Filtering smooth altimetric signals using a Bayesian algorithm - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Filtering smooth altimetric signals using a Bayesian algorithm

Résumé

This paper presents a new Bayesian strategy for the estimation of smooth signals corrupted by Gaussian noise. The method assumes a smooth evolution of a succession of continuous signals that can have a numerical or an analytical expression with respect to some parameters. The Bayesian model proposed takes into account the Gaussian properties of the noise and the smooth evolution of the successive signals. In addition, a gamma Markov random field prior is assigned to the signal energies and to the noise variances to account for their known properties. The resulting posterior distribution is maximized using a fast coordinate descent algorithm whose parameters are updated by analytical expressions. The proposed algorithm is tested on satellite altimetric data demonstrating good denoising results on both synthetic and real signals. The proposed algorithm is also shown to improve the quality of the altimetric parameters when combined with a parameter estimation strategy.
Fichier principal
Vignette du fichier
16.eusipco.altimetry.pdf (1.56 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01965917 , version 1 (27-12-2018)

Identifiants

Citer

Abderrahim Halimi, Gerald S. Buller, Steve Mclaughlin, Paul Honeine. Filtering smooth altimetric signals using a Bayesian algorithm. Proc. 23rd European Conference on Signal Processing (EUSIPCO), 2016, Budapest, Hungary. pp.2385-2389, ⟨10.1109/EUSIPCO.2016.7760676⟩. ⟨hal-01965917⟩
17 Consultations
67 Téléchargements

Altmetric

Partager

More