Towards Optimal Transport for Quantum Densities - Archive ouverte HAL
Article Dans Une Revue Annali della Scuola Normale Superiore di Pisa, Classe di Scienze Année : 2022

Towards Optimal Transport for Quantum Densities

Résumé

An analogue of the quadratic Wasserstein (or Monge-Kantorovich) distance between Borel probability measures on $\bR^d$ has been defined in [F. Golse, C. Mouhot, T. Paul: Commun. Math. Phys. 343 (2015), 165--205] for density operators on $L^2(\bR^d)$, and used to estimate the convergence rate of various asymptotic theories in the context of quantum mechanics. The present work proves a Kantorovich type duality theorem for this quantum variant of the Monge-Kantorovich or Wasserstein distance, and discusses the structure of optimal quantum couplings. Specifically, we prove that, under some boundedness and constraint hypothesis on the Kantorovich potentials, optimal quantum couplings involve a gradient type structure similar in the quantum paradigm to the Brenier transport map. On the contrary, when the two quantum densities have finite rank, the structure involved by the optimal coupling has, in general, no classical counterpart.
Fichier principal
Vignette du fichier
QuantumTransp11quinquies.pdf (656.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01963667 , version 1 (21-12-2018)
hal-01963667 , version 2 (06-02-2021)

Identifiants

  • HAL Id : hal-01963667 , version 2

Citer

Emanuele Caglioti, François Golse, Thierry Paul. Towards Optimal Transport for Quantum Densities. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, In press. ⟨hal-01963667v2⟩
430 Consultations
263 Téléchargements

Partager

More