Gas Sources Parameters Estimation Using Machine Learning in WSNs - Archive ouverte HAL
Article Dans Une Revue IEEE Sensors Journal Année : 2016

Gas Sources Parameters Estimation Using Machine Learning in WSNs

Résumé

This paper introduces an original clusterized framework for the detection and estimation of the parameters of multiple gas sources in wireless sensor networks. The proposed method consists of defining a kernel-based detector that can detect gas releases within the network's clusters using concentration measures collected regularly from the network. Then, we define two kernel-based models that accurately estimate the gas release parameters, such as the sources locations and their release rates, using the collected concentrations.
Fichier principal
Vignette du fichier
16.wsn.diffusion_draft.pdf (714.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01965049 , version 1 (04-01-2019)

Identifiants

Citer

Sandy Mahfouz, Farah Mourad-Chehade, Paul Honeine, Joumana Farah, Hichem Snoussi. Gas Sources Parameters Estimation Using Machine Learning in WSNs. IEEE Sensors Journal, 2016, 16 (14), pp.5795 - 5804. ⟨10.1109/JSEN.2016.2569559⟩. ⟨hal-01965049⟩
71 Consultations
148 Téléchargements

Altmetric

Partager

More