-NL 1.62 7.27 2.16 2.89 3.86 2.86 6.16 430

The VCA algorithm [24] was used to estimate R = 3 endmembers.
The estimated CDA-NL abundance maps are in good agreement with
the state-of-the-art algorithms and are not shown here for brevity (see
[21] for more details). Fig. 2 (top-right) shows the energies of the
difference between the reconstructed signal and the linear model. It
is clear that the residual components are mainly located in the coastal
region and in water. Figs. 2 (bottom-left) and (bottom-right) show
the effects of the illumination variation and the nonlinear term, re-
spectively. It can be seen that the illumination variation mainly oc-
curs in water while the nonlinear effects are located in the coastal
zone and in presence of vegetation.

Fig. 2. (Top-left) Real Moffett image. (Top-right) Square root of the
energies of the difference between the reconstructed signal and the
linear model (||ŷi,j −Mâi,j ||). (Bottom-left) estimated illumina-
tion variation |1 − ci,j |. (Bottom-right) square root of the energies
of the residual terms

∥∥φNL
i,j

∥∥.

7. CONCLUSIONS

This paper introduced a hyperspectral mixture model and its associ-
ated Bayesian algorithm for nonlinear hyperspectral unmixing. The
proposed model considered the spatial illumination variation and the
presence of nonlinearity effects. A hierarchical Bayesian model was
proposed to introduce the known constraints on the parameters of in-
terest. Those parameters were estimated using a coordinate descent
algorithm that showed a reduced computational cost when compared
to state-of-the-art algorithms. The proposed algorithm showed good

performance when processing synthetic data generated with the lin-
ear and nonlinear models. Results on real data confirmed the good
performance of the proposed algorithm and showed its ability to ex-
tract different features in the observed scene. Future work includes
the estimation of the hyperparameters associated with the proposed
Bayesian model.
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