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ABSTRACT

This paper presents a new Bayesian strategy for the estimation
of smooth signals corrupted by Gaussian noise. The method
assumes a smooth evolution of a succession of continuous sig-
nals that can have a numerical or an analytical expression with
respect to some parameters. The Bayesian model proposed
takes into account the Gaussian properties of the noise and
the smooth evolution of the successive signals. In addition,
a gamma Markov random field prior is assigned to the signal
energies and to the noise variances to account for their known
properties. The resulting posterior distribution is maximized
using a fast coordinate descent algorithm whose parameters
are updated by analytical expressions. The proposed algo-
rithm is tested on satellite altimetric data demonstrating good
denoising results on both synthetic and real signals. The pro-
posed algorithm is also shown to improve the quality of the
altimetric parameters when combined with a parameter esti-
mation strategy.

Index Terms— Altimetry, Bayesian algorithm, coordi-
nate descent algorithm, gamma Markov random fields

1. INTRODUCTION

A satellite altimeter is a nadir-viewing radar that emits regu-
lar pulses and records the travel time, the magnitude and the
shape of each return signal after reflection on the Earth’s sur-
face. This reflected echo provides information about some
physical parameters such as the range between the satellite
and the observed scene (denoted by τ ), the significant wave
height (denoted by SWH) and the wind speed (related to the
signal’s amplitude Pu). The oceanic altimetric signals can be
described as a succession of continuous functions corrupted
by noise [1–3] (see Fig. 1 (top) that shows a succession of
800 signals acquired by the Jason-2 mission). Many recent
studies and missions have focused on improving the quality
of these signals by reducing the noise effect. This goal is
achieved by amending the estimation algorithm to incorpo-
rate the known smooth properties of the altimetric parame-
ters [4–6] or by operating on the observed signals to reduce
their noise [7, 8]. This paper adopts this second approach by
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exploiting the smooth evolution of the successive altimetric
signals. The main motivation for this choice is to propose
a denoising algorithm that is independent from the parameter
estimation algorithm, thus, it can be easily combined with any
existing estimation algorithms [4–6,9] leading to an improve-
ment in parameter estimation.

Fig. 1. (Top) Example of 800 noisy Jason-2 signals. (Middle)
Filtered Jason-2 signals by the proposed SSE algorithm. (Bot-
tom) Signal evolutions in gates (30, 50, 90) (continuous lines)
and their smooth approximation with SSE (dashed lines).

The first contribution of this paper is the development of
a hierarchical Bayesian model to denoise a set of smooth sig-
nals. Each signal is assumed to be corrupted by additive,
independent and non identically Gaussian noise. This noise
model generalizes the independent and identically distributed
(i.i.d.) Gaussian noise that is generally assumed when consid-
ering altimetric data [9, 10]. A gamma Markov random field
(GMRF) prior [11] is considered to account for the correla-
tion between the noise variances and to better approximate
the speckle noise. The signal energies are also assigned a
GMRF prior to better approximate their continuity. Note that
the proposed Bayesian hierarchy is generic in the sense that
it does not assume a specific signal model. Indeed, the signal
can be expressed by a numerical formula or by a given lin-
ear/nonlinear analytical function with respect to (w.r.t.) some
parameters.



The second contribution of this paper is the derivation
of a denoising algorithm associated with the proposed hier-
archical Bayesian model. The minimum mean square error
(MMSE) and maximum a posteriori (MAP) estimators of the
unknown signals/parameters cannot be easily computed from
the obtained joint posterior. In this paper, the MAP estima-
tor is evaluated by considering a coordinate descent algorithm
(CDA) [6, 12]. The resulting algorithm sequentially updates
the noiseless signals, the noise variances and other hyperpa-
rameters by analytical formulas leading to a reduced com-
putational cost. The proposed Bayesian model and estima-
tion algorithm are validated using synthetic and real altimet-
ric data acquired during the Jason-2 mission. The obtained
results are very promising and show the potential of the pro-
posed denoising strategy.

The paper is structured as follows. Section II introduces
the observation model and the considered altimetric signal.
The proposed hierarchical Bayesian model and its estimation
algorithm are introduced in Sections III and IV. Section V
validates the proposed technique using simulated data with
controlled ground truth. Section VI shows results obtained
using real data obtained from the Jason-2 mission. Finally,
conclusions and future work are reported in Section VII.

2. PROBLEM FORMULATION

Consider M successive signals S ∈ RK×M and let Y ∈
RK×M denote their noisy version. Let y:m ∈ RK×1 be the
mth column of Y and yk: ∈ R1×M its kth row, representing
the kth temporal gate for all signals. For notation simplicity,
we denote y:m = ym,∀m, and yk: = yk,∀k. Using these
notations, the observation model is given by

ym = sm (Θm) + em, with em ∼ N (0K ,Σ) (1)

where ym and sm are (K × 1) vectors representing the mth
observed and noiseless signals, 0K denotes the (K × 1)
vector of zeros and em is a centered Gaussian noise vec-
tor with a diagonal covariance matrix Σ = diag

(
σ2
)

with

σ2 =
(
σ2
1 , · · · , σ2

K

)T
a (K × 1) vector. The signals S

might depend on some parameters (by a linear or nonlin-
ear expression) which are denoted by the (1 × H) vector
Θm = [θ1(m), · · · , θH(m)] containing the H parameters
of the mth signal. Note, however, that the proposed method
does not necessarily require a parametric expression for S,
and is valid provided that the signals satisfy some proper-
ties (as described in the following). The smooth variation of
the oceanic altimetric signals (see Fig. 1 (bottom)) can be
highlighted by expressing the model (1) as follows

yk = sk (Θ) + ek, with ek ∼ N
(
0M , σ

2
kIM

)
(2)

where k ∈ {1, · · · ,K} indexes the signal samples that are
known as “temporal gates”, IM denotes the (M ×M ) iden-
tity matrix and sk is a smooth (M × 1) vector representing

the signal evolution at the kth gate (see Fig. 1 (bottom) for
examples). The proposed Bayesian method aims to filter the
observed signals yk, k ∈ {1, · · · ,K} to retrieve the noiseless
signals sk, k ∈ {1, · · · ,K}.

2.1. Conventional altimetric model

This section introduces the satellite altimetric model that will
be considered in this paper since it satisfies the model de-
scribed above. The altimetric nonlinear model accounts for
three parameters (Pu, τ, SWH) as follows [2, 9]

s(t) =
Pu
2

[
1 + erf

(
t− τs − ασ2

c√
2σc

)]
exp

[
−α

(
t− τs −

ασ2
c

2

)]
(3)

where σ2
c =

( SWH
2c

)2
+ σ2

p, erf (t) = 2√
π

∫ t
0
e−z

2

dz is
the Gaussian error function, t is time, τs = 2τ

c (resp. τ ) is
the epoch expressed in seconds (resp. meters), c is the speed
of light, α and σ2

p are two known parameters (depending on
the satellite and on the measurement instrument). Note that
the discrete altimetric signal is gathered in the vector s =
(s1, · · · , sK)

T , where K = 104 gates, sk = s (kT ), T is the
time resolution and Θm = [SWH(m), τ(m), Pu(m)] is a (1×
3) vector containing the 3 altimetric parameters SWH, τ, Pu
for the mth signal.

The altimetric signals are corrupted by speckle noise that,
thanks to the averaging that takes place on-board the satellite,
can be approximated by additive Gaussian noise as shown
in [6, 13–15]. Thus, the observation altimetric model satis-
fies (1). Moreover, the noise variances obtained, σ2

k, k ∈
{1, · · · ,K}, after the satellite averaging, are correlated due
to the nature of the speckle noise (this correlation will be
considered in the proposed Bayesian scheme). Finally, it is
worth-noting that this paper only considers oceanic observa-
tions which generally show a smooth variation between suc-
cessive signals.

3. HIERARCHICAL BAYESIAN MODEL

This section introduces a hierarchical Bayesian model to esti-
mate the unknown (K×M ) matrix of noiseless signals S and
the (K×1) vectorσ containing the noise variances associated
with the M signals considered.

3.1. Likelihood

The observation model defined in (2) and the Gaussian prop-
erties of the noise sequence ek, k ∈ {1, · · · ,K}, yield

f(yk|sk, σ2
k) ∝

(
1

σ2
k

)M
2

exp

{
−||yk − sk||

2

2σ2
k

}
(4)

where∝means “proportional to”, ||·|| denotes the standard l2
norm such that ||x||2 = xTx and sk (Θ) has been denoted by
sk for brevity. Assuming independence between the observed
signals leads to f(Y |Θ,S) ∝

∏K
k=1 f(yk|sk, σ2

k).



3.2. Priors for the observed signal

As previously assumed, the successive observed signals
evolve slowly leading to smooth vectors sk, for k ∈ 1, · · · ,K
(see Fig. 1 (bottom)). This property is satisfied by consider-
ing a Gaussian prior for sk ensuring smoothness as follows

sk|ε2k ∼ N
(
0M , ε

2
kH
)
, (5)

where H is an (M × M) matrix representing the squared-
exponential covariance function given by H(m,m′) =

exp

[
− (m−m′)

2

(30)2

]
, which introduces the correlation between

the successive signals and ε2k is a variance parameter that
is gate dependent. From (5), it is clear that this variance is
related to the energy of the signals at the kth gate (via the
norm

(
sTkH

−1sk
)
). Moreover, because of the continuity of

the signal sm w.r.t. the temporal gates, the signal energies
vary smoothly from one gate to another. Therefore, we expect
ε2k to vary smoothly from one gate to another which will be
introduced by considering a specific prior for ε2k, as explained
in Section III-D.

3.3. Prior for the noise variance

Due to the speckle origins of the corruption noise, we expect
the noise variances σ2

k, k ∈ {1, · · · ,K} to vary smoothly.
This behavior is considered by introducing an auxiliary vec-
torw (of sizeK×1) and assigning a gamma Markov random
field prior (GMRF) for (σ,w) (see [11, 16] for more details
regarding this prior). This prior ensures that each σ2

k is con-
nected to two neighboring elements of w and vice-versa via
a coupling parameter ζ > 1 that controls the amount of cor-
relation enforced by the GMRF (see Fig. 2 (a)). Note that
the variances σ2

k, σ2
k′ for k 6= k′ are conditionally indepen-

dent and that the correlation is introduced via the auxiliary
variables w. An interesting property of this joint prior is that
the conditional prior distributions of σ and w reduce to con-
jugate inverse gamma (IG) and gamma (G) distributions, re-
spectively, as follows [11]

σ2
k|wk−1, wk, ζ ∼ IG [2ζ, ζ (wk−1 + wk)]

σ2
K |wK−1, ζ ∼ IG (ζ, ζwK−1)

w2
k|σ2

k, σ
2
k+1, ζ ∼ G

[
2ζ,

(
ζ

σ2
k

+
ζ

σ2
k+1

)−1]
(6)

where k ∈ {1, · · · ,K − 1}.

3.4. Hyperparameter priors

As previously explained, the hyperparameters ε2k are closely
related to the energies

(
sTkH

−1sk
)
. Considering this prop-

erty and the continuity of the signal suggest the presence of
a correlation between the parameters ε2k. This correlation can
be introduced using a similar GMRF prior as in Section III-C

σ2
2

w2 · · · σ2
K

w1σ2
1

w0
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(a) GMRF for σ

ε22 v2 · · · ε2Kv1ε21v0
η η η η η η

(b) GMRF for ε

Fig. 2. Proposed 1st order GMRF neighborhood structures
for (a) the noise variances σ and (b) the signal energies ε.

for the couple (ε,v), where v is a new auxiliary vector and η
is the coupling parameter (see Fig. 2 (b)).

3.5. Posterior distributions

The parameters of interest areX = (S,σ,w, ε,v). The joint
posterior distribution of this Bayesian model can be computed
using the following hierarchical structure

f (X|Y ) ∝ f(Y |S,σ)f (S|ε) f (ε,v) f (σ,w) , (7)

where we have assumed a priori independence between the
parameters. For simplicity, f(x|θ) has been denoted by f(x)
when the parameter θ is a user-fixed parameter.

4. COORDINATE DESCENT ALGORITHM

This section describes the optimization algorithm maximiz-
ing the posterior (7) w.r.t. X which provides the parame-
ter MAP estimator. Because of the large number of param-
eters in X = (S,σ,w, ε,v), we propose a coordinate de-
scent algorithm [12] that sequentially updates the different
parameters. More precisely, in each step, the posterior dis-
tribution is maximized w.r.t. one parameter, the others be-
ing fixed. This process is repeated until the algorithm has
converged to a local minimum of the negative log-posterior
C(S,σ,w, ε,v). Thus, the algorithm iteratively updates each
parameter by maximizing its conditional distribution (simi-
larly to the iterated conditional modes algorithm [17]) which
are given by

• sk|yk, σ2
k, ε

2
k ∼ N (sk,Γk)

• σ2
k|yk, sk,wk ∼ IG

(
2ζ + M

2 ,
β1

2

)
• ε2k|yk, sk,vk ∼ IG

(
2η + M

2 ,
β2

2

)
• w2

k|σ2
k, σ

2
k+1, ζ ∼ G

[
2ζ,
(
ζ
σ2
k
+ ζ

σ2
k+1

)−1]

• v2k|ε2k, ε2k+1, η ∼ G
[
2η,
(
η
ε2k

+ η
ε2k+1

)−1]



where sk = 1
σ2
k
Γkyk,, Γk =

(
H−1

ε2k
+ IM

σ2
k

)−1
, β1 = ||yk −

sk||2+2ζ(wk−1+wk) and β2 = sTkH
−1sk+2η(vk−1+vk).

The mode of each conditional distribution is uniquely and an-
alytically obtained which reduces the computational cost of
the algorithm. In this paper, the parameters have been initial-
ized as follows: σ(0) = s

(0)
m = 1

M

∑M
n=1 yn, ∀m, ε2k = 10,

∀k, and w
(0)
k = v

(0)
k = 10−12, ∀k. Note that more elab-

orate initialization procedures can be investigated, but these
proposed values provided minima of good quality in the sim-
ulations considered (see Sections V and VI). More details
regarding the stopping criteria of the algorithm are provided
in [16].

5. SIMULATION RESULTS ON SYNTHETIC DATA

This section evaluates the performance of the proposed
SSE (for smooth signal estimation) algorithm on synthetic
data when considering two experiments. The first exper-
iment evaluates the performance when varying the num-
ber of the denoised signals M . Indeed, the SSE algo-
rithm considers successive sets of length M to denoise
the observed altimetric signals. Therefore, N = 5000
signals are generated according to the altimetric model (3)
while using a realistic variation of the altimetric parameters
Θm = [SWH(m), τ(m), Pu(m)]. This realistic sequence of
parameters is obtained by applying the CD-BM algorithm [6]
on 5000 real Jason-2 signals (since it provides physically re-
alistic smooth parameters) where we obtain SWH ∈ [3.4, 5.4]
meters, τ ∈ [14.3, 15] meters and Pu ∈ [150, 190] unit. The
generated synthetic signals are then corrupted by speckle
noise resulting from the averaging of L = 90 signals and
leading to RSNR = 19.55 dB. The obtained N = 5000 sig-
nals are processed by the proposed algorithm while consid-
ering different set lengths as shown in Table I. For example,
for a length set M = 250, the algorithm is run 20 times to
process the N = 5000 signals. The performance is evaluated
using the reconstruction signal to noise ratio (RSNR) given
by RSNR = 10 log10

( ∑M
m=1 ||sm||2∑M

m=1 ||sm−ŝm||2

)
, where sm (resp.

ŝm) denotes the noiseless (resp. denoised) signal. Overall,
these results show an ≈ 11 dB improvement in the processed
data with an increasing RSNR w.r.t. M . However, a high
number of M requires higher computational cost (mainly due
to the matrix inversion in (IV)), while too small M leads to
more iterations. M = 500 represents a good compromise and
we consider this value for the rest of the paper [6].

The second experiment compares our algorithm with the
state-of-the-art singular value decomposition (SVD) filtering
strategy proposed in [7, 8] (with a threshold equal to 84%).
The study is performed when varying SWH ∈ [0.5, 8] m with
fixed τ = 31 gates and Pu = 130. For each SWH, 500 syn-
thetic signals are generated using the model (3) with different
noise realizations (500 Monte carlo runs) and processed using

the two considered algorithms. Table II reports the obtained
RSNR when considering SVD and SSE for different SWH.
This table shows an average improvement by 6 dB when con-
sidering SVD and by 12 dB when considering the proposed
SSE algorithm. These results highlight the potential of the
proposed strategy in denoising the altimetric signals and im-
proving the estimation of the altimetric parameters.

6. RESULTS ON JASON-2 REAL DATA

This section is devoted to the validation of the proposed SSE
denoising algorithm when applied to the oceanic Jason-2
dataset. The data considered cover a period of 36 minutes
and consist of 43000 real signals that were extracted from
pass 30 of cycle 35. Figs. 1 (top) and (middle) present a
sequence of 800 Jason-2 signals before and after filtering.
These figure clearly show a reduction in the noise affecting
the signals after the application of the SSE algorithm espe-
cially in the tail of the signal (the decreasing part), which was
most affected by the speckle noise. Table III shows the effect
of the denoising algorithms on the estimated altimetric pa-
rameters that are obtained using the well known least-squares
(LS) estimation based strategy [6, 9]. This table compares
the classical LS algorithm (applied to noisy data) with SVD-
LS and the proposed SSE-LS (LS applied to filtered data).
This table shows a good agreement between the means of
the estimated parameters for the LS, SVD-LS and SSE-LS
algorithms (except Pu that is slightly reduced by SSE-LS).
Moreover, the smallest parameter standard-deviations (STDs)
are achieved by the proposed SSE-LS. This STD reduction
is of great importance for many practical applications related
to oceanography such as bathymetry. Comparing SSE-LS to
LS, Table III highlights an STD improvement factor by 6 for
SWH, 4 for τ and 5 for Pu. Finally, Table III also compares
the computational costs of the three considered algorithms
when processing the 43000 signals (the result is reported for
each signal). Because of the filtering step, both SVD-LS and
SSE-LS require more computational time than LS. Note that
the proposed SSE algorithm requires more computational
time than the SVD approach. However, this cost (about 12%
of additional computational times w.r.t. the LS algorithm)
must be balanced by the performance improvement in terms
of RSNR and parameter STDs. These results confirm the
good performance of the proposed strategy for denoising
smooth signals such as oceanic altimetric signals.

7. CONCLUSIONS

This paper has presented a new Bayesian strategy for de-
noising smooth signals corrupted by Gaussian noise. The
method assumed a reduced evolution of successive contin-
uous signals, which can have a numerical expression or be
given by a linear/nonlinear function with respect to some
parameters. A Bayesian model was proposed to take into



Table 1. Performance of the proposed SSE algorithm w.r.t. the filter length (5000 signals). The corrupted data presents an
RSNR = 19.55dB.

Filter length
50 100 250 500 1000 2500 5000

RSNR (dB) 31.1 31.4 31.5 31.6 31.7 31.7 31.7
Time per signal (ms) 0.35 0.24 0.25 0.38 1.03 5.00 17.47

Table 2. RSNR (in dB) with respect to SWH. The corrupted data presents an RSNR = 19.55dB.
SWH (m)

0.5 1 2 3 4 5 6 7 8

RSNR (dB) SVD 26.35 26.43 26.30 26.02 26.03 26.07 26.08 25.92 25.86
SSE 32.24 32.21 32.22 32.13 32.15 32.10 32.22 32.13 32.07

Table 3. Performance on real Jason-2 data (45000 signals).
SWH (cm) τ (cm) Pu

Mean
LS 242 14.68 167.73

SVD-LS 241 14.67 166.62
SSE-LS 248 14.68 164.83

STD
LS 59.9 12.01 6.18

SVD-LS 18.14 6.02 6.09
SSE-LS 9.03 2.94 1.21

Average time LS 8.56

per signal (ms) SVD-LS 9.05
SSE-LS 9.63

account the Gaussian properties of the noise, and the smooth
properties of the signal evolution. The resulting posterior
distribution was maximized using a fast coordinate descent
algorithm that showed good results on both synthetic and
real altimetric signals. The proposed algorithm was also
evaluated by combining it with a commonly used parameter
estimation strategy for the altimetric parameters. The esti-
mated parameters showed a clear improvement highlighting
the benefit of the proposed algorithm. It is worth-noting that
the proposed strategy is fast and generic and thus could be
applied when considering other altimetric technologies such
as delay/Doppler altimetry [10, 18, 19]. This point will be
considered in future work.
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