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Gas Sources Parameters Estimation

Using Machine Learning in WSNs

Sandy Mahfouz, Farah Mourad-Chehade, Paul Honeine, Joumana Farah, and Hichem Snoussi

Abstract—This paper introduces an original clusterized
framework for the detection and estimation of the parameters
of multiple gas sources in WSNs. The proposed method
consists of defining a kernel-based detector that can detect
gas releases within the network’s clusters using concentration
measures collected regularly from the network. Then, we
define two kernel-based models that accurately estimate the
gas release parameters, such as the sources locations and their
release rates, using the collected concentrations.

Index Terms—gas diffusion, machine learning, one-class
classification, ridge regression, source parameter estimation

I. INTRODUCTION

Gas releases might occur either accidentally, such as for

the Union Carbide release in Bhopal, India in 1984 [1],

or deliberately, such as for the Sarin gas attack on Tokyo,

Japan in 1995 [2]. Such explosions are potent threats to the

environment and to human society, wherever they occur.

Considering the potentially catastrophic consequences, it

is important to detect the gas explosion and estimate its

parameters, including the source’s location and the release

rate. These computations require the collection of gas

concentration measurements from the area of explosion,

which necessitates specially trained people with appropri-

ate protective equipments. Alternatively, wireless sensor

networks (WSNs) have proven to be very useful in such

scenarios, where human intervention is risky and expensive

[3]. Typically, sensors are deployed in the area to be

monitored and are regularly and continuously collecting

measurements from the area. The collected information is

reported back to a fusion center, where it is processed in

order to estimate the source’s parameters.

Several methods have been proposed in the literature for

the estimation of the source’s parameters. For instance, the

authors of [4] developed an inverse model for inferring

the parameters of an instantaneous point source from gas

concentration measurements. The method solves a non-

linear least squares estimation problem. In [3], the authors

determined the source’s parameters using mobile robots that

collect concentration measurements. The study was focused

on the selection of the sequence of locations where each

robot should be moved in order to obtain accurate real-time
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estimates. Another method was proposed in [5], where the

problem of pollutant source localization and flow estimation

is addressed in a one-dimensional context, using a single

remote sensor. The pollutant is assumed to be generated

by one out of several possible sources, and the task is

viewed as a conditional deconvolution which requires a

priori knowledge. In the end, a joint estimation decision

is derived in a Bayesian framework.

In terms of computational concept, algorithms in WSNs

can be divided into centralized, distributed, and cluster-

ized algorithms [6]. The centralized algorithms require the

transmission of all measurements to a fusion center (e.g.,

a sink node) for processing. Such strategies often result in

prohibitive wasteful energy and bandwidth consumptions

and can thereby reduce the lifetime and utility of the

network. In this paper, we propose a new clusterized

framework for the detection and estimation of multiple gas

sources in wireless sensor networks. Sensors are uniformly

or randomly deployed in the region of interest and collect

concentration measurements at regular and short sampling

intervals. The region is divided into clusters, each having

its own cluster head. Consequently, information processing

is done locally. Compared to a centralized strategy, this

clusterized approach is more robust to failures, since several

cluster heads are engaged in the detection phase. It is also

less energy consuming and thus more adapted to WSNs

limitations.

The proposed framework consists of two phases: the

detection phase and the estimation phase. In the first one,

a kernel-based detector is defined using the Support Vector

Data Description (SVDD) [7]. The detector is used by

each cluster head in order to identify any gas release

in the specified cluster. When an anomaly is spotted,

the concentration vector that first triggered the alert is

treated to estimate the gas release parameters, such as the

source’s location and the release rate. Note that not all the

concentrations will be processed in the estimation phase,

since some are irrelevant for parameters estimation. Details

about the selection of the useful information will be given

in the sequel. A first estimate of the parameters is obtained

using a non linear model, which is also defined within

the framework of kernel methods, proved to be successful

for solving nonlinear regression problems [8], [9], [10].

Then, part of the estimated parameters are processed as

internal feedback, along with the measured concentrations,

in order to provide a more accurate estimate of the source

location. Simulations show that the proposed estimation

method yields accurate results in the case of a single source,

as well as in the case of multiple sources.
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The rest of the paper is organized as follows. Section

II introduces the considered advection-diffusion model.

Section III provides a thorough description of the detection

phase in the proposed framework. In Section IV, the

estimation phase is described, along with details about the

definition of the two kernel-based regression models. Next,

in Section VI, the effectiveness of the method is discussed

for different scenarios, and a comparison to other methods

is provided. Finally, Section VII concludes the paper.

II. THE ADVECTION-DIFFUSION MODEL

This section describes the advection-diffusion model

considered in this paper for the generation of the concen-

trations. Note that this model is a generalized version of

the one developed in [4]. Now consider an instantaneous

gas release of Q kg, assumed to occur at time t0 at location

(x0, y0, z0). A wind with mean velocity U = (ux, uy, 0)
spreads the gas particle in the region. The mass concen-

tration C of the released agent, at an arbitrary location

(x, y, z) and at time t, is governed by the equation of mass

conservation given by the following:

∂C

∂t
= −∇q, (1)

where ∇ is the gradient operator, and q is the pollutant

mass flux per unit area. The flux q is given by:

q = C U −





Kx

0
0

0
Ky

0

0
0
Kz



⊗∇C, (2)

where C U is the mean mass advection by the wind, ⊗ is

the tensor product, and Kx, Ky , Kz are eddy diffusivities

in the X, Y and Z directions respectively. Equation (2) can

then be written as follows:

q =

(

C ux −Kx

∂C

∂X
,C uy −Ky

∂C

∂Y
,−Kz

∂C

∂Y

)

. (3)

By substituting (3) into (1), we get an equation that can

be solved subject to two boundary conditions [3], [4]. The

first condition results from the fact that the concentration

is zero at infinity in all spatial directions, and the second

condition is that the gas is not absorbed by the ground. To

simplify the model, the velocity of the wind U , as well

as the eddy diffusivities Kx, Ky, Kz , are assumed to be

constant. Following these assumptions, we get the following

solution:

C(x, y,z, t) =
Q

8 π
3

2 (KxKyKz)
1

2 ∆t
3

2

× exp

(

−
(∆x− ux∆t)

2

4Kx∆t
−

(∆y − uy∆t)
2

4Ky∆t

)

×

(

exp
(

−
∆z2

4Kz∆t

)

+ exp
(

−
∆z′

2

4Kz∆t

)

)

,

(4)

where ∆x = x − x0, ∆y = y − y0, ∆z = z − z0, ∆z′ =
z + z0 and ∆t = t− t0.

In the following, for the sake of simplicity, we assume

that all measurements are taken at ground level. We also

suppose that the gas release occurs at ground level, which

means that the gas source is at location (x0, y0, z0) =
(x0, y0, 0). Therefore, using (4), the concentration mea-

sured at a location (x, y, 0) is given by the following:

C(x,y, 0, t) =
Q

4 π
3

2 (KxKyKz)
1

2 ∆t
3

2

× exp

(

−
(∆x− ux∆t)

2

4Kx∆t
−

(∆y − uy∆t)
2

4Ky∆t

)

. (5)

Note that the wind velocity U could be provided by an

anemometer, and is therefore treated as a known constant

[3]. The other parameters of the model are unknown and

need to be estimated when a gas explosion occurs over

the area under scrutiny. Hence, having gas concentrations

measured over a certain area using a WSN, the aim of this

paper is to detect the gas explosion when it occurs. Then,

the objective is to estimate the location (x0, y0, 0) of the

explosion, the gas release mass Q, and the eddy diffusivities

Kx, Ky and Kz , with Kx and Ky assumed to be equal [4].

III. THE DETECTION PHASE

As we already stated, the proposed method uses a WSN

to continuously measure gas concentrations over a certain

area Ω. Then, computations consist of two phases: the de-

tection phase and the estimation of the source’s parameters

phase. In this section, we first give a brief description of

the network’s setup and of the detection phase. Then, we

define a classifier that is capable of optimally separating the

data into normal and abnormal data, where the abnormality

denotes the occurrence of a gas diffusion.

A. Description of the detection phase

Consider N sensors deployed in the area Ω to

be monitored, at fixed locations (xn, yn, zn) =
(xn, yn, 0), n ∈ {1, . . . , N}. These sensors measure,

at each time t, the gas concentrations at their locations.

Let (C(x1, y1, z1, t) . . . C(xN , yN , zN , t))
⊤ be the N × 1

vector of the gas concentrations measured at time t by the

N sensors. These concentrations are assumed to follow

the advection-diffusion model, detailed in Section II.

In order to thoroughly monitor the area of interest, the

concentrations are measured at regular and short sampling

intervals by the deployed sensors.

Assume now that an instantaneous gas release of Q kg

occurs at time t0 at location (x0, y0, z0) = (x0, y0, 0),
all these parameters being unknown. The gas particles

are then spread by a wind with a mean known velocity

U = (ux, uy, 0). Since a gas is released in the area, an

alarm should be triggered based on the vector of measured

concentrations. To this end, we need to develop a detector,

capable of determining whether the concentrations are

normal or not.

We propose to partition the area into Z distinct clusters,

in order to make the computations less complex and the

method more robust to transmission impairments and net-

work failures. Each cluster is managed by a cluster head,

that is a smart central processing unit (CPU), responsible
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Fig. 1: Region topology- � represents the cluster heads and

• represents the deployed sensors.

of handling (gathering and synchronizing) data, performing

calculations, and exchanging information with the sensors.

Note that this device could also be one of the sensors of

the network, and it can be placed anywhere in its specified

cluster. In addition, all cluster heads can communicate

with each other, and clusters could have any shape or

dimension. Without loss of generality, we consider here

that clusters are rectangular, with the cluster heads located

at their centers, as illustrated in Fig. 1. Now that the

network has been configured, each cluster head receives the

measured concentrations from the sensors in its cluster at

every time t. Let nz denote the number of sensors in cluster

z, z ∈ {1, ..., Z}, and let C(z)(t) denote the concentration

vector of size nz×1 collected by the cluster head of cluster

z at time t. The received data are then processed instantly

to detect whether a gas diffusion has occurred or not.

To achieve this, we aim at finding a detector that can

detect an anomaly in the monitored region; in other words,

it can detect whether or not there is one or more gas

diffusions. A one-class classifier is able to do this task.

Indeed, the Support Vector Data Description (SVDD) has

been introduced to address the problem of anomaly detec-

tion [11], [7].

B. Definition of the detector using SVDD

The objective here is to define the class boundary, given

data that are originated from a single class, i.e., the normal

data, but are possibly contaminated with a small number of

outliers, i.e., the abnormal data. For simplicity, the number

of sensors in each cluster is assumed to be the same, so

that the same defined detector could be used for all the

clusters, as will be explained in the experimental results. As

we already explained, a one-class classifier can be used for

the detection, such as the Support Vector Data Description

(SVDD) [12], [13], [7]. It essentially fits the smallest

possible sphere around the given normal data, allowing

some samples to be excluded as outliers. Therefore, a

spherically shaped decision boundary with minimum radius

is computed to enclose most of the training data. Data lying

outside this decision boundary are considered as abnormal,

i.e., outliers.

Let φ denote a function that maps the data from the

input space IRnz , where the concentrations lie, into a higher

dimensional feature space H. Consider a reproducing kernel

κ : IRnz×IRnz 7→ IR, with H its reproducing kernel Hilbert

space (RKHS) with inner product 〈·, ·〉H. We then have

κ(Ci,Cj) = 〈φ(C i), φ(Cj)〉. Now consider a training set

Ci, i ∈ {1, ..., Ndet}, Ndet being the size of the training set

for the detection phase. The SVDD consists of estimating

the hypersphere with minimum radius that encloses all data

φ(C i) in the feature space H. Let a be the center of

the hypersphere, and R > 0 its radius. To allow a better

description of data, we allow the presence of outliers in

the training set by introducing the slack variables ξi ≥ 0.

Consequently, abnormal concentration vectors are also used

in the training set. Mathematically, the values for the slack

variables are obtained by minimizing a cost function that

balances the volume of the hypersphere against the penalty

associated with outliers. Note that minimizing the hyper-

sphere’s volume is equivalent to minimizing R2. Therefore,

we get the following constrained optimization problem:

min
a,R,ξi

R2 +
1

νNdet

Ndet
∑

i=1

ξi (6)

subject to

‖φ(Ci)− a‖
2
H ≤ R2 + ξi and ξi ≥ 0 ∀i = 1, ..., Ndet.

(7)

The quantity ν is a predefined parameter that regulates the

trade-off between the volume of the hypersphere and the

number of outliers.

Let L denote the Lagrangian of the above constrained

optimization problem. By taking the partial derivatives of L

with respect to R, a and ξi, we get the following relations:

Ndet
∑

i=1

αi = 1, a =

Ndet
∑

i=1

αi φ(xi), and 0 ≤ αi ≤
1

νNdet

,

where αi are the Lagrangian multipliers. Incorporating

these relations into the Lagrangian L gives us the following

objective functional to be maximized with respect to αi:

L =

Ndet
∑

i=1

αiκ(Ci,Ci)−

Ndet
∑

i=1

Ndet
∑

j=1

αiαjκ(Ci,Cj), (8)

subject to 0 ≤ αi ≤ 1
νNdet

. This is a quadratic

programming problem, whose solution is found using an

off-the-shelf optimization technique. For instance, one can

use the Matlab function quadprog to solve such a problem,

and consequently compute the αi.

As for the radius of the optimal hypersphere, it is, by

definition, the distance from the center a to any sample

φ(Ck) on the boundary in the feature space H. Therefore,

the radius is given by the following:

R2 =κ(Ck,Ck)− 2

Ndet
∑

i=1

αiκ(Ck,Ci)

+

Ndet
∑

i=1

Ndet
∑

j=1

αiαjκ(Ci,Cj).
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Sensors record the concentrations at regular short in-

tervals T . Therefore, each T seconds, a new concentra-

tion vector C(z)(td) is taken from each cluster z, with

td = d × T, d ∈ IN. The decision rule for each new

concentration vector C(z)(td) is obtained by evaluating the

distance between the center a and the mapping φ(C(z)(td))
in the feature space, given by ‖φ(C(z)(td)) − a‖

2
H. Note

that to compute this distance, one does not need the

exact expressions of φ and a. Instead, by developing the

distance expression, one gets scalar products of φ functions,

that could be replaced by kernels. The new concentration

C(z)(td) is considered as normal if the distance calculated

is smaller than the radius, i.e., ‖φ(C(z)(td))−a‖
2
H
≤ R2.

Otherwise, an alert is triggered in the considered cluster.

According to [14, Section 7.1], we can provide an upper-

bound on the false alert rate, that is the probability that

a normal concentration vector is mistakenly classified as

abnormal.

The proposed algorithm can detect and estimate more

than one source. Therefore, more than one detector might

detect a gas release at the same time. However, for simplic-

ity, all the diffusions are assumed not to overlap. It is worth

noting here that by dividing the whole area into several

clusters, the computations are processed in parallel at all

the cluster heads. Moreover, the size of the considered data

in the classifier for training and detection is limited to nz ,

instead of taking all the sensors’ concentrations at once.

This way, the network could be as large as needed without

increasing the computations’ complexity.

IV. THE ESTIMATION PHASE

Now that our detector is defined, we are able to detect

a gas diffusion in a specified cluster. Once an alert is

triggered in a cluster z, we proceed to the processing of

the concentration vector C(z)(t) recorded by the sensors

in the specified cluster. In this section, we give a brief

description of the estimation phase, and we emphasize on

the choice of the concentrations to be used in the source’s

parameters estimation. The idea here consists of grouping

the clusters in alert in a way to discern all the sources of

explosion. One can take all the clusters in alert together;

however, if the network is too large, with many sources

of explosion, one gets high dimension data to process. An

alternative way consists of grouping adjacent clusters in

alert together; by adjacent, we mean the clusters that share

a common boundary. Each cluster in alert but not adjacent

to others will form a group on its own. To illustrate this,

see Fig. 2, where six explosions are assumed to occur in

the region of interest.

At the end of this step, several groups with different sizes

are generated, each covering one or more explosion sources.

The concentration vectors recorded by the sensors of a

group are then communicated to a cluster head of the group,

e.g., the one having the highest computation capabilities,

and the concentrations are concatenated in a single group

vector. Now, in order to detect the multiple gas releases per

group, the proposed method uses the concentration group

*

*

* *

*

*

Group 1

Group 2

Group 3

Group 4

Fig. 2: Region on interest in the case of multiple gas

releases- � represents the cluster heads when there is no

alert, � when there is an alert, ∗ represents the locations

of explosions, and the red rectangle represents the defined

groups. Grouping the clusters in alert according to their

adjacencies leads here to four groups.

*

Fig. 3: Group topology- � represents the cluster heads, •
represents the deployed sensors, ∗ represents the location

of the explosion, and N represents a local maximum.

vectors to compute local maxima, leading ideally to the

concentrations of the closest sensors to the gas sources.

Let Ns be the total number of local maxima detected at

all groups. This means that Ns sources have exploded at

time t, or have exploded at different times, but are being

detected and estimated simultaneously, since the maximal

concentrations would be at the release source. Consider now

the example of Fig. 3, where the source of explosion is near

the boundary of two clusters. The alert is then triggered in

both clusters, the gas being spread all around the source.

Since the clusters are adjacent, they are grouped together

in order to form one group. Then, the local maximum is

estimated, leading to only one sensor, instead of two if

the clusters were considered separately. This means that by

grouping the clusters, one would identify the exact number

of exploded sources, even if the gas is spread over several

clusters.

Having detected the local concentrations maxima, we

now need to process the information in each group in order

to estimate all Ns sources’ parameters. It is important to

mention that not all concentration information have the

same importance in the algorithm. Consequently, only the

information collected around the local maxima will be

treated. This solution relies on the fact that the highest con-
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centrations are collected by the sensors around the source

of explosion, and these concentration measures are the most

relevant for parameters’ estimation. If we reconsider Fig. 3,

only the concentration information from the sensors around

the red triangle denoting the maximum will be considered.

Note that the size of the clusters and the number of sensors

in the figure are only chosen for illustrative purposes.

In this paragraph, we propose to choose the concentra-

tions to be treated based on the advection-diffusion model

of Section II. In other words, we need to estimate the

size of the small local zone around the local maximum as

illustrated in Fig. 3. Let Cthres be a threshold under which

the concentrations are considered really small, which means

that they are measured by sensors far from the source.

Depending on the considered application and the type of

monitoring needed, one can determine an approximation of

the maximum release mass Qmax. Using Cthres and Qmax, we

can find the maximal distance between a source and a sen-

sor. Then, this distance is used to determine the boundaries

of the local zone, whose center is the local maximum and

the estimated maximal distance is the distance separating

the local maximum from the boundary of the zone. By

taking the logarithm of (5), we get the following:

logCthres = log

(

Qmax

4 π
3

2 (KxKyKz)
1

2

)

−
3

2
log∆t

−
∆x2 + u2∆t2 − 2u∆t∆x

4Kx∆t
+

∆y2

4Ky∆t

For simplicity, assume now that the local zone is circularly

shaped, which leads to ∆x = ∆y. In addition, havingKx =
Ky yields the following:

logCthres = log

(

Qmax

4 π
3

2 (K2
xKz)

1

2

)

−
3

2
log∆t

−
2∆x2

4Kx∆t
−
u2∆t

4Kx

+
2u∆x

4Kx

.

Finally, a second degree polynomial in terms of ∆x is

obtained as follows:

a∆x2 + b∆x+ c = 0, (9)

where






















a = − 2
4Kx∆t

,

b = 2u
4Kx

,

c = log
(

Qmax

4 π
3

2 (K2
x
Kz)

1

2

)

− 3
2 log∆t

− u2∆t
4Kx

− logCthres.

The local zone dimensions ∆x = ∆y are then obtained

by resolving the quadratic equation (9), using Qmax, Cthres,

and initial approximative values of Kx and Kz. Then, only

the concentrations measured by the sensors in that zone

will be considered for the source parameters estimation;

in other words, the considered concentrations are the ones

measured by the sensors at a maximal distance ∆x from

the local maximum. For simplicity, we assume that we have

the same Qmax and Cthres for all the groups, thus for all Ns
local maxima. Therefore, the same local zone size will be

considered for all Ns explosions. Nevertheless, depending

on the type of application, one can define different sizes

for the local zones around the Ns maxima.

Now let c(s)(t), s ∈ {1, ..., Ns}, denote the vector of

useful concentrations collected at time t around each local

maximum s, i.e., around each source s. For the sake of

clarity, we drop the time t in the following, since only the

concentrations around the detection time are used. The first

objective is to define a model ψA that takes as input the

concentration vector c(s) and yields as output the vector of

parameters θ
(s)

of source s, which includes the gas release

mass Q(s), the source location (x
(s)
0 , y

(s)
0 , z

(s)
0 ) and the

diffusivity constants. Then, the next objective is to define a

second model ψB that provides an enhanced estimation of

the source location. Kernel methods [15] provide an elegant

framework to define both models, as it will be shown in

the following section. Note that estimations are handled by

the cluster heads that are the closest to the local maxima

sensors.

V. DEFINITION OF THE MODELS ψA AND ψB

Let V be the number of sensors in the local zones. As

we mentioned earlier, only the concentrations around the

local maxima will be considered in the estimation phase.

Therefore, the vector c(s) of size V × 1 is the vector that

will be processed to find the parameters of source s. In the

following paragraph, we define the model ψA, that takes

as input the concentration vector c(s) and yields as output

the source’s parameters θ(s), that are the gas release mass

Q(s), the source location (x
(s)
0 , y

(s)
0 , 0) and the diffusivity

constants. Then, we define a new model ψB that provides

an enhanced location estimation of the source, using a

part of the estimated source’s parameters and the measured

concentration vector c(s).

A. First estimation

In this subsection, we define a model ψA : IRV 7→ IR5,

that associates to each concentration vector the correspond-

ing source’s parameters. We propose to find the model ψA
by solving a nonlinear regression problem. The main benefit

of such an approach is that no prior knowledge of the model

is needed. Kernel methods [15] have been remarkably

successful for solving nonlinear regression problems. More

specifically, we consider the kernel ridge regression [16]

to determine ψA, by combining five separate optimization

problems, one for each component of the output vector.

Consider the following training set (cℓ, θℓ), ℓ ∈
{1, . . . , Nreg}, where Nreg is the size of the training set used

for the regression phase and θℓ = (Qℓ Kx Kz x0ℓ y0ℓ).
The vector cℓ yields the concentrations recorded by V

sensors uniformly distributed in a zone of the same size

as the small local zone introduced previously, around the

time of a gas release of parameters θℓ, with (x0ℓ, y0ℓ, 0)
being the source’s location and Qℓ the gas release mass.

As already mentioned, the eddy diffusivities Kx and Ky,

with Kx = Ky , are assumed constant, since they depend on

the atmospheric conditions and the type of chemical agent,
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considered constant as well. Note here that the advantage of

using a local small zone to select the relevant concentrations

allows us to save computations and reduce the training

complexity, since V sensors are now considered instead of

N . In the following, let Θ = (θ⊤1 . . . θ
⊤

Nreg
)⊤. The matrix

Θ is then of size Nreg×5, having Θℓ,i for the (ℓ, i)-th entry,

with ℓ ∈ {1, . . . , Nreg} and i ∈ {1, . . . , 5}. We also denote

θℓ by Θℓ,∗, and the i-th column of Θ by Θ∗,i.

Let ψA = (ψA1 . . . ψA5), where ψAi, i ∈ {1, . . . , 5}
estimates Θℓ,i, the i-th component of the vector Θℓ,∗, for

an input cℓ. Each function ψAi is then determined by

minimizing the mean quadratic error between the model’s

outputs ψAi(cℓ) and the desired outputs Θℓ,i:

min
ψAi∈HA

1

Nreg

Nreg
∑

ℓ=1

(Θℓ,i − ψAi(cℓ))
2 + ηA‖ψAi‖

2
HA

, (10)

where ηA is a regularization parameter that controls the

tradeoff between the training error and the complexity of

the solution. According to the representer theorem [15], the

optimal function ψAi can be written as follows:

ψAi(·) =

Nreg
∑

ℓ=1

βℓ,i κA(cℓ, ·), (11)

where “ · ” is the function’s input, κA : IRV × IRV 7→ IR
is a reproducing kernel, and βℓ,i, ℓ ∈ {1, . . . , Nreg}, are

parameters to be determined. We now denote by β the

Nreg × 5 matrix whose (ℓ, i)-th entry is βℓ,i. The vector

β∗,i denotes then its i-th column, and βℓ,∗ its ℓ-th row.

By injecting (11) in (10), the dual optimization problem

in terms of β∗,i is obtained, whose solution is given by

taking the derivative of the corresponding cost function with

respect to β∗,i and setting it to zero. We then obtain the

following:

β∗,i = (KA + ηANregI)
−1

Θ∗,i,

where I is the Nreg × Nreg identity matrix, and KA is

the Nreg × Nreg Gram matrix whose (v, w)-th entry is

κA(cv, cw), for v, w ∈ {1, . . . , Nreg}. For an appropriate

value of the regularization parameter ηA, the matrix be-

tween parenthesis is always non-singular.

Since the same matrix (KA + ηANregI) needs to be in-

verted in order to estimate each source’s parameter, all five

estimations can be collected into a single matrix inversion

problem, thus reducing the computational complexity, as

follows:

β = (KA + ηANregI)
−1

Θ. (12)

Finally, using equation (11) and the definition of the vector

of functions ψA(·), we can write ψA as follows:

ψA(·) =

Nreg
∑

ℓ=1

βℓ,∗ κA(Cℓ, ·). (13)

Having detected a local maximum in the region, with its

relevant concentration vector c(s), one could then obtain a

first estimate of the source s parameters as follows:

(Q̂ K̂x K̂z x̂0 ŷ0) = ψA(c
(s)). (14)

B. Enhancement of the estimates

In this subsection, we introduce the second model ψB ,

that takes as input the measured concentrations, the esti-

mated mass release and the estimated eddy diffusivities, and

gives as output an enhanced estimate of the location of the

source. Using the already estimated information as internal

feedback is expected to provide an improved accuracy of

the first location estimates of the sources.

The definition of the model ψB is also done using

the ridge regression [16]. However, the training set is

defined differently, such that the training input is given

by W ℓ = (c⊤ℓ Qℓ Kx Kz)
⊤ and the training output

is the source’s location (x0ℓ y0ℓ), ℓ ∈ {1, . . . , Nreg}. Let

ψB = (ψB1 ψB2), where ψB1 and ψB2 estimate x0ℓ and

y0ℓ respectively. Let X0 denote the Nreg × 1 vector whose

ℓ-th entry is given by x0ℓ, and Y 0 denote the Nreg × 1
vector whose ℓ-th entry is given by y0ℓ.

Here as well, the models ψB1 and ψB2 are obtained

by minimizing the mean quadratic errors between the

estimated outputs and the desired ones, as follows:
{

minψB1∈HB

1
Nreg

∑Nreg

ℓ=1(x0ℓ − ψB1(W ℓ))
2 + ηB‖ψB1‖

2
HB

minψB2∈HB

1
Nreg

∑Nreg

ℓ=1(y0ℓ − ψB2(W ℓ))
2 + ηB‖ψB2‖

2
HB

The quantity ηB is also a regularization parameter. In

analogy with the previous paragraph, the optimal solutions

can be written as follows:

ψBj(·) =

Nreg
∑

ℓ=1

γℓ,j κB(W ℓ, ·),

where κB : IRV+3×IRV+3 7→ IR is a reproducing kernel,

and γℓ,j , ℓ ∈ {1, . . . , Nreg} and j ∈ {1, 2}, are the unknown

parameters to be determined. Let γ denote the Nreg × 2
matrix whose (ℓ, j)-th entry is γℓ,j , and γℓ,∗ its ℓ-th row.

Following the same line of reasoning as in the previous

paragraph, one can collect the two estimations into a single

one. Then, the unknown parameters γℓ,j are estimated at

once, as follows:

γ = (KB + ηBNregI)
−1(X0 Y 0), (15)

where KB is the Nreg ×Nreg matrix whose (v, w)-th entry

is κB(W v,Ww), for v, w ∈ {1, . . . , Nreg}. Finally, one is

able to write ψB as follows:

ψB(·) =

Nreg
∑

ℓ=1

γℓ,∗ κB(W ℓ, ·). (16)

After determining the first estimates of the parameters

of the source s given by equation (14), one can set the

(V + 3) × 1 vector W = (c(s)
⊤

Q̂ K̂x K̂z)
⊤

. Using

the model ψB , a new estimate of the source’s location is

obtained as follows:

(x̂0enh ŷ0enh) = ψB(W ), (17)

where (x̂0enh ŷ0enh) is the new enhanced location estimate

of the source.

It is important to note that we are only using the

first position estimate to compare its accuracy towards
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the enhanced one. When implementing the algorithm in a

practical setup, one does not need to find the first position

estimate, since it is not used in the enhancement process,

which then reduces the complexity of the algorithm in terms

of storage and time.

VI. SIMULATIONS AND RESULTS

In this section, we evaluate the performance of the

proposed detection and estimation method for different

scenarios. We consider a region of study of dimensions

5000 m × 5000 m. Sensors are deployed in a uniformly

distributed manner in the area at a rate of one sensor

each five meters, which is equivalent to a density of 0.05

sensor/m2. The region is divided into Z = 25 clusters with

same size, thus having the same density of sensors. Fig. 4

shows the region’s topology. The concentrations measured

by the sensors are generated using the advection-diffusion

model of (5). The maximum mass release Qmax is taken

equal to 1000 kg. The eddy diffusivity in the Z direction,

Kz is taken equal to 0.211 m2/s, while the eddy diffusivities

Kx and Ky , in the X and Y directions respectively, are

taken equal to 12 m2/s. As for the mean wind velocity U ,

it is taken equal to (1.8; 0; 0) m/s for illustrative purposes

[4]. Finally, the sampling time T is taken equal to 1 s. The

rest of this section is organized as follows. The training

parameters are defined in the first subsection. In the second

subsection, an evaluation of the method is proposed in the

case of a single source with different noise values; then, in

the third subsection, an evaluation in the case of multiple

gas releases is provided. Finally, in the fourth subsection, a

comparison of the proposed framework to the state-of-the-

art is provided.

A. Training parameters

First, we start by describing the training phase for the

detection. As we already mentioned, we assume that the

atmospheric conditions are the same in all the region of

interest. Therefore, in order to reduce computations, we

only define one detector; then, this detector is commu-

nicated to all cluster heads in order to be used in the

clusters. The advantage is that only one training phase is

needed now. The size of the training set for the detection

Ndet is taken equal to 330, where 300 are normal data

and 30 are outliers. We mean by outliers concentrations

measured by sensors in the case of a gas release. In order to

generate the outlier data, 30 different gas release scenarios

are considered, where the source could be anywhere in the

cluster, and the gas release mass Q is also randomly varying

between 5 kg and Qmax = 1000 kg. The Gaussian kernel is

considered in our simulations. Consequently, the detection

kernel κ : IRnz × IRnz 7→ IR is given by the following:

κ(Ci,Cj) = exp

(

−
‖Ci −Cj‖

2

2σ2

)

,

where i, j ∈ {1, ..., Ndet}, and σ is the kernel’s bandwidth

that plays a crucial role in defining the boundary around

the training data.

Next, let us give a brief description of the training

phase for the estimation step of the proposed framework.

According to Section V, after finding the local maxima,

only the concentrations around these maxima are used with

the models ψA and ψB . By solving (9), one can find the

size of the zone encapsulating the useful concentrations. For

Qmax = 1000 kg and Cthres = 10−5 kg/m3, the solution is

then ∆x = 26 m. Therefore, we only need to use a zone of

52 m × 52 m for the training. Let the number of considered

scenarios Nreg in the training phase be equal to 200, where

x0 ∈ [0; 52]m and y0 ∈ [0; 52]m. Q is again randomly

varying between 5 kg and 1000 kg. The Gaussian kernel is

used here as well. The first kernel κA : IRV ×IRV 7→ IR is

then given by the following:

κA(cv, cw) = exp

(

−
‖cv − cw‖

2

2σ2
A

)

,

where v, w ∈ {1, ..., Nreg}, and σA is the kernel’s band-

width that controls, together with the regularization param-

eter ηA, the degree of smoothness, noise tolerance, and

generalization of the solution.

Due to the difference in the order of magnitude be-

tween the elements of the input W , we consider four

different distances and bandwidths for the second kernel

κB : IRV+3 × IRV+3 7→ IR. Then, κB is given by the

following:

κB(W v,Ww) = exp

(

−
‖cv − cw‖2

2σ2

B1

)

× exp

(

−
(Qv −Qw)2

2σ2

B2

)

× exp

(

−
(Kxv −Kxw)

2

2σ2
B3

)

× exp

(

−
(Kzv −Kzw)

2

2σ2
B4

)

,

where v, w ∈ {1, ..., Nreg}, and σB1, σB2, σB3, σB4 are also

the kernel’s bandwidths, with σB3 = σB4, since Kx and

Kz have the same physical properties. The regularization

parameters and the kernels’ bandwidths are chosen in a way

to minimize the error on the training set, using the 10-fold

cross-validation technique [17]. Simulation results show

that taking σB1 = σB2 = σB3 yields very close results to

the ones obtained by taking different values for the band-

widths. Therefore, in order to save time and computations

in the cross-validation phase, we take σB1 = σB2 = σB3.
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TABLE I: Percentage of errors on the estimated source’s

parameters for different random relative noises.

Noise Q̂ K̂x K̂z x̂0 ŷ0 x̂0enh ŷ0enh

1% 0.69 0.006 0.006 0.02 0.03 0.01 0.01

2% 0.75 0.007 0.007 0.03 0.04 0.01 0.02

3% 0.89 0.01 0.01 0.03 0.04 0.02 0.02

4% 0.96 0.02 0.02 0.04 0.04 0.02 0.02

5% 1.15 0.02 0.02 0.04 0.04 0.02 0.02

B. Testing in the case of a single source

Now that we have defined all the parameters for the

training of the detector and the two regression models,

we can evaluate the performance of the proposed method

in the case of a single source. The source is randomly

positioned in the region of interest, with x0 ∈ [0; 5000]m
and y0 ∈ [0; 5000]m, and Q ∈ [5; 1000] kg. All other pa-

rameters are set according to the beginning of this section,

and as taken in [4]. The testing phase takes place during

an interval of 10 s; then, the concentrations are measured

each T = 1 s during this interval. The gas release can

occur at any time in this interval. Note that random relative

noises varying from 1% to 5% are added to the simulated

concentration vectors, in order to account for transmission

impairments or sensing errors. Using the proposed method,

the gas release is detected in the affected clusters, and the

source parameters are estimated based on the measured

concentrations from the clusters. Table I shows the mean

percentage of errors on the estimated source’s parameters

averaged over 50 Monte-Carlo simulations. We have a

100% detection in the affected zones, and one can see that

the parameters of the source are accurately estimated. Also,

notice the improvement in the source’s location after the

enhancement phase of Subsection V-B. Moreover, one can

see from the small increase in the percentage of errors that

the method is robust to noise.

C. Testing in the case of multiple sources

Now let us evaluate the accuracy of the method in the

case of multiple gas releases, having different parameters

and occurring at different times. To this end, consider four

sources, whose parameters are given in Table II. The con-

centrations are generated using (5), and a random relative

noise of 5% is considered. The test phase is run here as well

during an interval of 10 seconds. The subplots of Fig. 5

show the concentrations measured by the sensors around

Source 2, whose parameters are given in Table II. Notice

how the maximal concentration at each time t is moving

along with the X-axis, and its value is decreasing with

time because of the diffusion phenomenon. The estimated

sources’ parameters and time of detection of each source

are given in Table III. One can see that the estimations are

accurate, showing that the proposed method can also be

used for the case of multiple sources.

TABLE II: Parameters of the four sources.

Source 1 Source 2 Source 3 Source 4

t0 (s) 2 3 5 5

Q (kg) 500 1000 20 200

x0 (m) 100 100 2500 4500

y0 (m) 100 4000 3000 1500

Kx (m2/s) 12 12 12 12

Kz (m2/s) 0.211 0.211 0.211 0.211

TABLE III: Estimation of the parameters of the four sources

using the proposed framework.

Source 1 Source 2 Source 3 Source 4

detection (s) 3 4 6 6

Q̂ (kg) 503.5 993 20.3 201.1

x̂0enh (m) 100.0 100.2 2499.9 4500.3

ŷ0enh (m) 100.1 3999.9 2999.2 1499.8

K̂x (m2/s) 12.01 11.99 11.98 11.99

K̂z (m2/s) 0.211 0.211 0.211 0.211

D. Comparison to the state-of-the-art

In this subsection, we compare the percentage of errors

to the ones obtained with the method in [4], for different

values of the random relative noise varying from 1% to

5%. In [4], the source’s parameters are estimated in an

area of around 5500 m × 5500 m, using the measured

concentrations and an inverse model obtained after solving

a non-linear least squares estimation problem. The source

is placed at a fixed location with x0 = 5000 and y0 = 100,

and the release rate Q is taken equal to 1000 kg. Table IV

shows the percentages of error for both methods, where PM

denotes the proposed one and KM the one in [4]. Note that

in this table, for the proposed method, only the enhanced

estimates of the source’s location are taken into account.

Also, results over Kz are not shown, since in [4], Kz is

assumed to be known. When comparing the errors, one can

see that the proposed method greatly outperforms the KM

method in terms of accuracy. Moreover, it is important to

see here that the proposed method is much more robust to

the increase of the noise percentage compared to the KM.

VII. CONCLUSION

This paper introduces a new clusterized method for the

detection and estimation of the parameters of multiple gas

sources in wireless sensor networks. Both phases of the

method are defined within the framework of kernel meth-

ods, that proved to be very efficient in modeling nonlinear

problems. Indeed, the evaluation of the proposed method

on simulated data showed that the method yields accurate

estimates, and the accuracy is maintained even with the

increase of the noise level and in the case of multiple

sources. Future work will handle further improvements

of this method, such as to include cases where the eddy

diffusivities or the wind’s velocity and direction are not

constant.
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Fig. 5: Concentration distribution in kg/m3 at different

times t around Source 2 (t0 = 3 s).

TABLE IV: Comparison of the percentage of errors ob-

tained by the proposed method (PM) and the method in [4]

(KM), for different random relative noises.

Noise Method Q̂ K̂x x̂0 ŷ0

1%
PM 0.32 0.01 0.01 0.02

KM 2.7 0.7 0.8 0.4

2%
PM 0.41 0.01 0.01 0.01

KM 5.8 1.4 1.5 0.7

3%
PM 0.52 0.01 0.01 0.02

KM 8.0 2.2 2.4 1.1

4%
PM 0.82 0.02 0.01 0.02

KM 11.0 2.7 2.9 1.6

5%
PM 1.05 0.02 0.01 0.03

KM 12.3 3.7 4.0 1.9
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