Variance reduction for estimation of Shapley effects and adaptation to unknown input distribution - Archive ouverte HAL
Article Dans Une Revue SIAM/ASA Journal on Uncertainty Quantification Année : 2020

Variance reduction for estimation of Shapley effects and adaptation to unknown input distribution

Résumé

The Shapley effects are global sensitivity indices: they quantify the impact of each input variable on the output variable in a model. In this work, we suggest new estimators of these sensitivity indices. When the input distribution is known, we investigate the already existing estimator defined in [E. Song, B. L. Nelson, and J. Staum, SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 1060--1083] and suggest a new one with a lower variance. Then, when the distribution of the inputs is unknown, we extend these estimators. We provide asymptotic properties of the estimators studied in this article. We also apply one of these estimators to a real data set.
Fichier principal
Vignette du fichier
Shapley_estimation.pdf (595.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01962010 , version 1 (20-12-2018)
hal-01962010 , version 2 (05-02-2020)

Identifiants

Citer

Baptiste Broto, François Bachoc, Marine Depecker. Variance reduction for estimation of Shapley effects and adaptation to unknown input distribution. SIAM/ASA Journal on Uncertainty Quantification, 2020, 8, pp.693-716. ⟨10.1137/18M1234631⟩. ⟨hal-01962010v2⟩
271 Consultations
221 Téléchargements

Altmetric

Partager

More