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1CEA, LIST, Université Paris-Saclay, F-91120, Palaiseau, France
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Abstract

The Shapley effects are global sensitivity indices: they quantify the
impact of each input variable on the output variable in a model. In this
work, we suggest new estimators of these sensitivity indices. When the
input distribution is known, we investigate the already existing estimator
defined in [SNS16] and suggest a new one with a lower variance. Then,
when the distribution of the inputs is unknown, we extend these estima-
tors. We provide asymptotic properties of the estimators studied in this
article. We also apply one of these estimators to a real data set.

1 Introduction

Sensitivity indices are important tools in sensitivity analysis. They aim to quan-
tify the impact of the input variables on the output of a model. In this way,
they give a better understanding of numerical models and improve their inter-
pretability. For example, the sensitivity indices enable to know if the variation
of a specific input variable can lead to an important variation of the output or
not.

In global sensitivity analysis, the input variables X1, ..., Xp are assumed to
be random variables. Sobol defined the first sensitivity indices for a general
framework, called the Sobol indices, in [Sob93]. Many other sensitivity indices
have been defined and studied (see [BHP16] for a general review of these indices).
Nevertheless, many of these indices suffer from a lack of interpretation when the
input variables are dependent. To overcome this lack of interpretation, many
variants of the Sobol indices have been suggested for dependent input variables
(see for example [JLD06], [MT12] and [Cha13]).

Recently, Owen defined new sensitivity indices in [Owe14] called ”Shapley
effects” that have beneficial properties and that are easy to interpret, even in
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the dependent case. The main advantages of these sensitivity indices compared
to the Sobol indices (and their variants) are: they remain positive, their sum
is equal to one and there is exactly one index for each input (and there are no
indices for groups of variables). The Shapley effects are based on the notion
of ”Shapley value”, that originates from game theory in [Sha53]. The Shapley
value has been widely studied ([CBSV16], [FWJ08]) and applied in different
fields (see for example [MvLG+08] or [HI03]). However, only few articles focus
on the Shapley effects in sensitivity analysis (see [Owe14, SNS16, OP17, IP17,
BBDM19, BEDC19]). Song et al. suggested an algorithm to estimate the Shap-
ley effects in [SNS16] that is implemented in the R package ”sensitivity”.

In this paper, we work on the Shapley effects and their estimation. We divide
this estimation into two parts. The first part is the estimation of quantities that
we call the ”conditional elements”, on which the Shapley effects depend. The
second part consists in aggregating the estimates of the conditional elements
in order to obtain estimates of the Shapley effects. We call this part the W -
aggregation procedure. We refer to Sections 3 and 4 for more details on these
two parts.

First, we focus on the estimation of the conditional elements with two dif-
ferent estimators: the double Monte-Carlo estimator (used in the algorithm of
[SNS16]) and the Pick-and-Freeze estimator (see [HS96] for the independent
case) that we extend to the case where the inputs are dependent. We present
the two estimators when it is possible to sample from the conditional distribu-
tions of the input vector. Then we suggest a new W -aggregation procedure,
based on the subsets of {1, ..., p}, to estimate all the Shapley effects (for all the
input variables) at the same time. We choose the best parameters to minimize
the sum of the variances of all the Shapley effects estimators. The algorithm of
[SNS16] uses a W -aggregation procedure based on permutations of {1, ..., p}. We
study this W -aggregation procedure and explain how it minimizes the variance
of the estimates of the Shapley effects. Our suggested W -aggregation proce-
dure provides an improved accuracy, compared to the W -aggregation procedure
in [SNS16], using all the estimates of the conditional elements for all the esti-
mates of the Shapley effects. The comparison between the two W -aggregation
procedures is illustrated with numerical experiments. These experiments also
show that the double Monte-Carlo estimator provides better results than the
Pick-and-Freeze estimator.

Then, we extend the estimators of the conditional elements (the double
Monte-Carlo estimator and the Pick-and-Freeze estimator) to the case where we
only observe an i.i.d. sample from the input variables. The extension relies on
nearest-neighbour techniques, which are widely used for many non-parametric
estimation problems [BS19, BSY19]. To the best of our knowledge, the es-
timators we suggest are the first that do not require exact samples from the
conditional distributions of the input variables. One of our main results is the
consistency of these estimators under some mild assumptions, and their rate
of convergence under additional regularity assumptions. We then give the con-
sistency of the estimators of the Shapley effects with the two W -aggregation
procedures and using the double Monte-Carlo estimator or the Pick-and-Freeze
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estimator. We observe, in numerical experiments, that the estimators of the
Shapley effects have a similar accuracy as when it is possible to sample from
the conditional distributions. We also apply one of these estimators on mete-
orological data, more specifically on the output of three different metamodels
predicting the ozone concentration in function of nine input variables (with some
categorical variables and some continuous variables). This application enables
to study the influence of the inputs variables on black-box machine learning
procedures.

The paper is organized as follows. In Section 2, we define the framework
of global sensitivity analysis and we recall the definition and some properties
of the Shapley effects. In Section 3, we assume that the input distribution is
known and we present the two methods to estimate the conditional elements.
In Section 4, we suggest a new W -aggregation procedure and we study the
W -aggregation procedure used by the algorithm of [SNS16]. In Section 5, we
summarize the four estimators of the Shapley effects, give their consistency and
we illustrate them with numerical applications. In Section 6, we assume that
the input distribution is unknown and that we just observe a sample of the
input vector. We give consistent estimators of the conditional elements and
thus consistent estimators of the Shapley effects in this case, and we illustrate
this with numerical experiments. In Section 7, we apply one of our estimators
to a real data set. We conclude in Section 8. All the proofs are provided in the
appendix.

2 The Shapley effects

We let X = (X1, ..., Xp) be the input random vector on the input domain
X = X1 × ... × Xp with distribution PX. We assume that there is an output
variable Y in R defined by

Y = f(X), (1)

with f ∈ L2(PX). We write [1 : p] for the set {1, 2, ..., p}. For any non-
empty u ⊂ [1 : p], letting u = {i1, ..., ir} with i1 < i2 < ... < ir, we define
Xu = (Xi1 , ..., Xir ). We can now define the conditional elements (Wu)u⊂[1:p]

and the Shapley effects (ηi)i∈[1:p].
For all u ⊂ [1 : p], we define:

Vu := Var(E(Y |Xu)) (2)

and
Eu := E(Var(Y |X−u)), (3)

where −u := [1 : p]\u. We let by convention E(Y |X∅) = E(Y ) and Var(Y |X∅) =
Var(Y ). We define the conditional elements (Wu)u⊂[1:p] as being either (Vu)u⊂[1:p]

or (Eu)u⊂[1:p]. For all i ∈ [1 : p], we define the Shapley effect ηi as in [SNS16]
by:

ηi :=
1

pVar(Y )

∑
u⊂−i

(
p− 1
|u|

)−1

(Wu∪{i} −Wu), (4)
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where we define −i as the subset [1 : p] \ {i} and |u| as the cardinality of u.

Remark 1. As explained in [SNS16], the Shapley effects do not depend on
whether (Wu)u⊂[1:p] denotes (Vu)u⊂[1:p] or (Eu)u⊂[1:p].

Remark 2. The quantities W∅ and W[1:p] are equal to 0 and Var(Y ) respectively.
The variance of Y is easy to estimate, so we assume without loss of generality
that we know the theoretical value Var(Y ).

We can notice that the Shapley effects are a sum over the subsets u ⊂
−i. Another classical way to compute the Shapley effects is to sum over the
permutations of [1 : p], see Proposition 1. We let Sp be the set of permutations
of [1 : p]. An element σ ∈ Sp is a bijective function from [1 : p] to [1 : p]. We
let σ−1 be its inverse function. As in [SNS16], for i ∈ [1 : p] and σ ∈ Sp, we let
Pi(σ) := {σ(j)| j ∈ [1 : σ−1(i)− 1]}.

Proposition 1. [Equation (11) in [SNS16], Section 4.1 (see also [CGT09])]
We have

ηi =
1

p!Var(Y )

∑
σ∈Sp

(WPi(σ)∪{i} −WPi(σ))). (5)

Our aim is to estimate the Shapley effects. We have seen two different
ways to compute the Shapley effects, given by Equation (4) (with a sum over
the subsets) and Equation (5) (with a sum over the permutations). These
two equations will correspond to two different W -aggregation procedures of the
Shapley effects.

3 Estimation of the conditional elements

We explain now how to estimate these (Wu)∅ u [1:p] in a restricted setting
(recall that W∅ = 0 and W[1:p] = Var(Y ) are known). The restricted setting
is the following: as in [SNS16], we will assume that for any ∅  u  [1 : p]
and xu ∈ Xu :=

∏
i∈u Xi, it is feasible to generate an i.i.d. sample from the

distribution of X−u conditionally to Xu = xu. Moreover, we assume that we
have access to the computer code of f .

To estimate Wu, we suggest two different estimators. The first one consists
in a double Monte-Carlo procedure to estimate Eu, and it is the estimator used
in the algorithm of [SNS16]. The other one is the well-known Pick-and-Freeze
estimator (see [HS96] for the first definition, [GJKL14, GJK+16] for theoretical
studies) for Vu, that we extend to the case where the input variables (Xi)i∈[1:p]

are not independent.
Finally, we assume that each evaluation of f is costly, so we define the cost

of each estimator Ŵu as the number of evaluations of f .

3.1 Double Monte-Carlo

A first way to estimate Eu = E(Var(Y |X−u)) is using double Monte-Carlo: a
first Monte-Carlo step of size NI for the conditional variance, another one of
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size Nu for the expectation. Thus, the estimator of Eu suggested in [SNS16] is

Êu,MC :=
1

Nu

Nu∑
n=1

1

NI − 1

NI∑
k=1

(
f(X

(n)
−u,X

(n,k)
u )− f(X

(n)
−u)
)2

, (6)

where for n = 1, ..., Nu, f(X
(n)
−u) := N−1

I

∑NI
k=1 f(X

(n)
−u,X

(n,k)
u ), (X

(n)
−u)n∈[1:Nu] is

an i.i.d. sample with the distribution of X−u and (X
(n,k)
u )k∈[1:NI ] conditionally

to X
(n)
−u is i.i.d. with the distribution of Xu conditionally to X−u = X

(n)
−u. For

all n ∈ [1 : Nu], the computation of

1

NI − 1

NI∑
k=1

(
f(X

(n)
−u,X

(n,k)
u )− f(X

(n)
−u)
)2

requires the values of
(
f(X

(n)
−u,X

(n,k)
u )

)
k∈[1:NI ]

. We will take NI = 3, as sug-

gested in [SNS16]. Thus, the double Monte-Carlo estimator given in Equation
(6) has a cost (number of evaluations of f) of 3Nu.

We remark that for x(1),x(2) ∈ X and for ∅  u  [1 : p], we let (x
(1)
u ,x

(2)
−u)

be the element v ∈ X such that vu = x
(1)
u and v−u = x

(2)
−u, and we let

f(x
(1)
u ,x

(2)
−u) := f(v). We use this notation throughout the paper.

Remark 3. The estimator of Equation (6) is an unbiased estimator of Eu =
E(Var(Y |X−u)).

3.2 Pick-and-freeze

We now provide a second estimator of Wu: the Pick-and-Freeze estimator for
Vu. We have

Vu = Var(E(Y |Xu)) = E(E(Y |Xu)2)− E(Y )2.

Remark that E(Y ) is easy to estimate so we assume without loss of generality
that we know the value of E(Y ) (for the numerical applications, we will take
the empirical mean). It remains to estimate E(E(Y |Xu)2), which seems to be
complicated. We prove the following proposition that enables to simplify the
formulation of this quantity.

Proposition 2. Let X = (Xu,X−u) and Xu = (Xu,X
′
−u) of distribution PX

such that, a.s. P(X−u,X′−u)|Xu=xu = PX−u|Xu=xu ⊗ PX−u|Xu=xu . We have

E(E(Y |Xu)2) = E(f(X)f(Xu)). (7)

Remark that Proposition 2 enables to write a double expectation as one
single expectation, that we estimate by a simple Monte-Carlo. Thus, we suggest
the Pick-and-Freeze estimator, for ∅  u  [1 : p],

V̂u,PF :=
1

Nu

Nu∑
n=1

f
(
X(n)
u ,X

(n,1)
−u

)
f
(
X(n)
u ,X

(n,2)
−u

)
− E(Y )2, (8)
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where (X
(n)
u )n∈[1:Nu] is an i.i.d. sample with the distribution of Xu and where

X
(n,1)
−u and X

(n,2)
−u conditionally to X

(n)
u are independent with the distribution

of X−u conditionally to Xu = X
(n)
u . This estimator has a cost of 2Nu.

4 W -aggregation procedures

As we can see in Equation (4) or in Equation (5), the Shapley effects are func-
tions of the conditional elements (Wu)u⊂[1:p]. In Section 3, we have seen how
to estimate these conditional elements when it is possible to sample from the
conditional distributions of the input vector. In this section, we assume that
we have estimators (Ŵu)u⊂[1:p]. From Remark 2, we let Ŵ∅ = W∅ = 0 and

Ŵ[1:p] = W[1:p] = Var(Y ). We also add the following assumption that will be
needed for the theoretical results that we will prove.

Assumption 1. For all ∅  u  [1 : p], Ŵu is computed with a cost κNu by

Ŵu = 1
Nu

∑Nu
n=1 Ŵ

(n)
u where the (Ŵ

(n)
u )n∈[1:Nu] are independent and identically

distributed. The (Ŵu)u⊂[1:p] are independent. The integer κ ∈ N∗ is the number

of evaluations of the computer code f (i.e. the cost) for each Ŵ
(n)
u .

Assumption 1 means that we estimate the (Wu)∅ u [1:p] by Monte-Carlo,
independently and with different costs (κNu)∅ u [1:p]. The accuracy Nu cor-
responds to computing Nu independent and identically distributed estimators

Ŵ
(1)
u , ..., Ŵ

(Nu)
u that are averaged. We have seen in Section 3 two estimators

that satisfy Assumption 1: the double Monte-Carlo estimator (with κ = 3) and
the Pick-and-Freeze estimator (with κ = 2).

We call ”W -aggregation procedure” an algorithm that estimates the Shapley
effects from the estimates (Ŵu)∅ u [1:p] and that selects the values of the ac-
curacies (Nu)∅ u [1:p]. We first suggest a new W -aggregation procedure. Then
we obtain a theoretical insight on the W -aggregation procedure of [SNS16].

4.1 The subset procedure

In this section, we suggest a new W -aggregation procedure for the Shapley
effects. This procedure consists in computing once for all the estimates Ŵu for
all u ⊂ [1 : p], and to store them. Then, we use these estimates to estimate all
the Shapley effects.

4.1.1 The W -aggregation procedure

We suggest to estimate the Shapley effects (ηi)i∈[1:p] by using the following
W -aggregation procedure:

1. For all u ⊂ [1 : p], compute Ŵu.
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2. For all i ∈ [1 : p], estimate ηi by

η̂i :=
1

pVar(Y )

∑
u⊂−i

(
p− 1
|u|

)−1

(Ŵu∪{i} − Ŵu). (9)

We call this W -aggregation procedure ”subset W -aggregation procedure”.
We can note that each estimate Ŵu is used for all the estimates (η̂i)i∈[1:p]. It
remains to choose the values of the accuracies (Nu)∅ u [1:p].

4.1.2 Choice of the accuracy of each Ŵu

In this section, we explain how to choose the values of the accuracies (Nu)∅ u [1:p].
In the following proposition, we give the best choice of the accuracies (Nu)∅ u [1:p]

to minimize
∑p
i=1 Var(η̂i) for a fixed total cost κ

∑
∅ u [1:p]Nu.

Proposition 3. Let a total cost Ntot ∈ N be fixed. Under Assumption 1, if
the Shapley effects are estimated with the subset W -aggregation procedure, the
solution of the relaxed program (i.e. the problem without the constraint of letting
the (Nu)∅ u [1:p] be integers)

min
(Nu)∅ u [1:p]∈(0,+∞)2

p−2

p∑
i=1

Var(η̂i) subject to κ
∑

∅ u [1:p]

Nu = Ntot (10)

is (N∗u)∅ u [1:p] with for all ∅  u  [1 : p]

N∗u =
Ntot
κ

√
(p− |u|)!|u|!(p− |u| − 1)!(|u| − 1)!Var(Ŵ

(1)
u )∑

∅ v [1:p]

√
(p− |v|)!|v|!(p− |v| − 1)!(|v| − 1)!Var(Ŵ

(1)
v )

.

Usually, we do not know the values of Var(Ŵ
(1)
u ) for ∅  u  [1 : p], but

we need them to compute the value of N∗u . In practice, we will assume that
these values are equal in order to compute N∗u . Furthermore, the sum over the
subsets v such that ∅  v  [1 : p] can be too costly to compute. Hence, we
make the following approximations in practice:

N∗u ≈

Ntot
κ

(
p
|u|

)− 1
2
(

p
|u| − 1

)− 1
2

∑
∅ v [1:p]

(
p
|v|

)− 1
2
(

p
|v| − 1

)− 1
2

≈

Ntot
κ

(
p
|u|

)−1

∑
∅ v [1:p]

(
p
|v|

)−1 =
Ntot
κ

(
p
|u|

)−1

p− 1
.

(11)
Hence, when implementing the subset W -aggregation procedure, we will choose
N∗u as

N∗u := Round

(
Ntotκ

−1

(
p
|u|

)−1

(p− 1)−1

)
(12)
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for ∅  u  [1 : p], where Round is the nearest integer function. In this way,
for a fixed total cost, we take the accuracies (Nu)∅ u [1:p] near the optimal
choice that minimizes

∑p
i=1 Var(η̂i). Hence, the parameter Ntot is now the only

parameter left to choose. In practice, this parameter is often imposed as a global
budget constraint.

Remark 4. With the approximation discussed above, the real total cost κ
∑
∅ u [1:p]Nu

can be different from the Ntot chosen (because of the approximations and the
choice of the closest integer). In this case, we suggest to adapt the value of Ntot
in order to make the total cost κ

∑
∅ u [1:p]N

∗
u take the desired value.

Remark 5. In order to compute the (N∗u)∅ u [1:p] in practice, we assume that

the values of Var(Ŵ
(1)
u ), for ∅  u  [1 : p], are equal. We can see on unreported

numerical experiments that this choice of Nu gives much better results than if
we choose the same value of Nu for all ∅  u  [1 : p]. However, it seems

difficult to obtain theoretical results on the values of Var(Ŵ
(1)
u ), as they depend

on the conditional distributions of X in a complicated way.
Hence, this assumption is more a convenient heuristic to compute the best

accuracies (N∗u)∅ u [1:p] than a real property satisfied in many cases. Propo-
sition 3 and the heuristic in Equation (11) justify the choice of (N∗u)∅ u [1:p]

given in Equation (12), and we make this choice even if the assumption of equal

values of the (Var(Ŵ
(1)
u ))∅ u [1:p] is not satisfied.

4.1.3 Consistency

A straightforward consequence of the subsetW -aggregation procedure and Equa-
tion (9) is that the consistency of (Ŵu)u⊂[1:p] implies the consistency of (η̂i)i∈[1:p]

(Assumption 1 is not necessary).

Proposition 4. Assume that for all ∅  u  [1 : p], we have estimators Ŵu

that converge to Wu in probability (resp. almost surely) when Nu goes to +∞,

where κNu is the cost of Ŵu. If we use the subset W -aggregation procedure
with the choice of (N∗u)∅ u [1:p] given by Equation (12), the estimators of the
Shapley effects converge to the Shapley effects in probability (resp. almost surely)
when Ntot goes to +∞ (where Ntot is the total cost of the subset W -aggregation
procedure).

4.2 The random-permutation procedure

In this section, we present and study the ”random-permutation W -aggregation
procedure” suggested in [SNS16].
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4.2.1 The W -aggregation procedure

The W -aggregation procedure of the algorithm of [SNS16] is based on Equation
(5). Because of the equation, one could estimate ηi by

η̂i =
1

p!Var(Y )

∑
σ∈Sp

(
ŴPi(σ)∪{i} − ŴPi(σ)

)
, (13)

for i ∈ [1 : p]. In Equation (13), informally, (Ŵu)∅ u [1:p] are estimators.
However, as the number of permutations is p!, there are too many summands
and [SNS16] suggests to replace the sum over all the p! permutations by the
sum over M (M < p!) random uniformly distributed permutations. Thus, for a
fixed i ∈ [1 : p], the estimator of ηi suggested in [SNS16] is

η̂i =
1

MVar(Y )

M∑
m=1

(
ŴPi(σm)∪{i}(m)− ŴPi(σm)(m)

)
, (14)

where (σm)m∈[1:M ] are independent and uniformly distributed on Sp. If m,m′ ∈
[1 : M ] with m 6= m′ and Pi(σm) = Pi(σm′) =: u, [SNS16] estimates twice

the same Wu. To formalize these different estimations, we write Ŵu(m) the
estimation of Wu at step m in Equation (14).

Finally, [SNS16] reduces the computation cost using the following idea. The
authors of [SNS16] notice that for 1 ≤ i < p, for any permutation σ ∈ Sp and
for i ∈ [1 : p], we have Pσ(i+1)(σ) = Pσ(i)(σ) ∪ {σ(i)}. Thus, the algorithm of

[SNS16] uses every estimate ŴPσm(i)(σm)∪{σm(i)}(m) for η̂σm(i) (as an estimator
of WPσm(i)(σm)∪{σm(i)}) and for η̂σm(i+1) (as an estimator of WPσm(i+1)(σm)).
With this improvement, the number of estimations of Wu (for ∅  u  [1 : p])
is divided by two when estimating all the Shapley effects η1, ..., ηp. The W -
aggregation procedure is then

1. Let η̂1 = ... = η̂p = 0.

2. For all m = 1, 2, ...,M

(a) Generate σm uniformly distributed on Sp.
(b) Let prevC = 0.

(c) For all i = 1, 2, ..., p

i. Let u = Pσm(i)(σm).

ii. Compute Ŵu∪{σm(i)}(m).

iii. Compute ∆̂ = Ŵu∪{σm(i)}(m)− prevC.

iv. Update η̂σm(i) = η̂σm(i) + ∆̂.

v. Set prevC = ŴPσm(i+1)(σm).

3. Let η̂i = η̂i/(Var(Y )M) for all i = 1, ..., p.

9



We write thisW -aggregation procedure ”random-permutationW -aggregation
procedure”.

Remark 6. Recall that in the subset W -aggregation procedure, each estimation
of Wu was used for the estimation of all the (ηi)i∈[1:p] (and not only for two of
them). Thus the subset W -aggregation procedure seems to be more efficient.

Remark 7. When the number of inputs p is small, [SNS16] suggests to take all
the permutations of [1 : p] instead of choosing random permutations in Step 2a
of the random-permutation W -aggregation procedure. However, this algorithm
requires small values of p and the total cost is a multiple of p! (so there are very
restricted possible values). Furthermore, this method still remains very costly
due to the computation of (p − 1)! conditional variances. For example, in the
linear Gaussian framework with p = 10 (where the computation of the condi-
tional elements is immediate, see [BBDM19]) it spends more than ten minutes
computing the Shapley effects. Hence, the algorithm with all the permutations
is not explicitly detailed in [SNS16].

4.2.2 Choice of the accuracy of each Ŵu

As in Section 4.1.2, we suggest a choice of the accuracies (Nu)∅ u [1:p].
In order to avoid a random total cost, we require for all ∅  u  [1 : p] that

the accuracy Nu of the
(
Ŵu(m)

)
m

depends only on |u|, and we write N|u| :=

Nu. In this case, the total cost of the random-permutation W -aggregation
procedure is equal to Ntot = κM

∑p−1
k=1Nk. Moreover, we assume that the total

cost Ntot = κM
∑p−1
k=1Nk is proportional to (p − 1), and thus can be written

Ntot = κMNO(p−1) for some fixed NO ∈ N∗. As the permutations (σm)m∈[1:M ]

are random, we choose to minimize E
[∑p

i=1 Var
(
η̂i| (σm)m∈[1:M ]

)]
.

To compute the optimal values of (Nu)∅ u [1:p], we introduce the following
assumption.

Assumption 2. For all ∅  u  [1 : p] and all m ∈ [1 : M ], Ŵu(m) is computed

with a cost κN|u| by Ŵu(m) = 1
N|u|

∑N|u|
n=1 Ŵ

(n)
u (m) where the (Ŵ

(n)
u (m))n∈[1:Nu]

are independent and identically distributed. The (Ŵu(m))∅ u [1:p], m∈[1:M ] are
independent.

When it is possible to sample from the conditional distributions of the input
vector, we can generate i.i.d. double Monte-Carlo estimators (Êu,MC(m))m∈[1:M ]

or Pick-and-Freeze estimators (V̂u,PF (m))m∈[1:M ]. Hence, they satisfy Assump-
tion 2 by taking Nu = N|u| for all ∅  u  [1 : p].

Proposition 5. Assume that we estimate the Shapley effects with the random-
permutation W -aggregation procedure under Assumption 1 and that the vari-

ances (Var(Ŵ
(1)
u (1)))∅ u [1:p] are equal. Then, the solution of the problem

min
(Nk)k∈[1:p−1]∈(0,+∞)p−1

E

[
p∑
i=1

Var
(
η̂i| (σm)m∈[1:M ]

)]
subject to κM

p−1∑
k=1

Nk = κMNO(p−1)

10



is (N∗∗k )k∈[1:p−1] with for all k ∈ [1 : p− 1],

N∗∗k = NO.

Hence, from now on, with the random permutation W -aggregation proce-
dure, we will choose the accuracy Nu = NO for all subset u.

Remark 8. As in Remark 5, we assume in Proposition 5 that the variances

(Var(Ŵ
(1)
u (1)))∅ u [1:p] are equal. This assumption is not easy to check, but is

required technically to prove Proposition 5.

Remark 9. With the exact-permutation W -aggregation procedure (see Remark

7), N∗k = NOp! is the solution of the problem
∑p
i=1 Var (η̂i) subject to

∑p−1
k=1Nk =

p!NO(p− 1).

There are now two parameters to choose: the number of permutations M
and the accuracy NO of the estimations of the (Wu)∅ u [1:p]. Typically, their
product MNO is imposed by budget constraints.

4.2.3 Choice of NO

We have seen that for all ∅  u  [1 : p], we choose Nu = N∗∗|u| = NO. In this
section, we explain why we should choose NO = 1 under Assumption 1 and M
as large as possible.

Proposition 6 generalizes the result given in [SNS16], Appendix B. Its proof is
given in the supplementary material, which is much simpler than the arguments
in [SNS16].

Assumption 3. Assumption 2 holds and for all ∅  u  [1 : p], we have

E(Ŵ
(1)
u (1)) = Wu.

Assumption 3 ensures that the estimators have a zero bias. Recall that the
double Monte-Carlo estimator and the Pick-and-Freeze estimator have a zero
bias. Hence, they satisfy Assumption 3 by generating i.i.d. (Ŵu(m))m∈[1:M ]

and by taking Nu = N|u| for all ∅  u  [1 : p].

Proposition 6. Let i ∈ [1 : p] be fixed. Under Assumption 3, in order to
minimize, over NO and M , the variance of η̂i with a fixed cost κMNO×(p−1) =
κC × (p− 1) (for some C ∈ N∗), we have to choose NO = 1 and M = C.

From now on, we assume that Nu = NO = 1 when we use the random-
permutation W -aggregation procedure and we will let M , the number of ran-
dom permutations, go to infinity. Then, the total cost Ntot of the random-
permutation W -aggregation procedure is equal to Ntot = κM(p−1), for estimat-
ing the p Shapley effects η1, . . . , ηp. Hence, under Assumption 2 or Assumption

3, Ŵu(m) = Ŵ
(1)
u (m) and has now a cost κ.

11



4.2.4 Consistency

We give here two sufficient conditions for the consistency of the estimators of
the Shapley effects given by the random-permutation W -aggregation procedure.
We introduce a general assumption.

Assumption 4. For all u such that ∅  u  [1 : p],
(
Ŵu(m)

)
m∈[1:M ]

have a

cost κ (since we chose Nu = 1) and are identically distributed with a distribution

that depends on an integer N such that E
(
Ŵu(1)

)
−→

N→+∞
Wu. Moreover, for

all u such that ∅  u  [1 : p], we have

1

M2

M∑
m,m′=1

cov
(
Ŵu(m), Ŵu(m′)

)
−→

N,M→+∞
0.

Assumption 4 is more general than Assumption 3. Indeed, it enables the
estimators to have a bias and a covariance which go to zero. This assumption
will be useful to prove the consistency results in Section 6.2. Remark that in

Assumption 4, for all ∅  u  [1 : p], each estimate
(
Ŵu(m)

)
m∈[1:M ]

has a cost

κ, as in Assumption 3 since we fixed Nu = NO = 1.

Proposition 7. Assume that we estimate the Shapley effects using the random-
permutation W -aggregation procedure. Let Ntot = κM(p − 1) be the total cost
of the random-permutation W -aggregation procedure.

1. Under Assumption 3, the estimates of the Shapley effects converge to the
Shapley effects in probability when Ntot goes to +∞.

2. Under Assumption 4, the estimates of the Shapley effects converge to the
Shapley effects in probability when Ntot and N go to +∞.

5 Estimators of the Shapley effects

5.1 Four consistent estimators of the Shapley effects

Recall that in Section 3, we have seen two estimators of the (Wu)∅ u [1:p]:
double Monte-Carlo (used in the algorithm of [SNS16]) and Pick-and-Freeze. In
Section 4, we have studied two W -aggregation procedures for the Shapley effects
using estimators of the (Wu)∅ u [1:p]: the subset W -aggregation procedure and
the random-permutation W -aggregation procedure (used in the algorithm of
[SNS16]). To sum up, four estimators of the Shapley effects are available:

• subset W -aggregation procedure with double Monte-Carlo;

• subset W -aggregation procedure with Pick-and-Freeze;

• random-permutation W -aggregation procedure with double Monte-Carlo,
which is the already existing algorithm of [SNS16];

12



• random-permutation W -aggregation procedure with Pick-and-Freeze.

With the random-permutation W -aggregation procedure, we have seen that we
need different estimators (Ŵu(m))m∈[1:M ] of the same Wu. In this case, we
choose i.i.d. realizations of the estimator of Wu. Moreover, we have seen in Sec-
tion 4.2.3 that when we use the random-permutation W -aggregation procedure,
we choose Nu = NO = 1.

By Propositions 4 and 7, all these four estimators are consistent when the
global budget Ntot goes to +∞. Indeed, by Proposition 4, the consistency of
the (Ŵu)∅ u [1:p] is sufficient for the consistency with the subset procedure

and by Proposition 7, unbiased and i.i.d. estimators (Ŵu(m))m∈[1:M ] for all
∅  u  [1 : p] provide the consistency with the random-permutation procedure.

5.2 Numerical comparison of the different algorithms

In this section, we carry out numerical experiments on the different algorithms
in the restricted framework (where the exact conditional samples are available).

To compare these estimators, we use the linear Gaussian framework: X =
Rp, X ∼ N (µ,Γ) and Y =

∑p
i=1 βiXi. In this case, the theoretical values are

easily computable (see [OP17, IP17, BBDM19]). We choose p = 10, βi = 1 for
all i ∈ [1 : p] and Γ = ATA where A is a p × p matrix which components are
realisations of p2 i.i.d. Gaussian variables with zero mean and unit variance. To
compare these different estimators, we fix a total cost (number of evaluations
of f) of Ntot = 54000. We compute 1000 realizations of each estimator.

In Figure 1, we plot the theoretical values of the Shapley effects together
with the boxplots of the 1000 realizations of each estimator.

In Figure 2, we plot the sum over i ∈ [1 : p] of the quadratic risks:
∑p
i=1 E

(
(η̂i − ηi)2

)
(estimated with 1000 realizations) of each estimator.

We can see that the subset W -aggregation procedure gives better results
than the random-permutation W -aggregation procedure, and that the double
Monte-Carlo estimator is better than the Pick-and-Freeze estimator.

Remark 10. It appears that double Monte-Carlo is numerically more efficient
than Pick-and-Freeze for estimating the Shapley effects. Indeed, if we focus only
on the estimation of one Wu for a fixed ∅  u  [1 : p], we can see numerically
that the Pick-and-Freeze estimator has a larger variance than the double Monte-
Carlo estimator. This finding appears to be difficult to confirm theoretically in
the general case. Nevertheless, we can obtain such a theoretical confirmation in
a simple, specific example. Let X ∼ N (0, I2), Y = X1 + X2. Remark that, in

this example, the variances of Ŵ
(1)
u , ∅  u  [1 : p], are equal. In this case,

and for u = {1}, we can easily get Var(V̂u,PF ) = 40
9 Var(Êu,MC) for the same

cost (number of evaluations of f), and choosing NI = 3 for the double Monte-
Carlo estimator. This could be surprising since [JKLR+14] proved that some
Pick-and-Freeze estimator is asymptotically efficient in the independent case.
However, this result and our finding are not contradictory for two reasons: the
authors of [JKLR+14] estimate the variance of Y so their result does not apply

13
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Figure 1: Estimation of the Shapley effects in the linear Gaussian framework.
In black (s*) we show the theoretical values, in red (ss MC) the estimates
from the subset W -aggregation procedure with the double Monte-Carlo estima-
tor, in green (ss PF) the estimates from the subset W -aggregation procedure
with the Pick-and-Freeze estimator, in blue (spr MC) the estimates from the
random-permutation W -aggregation procedure with the double Monte-Carlo
estimator and in yellow (spr PF) the estimates from the random-permutation
W -aggregation procedure with the Pick-and-Freeze estimator.

here and the double Monte-Carlo estimator is based on different observations
from the Pick-and-Freeze estimator.

To conclude, we improved the already existing algorithm of [SNS16] (random-
permutation W -aggregation procedure with double Monte-Carlo) by the esti-
mator given by the subset W -aggregation procedure with double Monte-Carlo.

6 Extension when we observe an i.i.d. sample

In Section 5, we have considered a restricted framework: we assumed that for
all ∅  u  [1 : p] and all xu ∈ Xu, we could generate an i.i.d. sample from
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Figure 2: Sum over i ∈ [1 : p] of the estimated quadratic risks of the four
estimators of the Shapley effects in the linear Gaussian framework.

the distribution of X−u conditionally to Xu = xu. However, in many cases, we
can not generate this sample, as we only observe an i.i.d. sample of X. In this
section, we assume that we only observe an i.i.d. sample (X(n))n∈[1:N ] of X and
that we have access to the computer code f . We extend the double Monte-Carlo
and Pick-and-Freeze estimators in this general case and show their consistency
and rates of convergence. We then give the consistency of the implied estimators
of the Shapley effects (obtained from the W -aggregation procedures studied
previously). To the best of our knowledge, these suggested estimators are the
first estimators of Shapley effects in this general framework. We conclude giving
numerical experiments.

We choose a very general framework to prove the consistency of the estima-
tors. This framework is given in the following assumption.

Assumption 5. For all i ∈ [1 : p], (Xi, di) is a Polish space with metric di and
X = (X1, ..., Xp) has a density fX with respect to a finite measure µ =

⊗p
i=1 µi

which is bounded and PX-almost everywhere continuous.

This assumption is really general. Actually, it enables to have some con-
tinuous variables (with the Euclidean distance), some categorical variables in
countable ordered or unordered sets and some variables in separable Hilbert
spaces (for example L2(Rd), for some d ∈ N∗). The fact that X has a con-
tinuous density fX with respect to a finite measure µ =

⊗
µi means that the

distribution of X is smooth. Assumption 5 is satisfied in many realistic cases.
The assumption of a bounded density which is PX-almost everywhere continu-
ous may be less realistic in some cases but is needed in the proofs. It would be
interesting to alleviate it in future work.
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To prove rates of convergence, we will need the following stronger assump-
tion.

Assumption 6. The function f is C1, X is compact in Rp, X has a density fX
with respect to the Lebesgue measure λp on X such that λp-a.s. on X , we have
0 < Cinf ≤ fX ≤ Csup < +∞. Furthermore, fX is Lipschitz continuous on X .

Assumption 6 is more restrictive than Assumption 5. It requires all the
input variables to be continuous and real-valued. Moreover, their values are
restricted to a compact set where the density is lower-bounded. Assumption 6
will be satisfied in some realistic cases (for instance with uniform or truncated
Gaussian input random variables). Nevertheless, there also exist realistic cases
where the input density is not lower-bounded (for instance with triangular input
random variables). We remark that the assumption of a lower-bounded density
is common in the field of non-parametric statistics [Gho01]. Here, it enables us
to control the order of magnitude of conditional densities.

6.1 Estimators of the conditional elements

As far as we know, only [VG13] suggests a consistent estimator of Wu when we
only observe an i.i.d. sample and when the input variables can be dependent, but
only for Vu with |u| = 1. The estimator suggested in [VG13] is asymptotically
efficient but the fact that u has to be a singleton prevents us to use this estimator
for the Shapley effects (because we have to estimate Wu for all ∅  u  [1 : p]).
We can find another estimator of the (Vu)u⊂[1:p] in [Pli10] (but no theoretical
results on the convergence are given). Finally, note that [PBS13] provides an
estimator of different sensitivity indices, with convergence proofs.

In this section we introduce two consistent estimators of (Wu)∅ u [1:p] when
we observe only an i.i.d. sample of X, and which are easy to implement. These
two estimators follow the principle of the double Monte-Carlo and Pick-and-
Freeze estimators, but replacing exact samples from the conditional distributions
by approximate ones based on nearest-neighbours methods.

To that end, we have to introduce notation. Let N ∈ N and (X(n))n∈[1:N ] be
an i.i.d. sample of X. If ∅  v ( [1 : p], let us write kvN (l, n) for the index such

that X
(kvN (l,n))
v is the (or one of the) n-th closest element to X

(l)
v in (X

(i)
v )i∈[1:N ],

and such that (kvN (l, n))n∈[1:NI ] are two by two distinct.
The index kvN (l, n) could be not uniquely defined if there exist different

observations X
(i)
v at equal distance from X

(l)
v . In this case, we will choose

kvN (l, n) uniformly over the indices of these observations, with the following
independence assumption.

Assumption 7. Conditionally to (X
(n)
v )n∈[1:N ], k

v
N (l, i) is randomly and uni-

formly chosen over the indices of all the i-th nearest neighbours of X
(l)
v in

(X
(n)
v )n∈[1:N ] and the (kvN (l, i))i[1:NI ] are two by two distinct. Furthermore, con-

ditionally to (Xv(n))n∈[1:N ], for all l ∈ [1 : N ], the random vector (kN (l, i))i∈[1:NI ]

is independent on all the other random variables.
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To summarize the idea of Assumption 7, we can say that the nearest neigh-

bours of X
(l)
v are chosen uniformly among the possible choices and independently

on the other variables. Assumption 7 actually only formalizes the random choice
of the nearest neighbours where there can be equalities of the distances and this
choice is easy to implement in practice.

When Xv is absolutely continuous with respect to the Lebesgue measure,
distance equalities can not happen and kvN (l, n) is uniquely defined. Thus,
Assumption 7 trivially holds in this case. Assumption 7 is thus specific to the
case where some input variables are not continuous.

6.1.1 Double Monte-Carlo

We write (s(l))l∈[1:Nu] a sample of uniformly distributed integers in [1 : N ] (with
or without replacement) independent of the other random variables. Then, we
define two slightly different versions of the double Monte-Carlo estimator by

Êmixu,MC =
1

Nu

Nu∑
l=1

Êmixu,s(l),MC , (15)

and

Êknnu,MC =
1

Nu

Nu∑
l=1

Êknnu,s(l),MC , (16)

with

Êmixu,s(l),MC =
1

NI − 1

NI∑
i=1

[
f
(
X

(s(l))
−u ,X

(k−uN (s(l),i))
u

)
− 1

NI

NI∑
h=1

f
(
X

(s(l))
−u ,X

(k−uN (s(l),h))
u

)]2

(17)
and

Êknnu,s(l),MC =
1

NI − 1

NI∑
i=1

[
f
(
X(k−uN (s(l),i))

)
− 1

NI

NI∑
h=1

f
(
X(k−uN (s(l),h))

)]2

.

(18)
The double Monte-Carlo estimator has two sums: one of size NI for the

conditional variance, one other of size Nu for the expectation. The integer NI is
also the number of nearest neighbours and it is a fixed parameter to choose. For
example, we can choose NI = 3 (as in the case where the conditional samples
are available).

Remark 11. If we observe the sample (X(n))n∈[1:N ] and if the values of (f(X(n)))n∈[1:N ]

have to be assessed, the cost of the estimators Êmixu,MC and Êknnu,MC remains
the number of evaluations of f (which is NINu). If we observe the sample

(X(n), f(X(n)))n∈[1:N ], the estimator Êknnu,MC does not require evaluations of f
but the cost remains proportional to Nu (for the search of the nearest neighbours
and for the elementary operations).
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Remark 12. The integer N is the size of the sample of X (that enables us
to estimate implicitly its conditional distributions through the nearest neigh-
bours) and the integer Nu is the accuracy of the estimator Êu,MC from the
estimated distribution of X. Of course, it would be intuitive to take Nu = N
and (s(l))l∈[1:N ] = (l)l∈[1:N ], but this framework would not be general enough for

the subset W -aggregation procedure (in which the accuracy Nu of Êu,MC depends
on u) and for the proof of the consistency when using the random-permutation
W -aggregation procedure in Section 6.2. Furthermore, we may typically have to
take Nu smaller than N .

Remark that we give two versions of the double Monte-Carlo estimator. The
”mix” version seems more accurate but requires to call the computer code of f
at new inputs. For the ”knn” version, it is sufficient to have an i.i.d. sample
(X(n), f(X(n)))n∈[1:N ].

Now that we defined these two versions of the double Monte-Carlo estimator
for an unknown input distribution, we give the consistency of these estimators
in Theorem 1. We let Êu,MC be given by Equation (15) or Equation (16). In
the asymptotic results below, NI is fixed and N and Nu go to infinity.

Theorem 1. Assume that Assumption 5 holds and Assumption 7 holds for
v = −u. If f is bounded, then Êu,MC converges to Eu in probability when N
and Nu go to +∞.

Furthermore, with additional regularity assumptions, we can give the rate
of convergence of these estimators in Theorem 2 and Corollary1.

Theorem 2. Under Assumption 6, for all ε > 0, ε′ > 0, there exist fixed

constants C
(1)
sup(ε′) and C

(2)
sup such that

P
(∣∣∣Êu,MC − Eu

∣∣∣ > ε
)
≤ 1

ε2

(
C

(1)
sup(ε′)

N
1

p−|u|−ε′
+
C

(2)
sup

Nu

)
. (19)

Corollary 1. Under Assumption 6, choosing Nu ≥ CN1/(p−|u|) for some fixed
0 < C < +∞, we have for all δ > 0,∣∣∣Êu,MC − Eu

∣∣∣ = op

(
1

N
1

2(p−|u|)−δ

)
.

We remark that for |u| = p − 1, we nearly obtain a parametric rate of

convergence N
1
2 . The rate of convergence decreases when |u| decreases which

can be interpreted by the fact that we estimate non-parametrically the function
x−u 7→ Var(f(X)|X−u = x−u). The estimation problem is higher-dimensional
when |u| decreases.

6.1.2 Pick-and-Freeze

We now give similar results for the Pick-and-Freeze estimators. The number NI
of nearest neighbours that we need for the Pick-and-Freeze estimators is equal
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to 2. Assume that E(Y ) is known and let (s(l))l∈[1:Nu] be as in Section 6.1.1.
Then, we define two slightly different versions of the Pick-and-Freeze estimator
by

V̂ mixu,PF =
1

Nu

Nu∑
l=1

V̂ mixu,s(l),PF , (20)

and

V̂ knnu,PF =
1

Nu

Nu∑
l=1

V̂ knnu,s(l),PF , (21)

with

V̂ mixu,s(l),PF = f
(

(X(kuN (s(l),1))
)
f
(
X

(kuN (s(l),1))
u ,X

(kuN (s(l),2))
−u

)
− E(Y )2 (22)

and
V̂ knnu,s(l),PF = f(X(kuN (s(l),1)))f(X(kuN (s(l),2)))− E(Y )2. (23)

As for the double Monte-Carlo estimators, we give the consistency of the
Pick-and-Freeze estimators in Theorem 3 and the rate of convergence in Theo-
rem 4 and in Corollary2. We let V̂u,PF be given by Equation (20) or Equation
(21).

Theorem 3. Assume that Assumption 5 holds and Assumption 7 holds for
v = u and NI = 2. If f is bounded, then V̂u,PF converges to Vu in probability
when N and Nu go to +∞.

Theorem 4. Under Assumption 6, if |u| = 1, for all ε > 0, ε′ > 0,

P
(∣∣∣V̂u,PF − Vu∣∣∣ > ε

)
≤ 1

ε2

(
C

(1)
sup(ε′)

N1−ε′ +
C

(2)
sup

Nu

)
, (24)

and if |u| > 1, for all ε > 0,

P
(∣∣∣V̂u,PF − Vu∣∣∣ > ε

)
≤ C

(3)
sup

ε2

(
1

N
1
|u|

+
1

Nu

)
, (25)

with fixed constants C
(1)
sup(ε′) < +∞, C(2)

sup < +∞ and C
(3)
sup < +∞.

Corollary 2. Under Assumption 6, choosing Nu ≥ CN1/|u| for some fixed
0 < C < +∞, we have

1. for all u such that |u| = 1, for all δ > 0,∣∣∣V̂u,PF − Vu∣∣∣ = op

(
1

N
1
2−δ

)
.

2. for all u such that |u| > 1,∣∣∣V̂u,PF − Vu∣∣∣ = Op

(
1

N
1

2|u|

)
.

The interpretation of the rates of convergence is the same as for the double
Monte-Carlo estimators.
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6.2 Consistency of the Shapley effect estimators

Now that we have constructed estimators of Wu with an unknown input dis-
tribution, we can obtain estimators of the Shapley effects using the subset
and random-permutation W -aggregation procedures. Note that for each W -
aggregation procedure, we need to choose the accuracy Nu of the (Ŵu)∅ u [1:p].

Although Assumption 1 does not hold with the estimators Êu,MC and V̂u,PF
(the summands of these estimators are not independent), we keep choosing
Nu = NO = 1 for the random-permutation W -aggregation procedure and Nu as

the closest integer to Ntotκ
−1

(
p
|u|

)−1

(p− 1)−1 with the subset W -aggregation

procedure. To unify notation, let NI = 2 when the estimators of the conditional
elements (Wu)∅ u [1:p] are the Pick-and-freeze estimators (in this way, NI is the
number of nearest neighbours). With the double Monte-Carlo estimators, let
NI be a fixed integer (for example NI = 3).

Finally, recall that for the random-permutation W -aggregation procedure,
we need different estimators (Ŵu(m))m∈[1:M ] = (Ŵu(m)(1))m∈[1:M ] of Wu, with

the notation of Assumption 2. In this case, we choose i.i.d. realizations of Ŵu

conditionally to (X(n))n∈[1:N ]. That is (Ŵu(m))m∈[1:M ] =
(
Ŵu,s(m)

)
m∈[1:M ]

,

where Ŵu,s(m) is defined by either Equation (17), Equation (18), Equation (22)
or Equation (23), and (s(m))m∈[1:M ] are independent and uniformly distributed
on [1 : N ]. This enables to have different estimators with a small covariance us-
ing the same sample (X(n))n∈[1:N ]. Indeed, to prove the consistency in Proposi-
tion 8 of the Shapley effects estimator with the random-permutation procedure,
we show that Assumption 4 is satisfied.

Proposition 8. Assume that Assumption5 holds and Assumption 7 holds for
all subset u, ∅  u  [1 : p]. If f is bounded, then the estimators of the Shapley
effects defined by the random-permutation W -aggregation procedure or the subset
W -aggregation procedure combined with Ŵu = Êu,MC (resp. Ŵu = V̂u,PF )
converge to the Shapley effects in probability when N and Ntot go to +∞.

Remark 13. The Sobol indices are functions of the (Wu)u⊂[1:p]. Indeed, we
can define the Sobol index of a group of variables Xu by either Su as in [Cha13,
BBDM19] or Sclu as in [IP17], where

Su :=
1

Var(Y )

∑
v⊂u

(−1)|u|−|v|Vv, Sclu :=
Vu

Var(Y )
,

and where we note that Vu = Var(Y )−E−u by the law of total variance. Thus,
we get consistent estimators of the Sobol indices in the general setting of As-
sumption 5. Note that the sum over u ⊂ [1 : p] of the Sobol indices Sclu is
not equal to 1, and when the inputs are dependent, the Sobol index Su can take
negatives values.
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6.3 Numerical experiments

In this section, we compute numerically the estimators of the Shapley effects
with an unknown input distribution. As in Section 5.2, we choose the linear
Gaussian framework to compute the theoretical values of the Shapley effects.

We take the same parameters as in Section 5.2. The size N of the observed
sample (X(n))n∈[1:N ] is 10000. Each estimator is computed 200 times. We now
have 8 consistent estimators given by:

• 2 different W -aggregation procedures: subset or random-permutation;

• 2 different estimators of Wu: double Monte-Carlo or Pick-and-Freeze;

• 2 slightly different versions of the estimators of Wu: ”mix” or ”knn”.

In Figure 3, we plot the theoretical values of the Shapley effects, together
with the boxplots of the 200 realizations of each estimator, and with a total cost
Ntot = 54000 (we assume here that f is a costly computer code and that for all
estimators, the cost is the number of evaluations of f).

Remark 14. In the linear Gaussian framework, the function f is not bounded
and the assumptions of Proposition 8 do not hold. We can thus not guarantee the
consistency of the Shapley effects estimators. However, this framework enables
to compute the theoretical Shapley effects and we can see numerically that the
estimators seem to be consistent.

We show the sums over i ∈ [1 : p] of their quadratic risks (estimated with
200 realizations) in Figure 4. As in Section 5.2, the subset W -aggregation pro-
cedure is better than the random-permutation W -aggregation procedure and
double Monte-Carlo is better than Pick-and-Freeze. Furthermore, there are no
significant differences between the version ”mix” and the version ”knn”. Recall
that, in order to compute the estimators with the ”mix” version, we need to
call the computer code of f at new inputs whereas ”knn” only needs an i.i.d.
sample (X(n), f(X(n)))n∈[1:N ].

We now compare the sums over i ∈ [1 : p] of the estimated quadratic risks
of the estimators from the subset W -aggregation procedure with double Monte-
Carlo when we know the distribution of X (results of Section 5.2) and when
we just observe a sample of size 10000 (previous results of this section). These
values are equal to 5.9 10−3 when we know the distribution of X, to 6.6 10−3

when we only observe the sample with Êmixu,MC and to 7.4 10−3 when we only

observe the sample with Êknnu,MC . Thus, in dimension 10, replacing the knowledge
of X by a sample of size 10000 does not seem to deteriorate significantly our
estimates of the Shapley effects.

7 Application to real data

In this section, we apply the estimator of the Shapley effects given by the sub-
set W -aggregation procedure and the double Monte-Carlo estimator Êknnu,MC in
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Figure 3: Estimation of the Shapley effects in the linear Gaussian framework
when we only observe a sample of X. In black (s*) we show the theoret-
ical results, in red the estimates from the subset W -aggregation procedure
with the double Monte-Carlo estimator (ss MC mix and ss MC knn), in green
the estimates from the subset W -aggregation procedure with the Pick-and-
Freeze estimator (ss PF mix and ss PF knn), in blue the estimates from the
random-permutation W -aggregation procedure with the double Monte-Carlo
estimator (spr MC mix and spr MC knn) and in yellow the estimates from the
random-permutation W -aggregation procedure with the Pick-and-Freeze esti-
mator (spr PF mix and spr PF knn).

Equation (16) to a real data set. We use the ”depSeuil.dat” data, available at
http://www.math.univ-toulouse.fr/~besse/Wikistat/data from [BMM+07].
This data set contains 10 variables with 1041 sample observations. The variables
are:
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Figure 4: Sum over i of the estimated quadratic risks of the eight estimators of
the Shapley effects in the linear Gaussian framework when we only observe a
sample of X.

• JOUR: type of day (holiday: 1, no holiday: 0);

• O3obs: observed ozone concentration;

• MOCAGE: ozone concentration predicted by a fluid mechanics model;

• TEMPE: temperature predicted by the official meteorology service of
France;

• RMH2O: humidity ratio;

• NO2: nitrogen dioxide concentration;

• NO: nitrogen oxide concentration;

• STATION: site of observation (5 different sites);

• VentMOD: wind force;

• VentANG: wind direction.
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Here, we focus on the ozone concentration O3obs in function of the nine other
variables. Hence, let Ỹ be the random variable of the ozone concentration and
let X be the random vector containing the nine other random variables. Using
the estimator Êknn∅,MC of E∅ = E(Var(Ỹ |X)) given by Equation (16), with NI = 3

and N∅ = 1000, we estimate the value of Var(E(Ỹ |X))/Var(Ỹ ) to 0.57, whereas
it would be equal to 1 if Ỹ was a function of X. Thus, we can not assume that
the ozone concentration is a function of the nine other random variables.

The theory and methodology of this article holds when Ỹ is a deterministic
function of X. Hence, we create metamodels of the ozone concentration in
function of X, and we write Y the output of the metamodel. In this case, Y is
indeed a deterministic function of X and we can compute the Shapley effects,
which now quantify the impact of the inputs on the metamodel prediction.
In practice, we replace the output column by the fitted values given by the
metamodel.

To study the impact of the metamodel on the Shapley effects, we estimate
the Shapley effects corresponding to three metamodels:

• XGBoost, from the R package xgboost, with optimized parameter by
cross-validation;

• generalized linear model (GLM);

• Random Forest, from the R package randomForest, which optimizes au-
tomatically the parameters by out-of-bag.

Remark 15. Using the estimator Êknn∅,MC , we estimate the value of Var(E(Y |X))/

Var(Y ) to 0.91, 0.93 and 0.90 where Y denotes the output of each of the three
metamodels XGBoost, GLM and Random Forest respectively. In contrast, the
value of Var(E(Ỹ |X))/Var(Ỹ ) is 0.57 when Ỹ denotes the original observed
ozone concentrations. This shows that the predicted values are different from
the initial values of the ozone concentration. Moreover, this shows that the
metamodels do not overfit the data, since the estimated values of Var(E(Y |X))/
Var(Y ) are close to 1. Indeed, that means that the fitted values of the ozone
concentration are much more explained by X and have been smoothed by the
metamodels. Furthermore, if the metamodels were overfitting the noise con-
tained in the observed ozone concentration values, their outputs could not be
predicted well given X, and the estimate of Var(E(Y |X))/Var(Y ) would then be
small when Y is one of the metamodel outputs.

For each metamodel, we estimate the Shapley effects with the subset W -
aggregation procedure and the double Monte-Carlo estimator Êknnu,MC , with NI =
3 and Ntot = 50000 (but the real cost is actually 40176, see Remark 4). For
each metamodel, the computation time of all the Shapley effects on a personal
computer is around 5 minutes. The results are presented in Figure 5.

We remark that the three metamodels yield similar Shapley effects. This is
reassuring, since observing different behaviours of the metamodels would be a
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Figure 5: Estimation of the Shapley effects for three metamodels: XGBoost,
GLM and Random Forest.

sign of inaccuracy for some of them. Only two variables have a significant impact
on the ozone concentration: the predicted ozone concentration (MOCAGE) and
the predicted temperature (TEMPE). This comforts the results of [BMM+07] as
they use regression trees whose two most important variables are the predicted
ozone concentration and the predicted temperature. All the other variables have
a much smaller impact. The Shapley effect of the predicted temperature is larger
than the one of the predicted ozone concentration. It could be from the better
accuracy of the predicted temperature (given by the official meteorology service
of France) than the predicted ozone concentration (given by a fluid mechanics
model). Finally, we remark that the type of the day (holiday or not) has no
impact on the ozone concentration. The corresponding Shapley effect is even
estimated by a slightly negative value for the GLM, which stems from the small
error estimation.

To conclude, the Shapley effect estimator given by the subset W -aggregation
procedure and the double Monte-Carlo estimator Êknnu,MC enables us to estimate
the Shapley effects on real data. The estimator only requires a data frame of the
inputs-output and handles heterogeneous data, with some categorical inputs and
some continuous inputs. Here, the estimator was applied to a metamodel output.
This illustrates the interest of the Shapley effects (and of sensitivity analysis) to
understand and interpret the predictions of complex black-box machine learning
procedures [RSG16, BGLR18].

This estimator has been implemented in the R package sensitivity as the
function ”shapleySubsetMc”.
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8 Conclusion

In this article, we focused on the estimation of the Shapley effects. We explained
that this estimation is divided into two parts: the estimation of the conditional
elements (Wu)∅ u [1:p] and the W -aggregation procedure. We suggested the
new subset W -aggregation procedure and we explained how the already existing
random-permutation W -aggregation procedure of [SNS16] minimizes the vari-
ance. However, the subset W -aggregation procedure is more efficient by using
all the estimates of the conditional elements for each Shapley effect estimation.
We highlighted this efficiency by numerical experiments. In a second part, we
suggested various estimators of (Wu)∅ u [1:p] when the input distribution is un-
known and when we only observe an i.i.d. sample of the input variables. We
proved their consistency and gave the rates of convergence. Then, we used these
new estimators to estimate the Shapley effects with consistency. We illustrated
the efficiency of these estimators with numerical experiments and we tested one
estimator on real heterogeneous data.

It is known that the Monte-Carlo algorithms for the estimation of the Sobol
indices require many evaluations of f to be accurate (typically several thou-
sands). If the evaluation cost is too high, it could be necessary to replace the

function f with a metamodel f̂ , such as Kriging [SWNW03]. An important
field of research in Kriging is adaptive design of experiments [JSW98]. It would
be interesting to study adaptive design of experiments in order to estimate the
Shapley effects [FRK15], and to develop adaptive algorithms adapted to the
estimators that we suggest in this article.
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A Proofs for the double Monte-Carlo and Pick-
and-Freeze estimators: Theorems 1, 2, 3 and
4

To unify notation, let us write

ΦmixMC : (x(1), ...,x(NI)) 7−→ 1

NI − 1

NI∑
k=1

(
f(x

(1)
−u,x

(k)
u )− 1

NI

NI∑
l=1

f(x
(1)
−u,x

(l)
u )

)2

,

ΦknnMC : (x(1), ...,x(NI)) 7−→ 1

NI − 1

NI∑
k=1

(
f(x(k))− 1

NI

NI∑
l=1

f(x(l))

)2

,

ΦmixPF : (x(1),x(2)) 7−→ f(x(1))f(x(1)
u ,x

(2)
−u)− E(Y )2,

ΦknnPF : (x(1),x(2)) 7−→ f(x(1))f(x(2))− E(Y )2.

Remark that all these four functions are bounded as f is bounded. When we
do not write the exponent mix or knn of Φ or of the estimators, it means that
we refer to both of them (mix and knn). We write the proofs only for Êu,MC .

For the estimators V̂u,PF , it suffices to replace ΦMC by ΦPF , −u by u (and
vice-versa), Eu by Vu, Var(Y |X−u) by E(Y |Xu)2 −E(Y )2 and NI by 2. Hence,
we shall only write the complete proofs for Theorems 1 and 2. To simplify
notation, we will write Êu for Êu,MC , Êu,l for Êu,l,MC and Φ for ΦMC . NI is a
fixed integer. We also write kN (l, i) := k−uN (l, i), and the dependence on −u is
implicit.

A.1 Proof of consistency: Theorems 1 and 3

Recall that for all i ∈ [1 : p], (Xi, di) is a Polish space. Then, for all v ⊂ [1 : p],
Xv :=

∏
i∈v Xi is a Polish space for the distance dv := maxi∈v di. We will

write Bv(xv, r) the open ball in Xv of radius r and center xv. We also let
µv :=

⊗
i∈v µi. Recall that the choice of the NI -nearest neighbours could be

not unique. In this case, conditionally to (X
(n)
−u)n≤N , the (kN (l, i))l∈[1:N ],i∈[1:NI ]

are random variables that we choose in the following way. Conditionally to

(X
(n)
−u)n≤N , we choose kN (l, i) uniformly over all the indices of the i-th nearest

neighbours of X
(l)
−u, such that the (kN (l, i))i≤NI are two by two distinct and

independent of all the other random variables conditionally to (X
(n)
−u)n≤N .

In particular, as we want to prove asymptotic results, we assume (without
loss of generality) that we have an infinite i.i.d. sample (X(n))n∈N∗ , and we as-

sume that for allN ∈ N∗, conditionally to (X
(n)
−u)n≤N , (kN (l, i))i≤NI ⊥⊥σ

(
(X

(n)
u )n≤N , (X

(n))n>N , (kN ′(l
′, i′))(N ′,l′)6=(N,l), i′∈[1:NI ]

)
.

Hence, for all N ∈ N∗ and l ∈ [1 : N ], conditionally to (X
(n)
−u)n∈N, we have

(kN (l, i))i≤NI ⊥⊥σ
(

(X(n)
u )n∈N, (kN ′(l

′, i′))(N ′,l′) 6=(N,l), i′∈[1:NI ]

)
.
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To simplify notation, let us write kN (i) := kN (1, i) (the index of one i-

th neighbour of X
(1)
−u) and k′N (i) := kN (2, i) (the index of one i-th neigh-

bour of X
(2)
−u). Remark that X

(kN (i))
−u does not depend on kN (i). Let k :=

(kN (i))i≤NI ,N∈N∗ and kN := (kN (i))i≤NI . We will use the letter h for the
realizations of the variable k.

To begin with, let us recall two well-known results that we will use in the
following.

Lemma 1. Let A be a real random variable. If H is independent of σ(σ(A),G),
then

E(A|σ(G,H)) = E(A|G).

Lemma 2. Let A,B be random variables. For all measurable φ,

L(φ(A,B)|A = a) = L(φ(a,B)|A = a)

and if B is independent of A, then

L(φ(A,B)|A = a) = L(φ(a,B)).

Now, to prove Theorem 1, we need to prove several intermediate results.

Lemma 3. For all l ∈ N∗,

X
(kN (l))
−u

a.s.−→
N→+∞

X
(1)
−u. (26)

Proof. First, let us show that for all ε > 0, P(d−u(X
(1)
−u,X

(2)
−u) < ε) > 0. Indeed,

as X−u is a Polish space, its support has measure 1. Thus

P(d−u(X
(1)
−u,X

(2)
−u) < ε) =

∫
X 2
−u

1d−u(x−u,x′−u)<εdPX−u ⊗ PX−u(x−u,x
′
−u)

=

∫
X−u

PX−u(B−u(x−u, ε))dPX−u(x−u)

=

∫
supp(X−u)

PX−u(B−u(x−u, ε))dPX−u(x−u)

> 0,

because if x−u ∈ supp(X−u), thenB−u(x−u, ε) 6⊂ supp(X−u)c and PX−u(B−u(x−u, ε)) >
0.

Next, remark that

X
(kN (l))
−u

a.s.−→
N→+∞

X
(1)
−u ⇐⇒ X

(kN (2))
−u

a.s.−→
N→+∞

X
(1)
−u,
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and,

P
({

X
(kN (2))
−u −→

N→+∞
X

(1)
−u

}c)
= P

⋃
k≥1

⋂
n≥2

d−u(X
(n)
−u,X

(1)
−u) ≥ 1

k


≤
∑
k≥1

P

⋂
n≥2

d−u(X
(n)
−u,X

(1)
−u) ≥ 1

k


=
∑
k≥1

lim
N→+∞

P
(
d−u(X

(2)
−u,X

(1)
−u) ≥ 1

k

)N

=
∑
k≥1

lim
N→+∞

[
1− P

(
d−u(X

(2)
−u,X

(1)
−u) <

1

k

)]N
=
∑
k≥1

0

= 0.

Lemma 4. There exists a version of

L(Xu|X−u = ·) : (X−u, d−u) −→ (M1(Xu), T (weak))

which is continuous PX−u-a.e., where M1(Xu) is the set of probability measures
on Xu and T (weak) is the topology of weak convergence.

Proof. We assumed that there exists a version of fX which is bounded and
PX-a.e. continuous. Let

fX−u(x−u) :=

∫
Xu
fX(xu,x−u)dµu(xu),

which is bounded by µu(Xu)‖fX‖∞ and is a PX−u -a.e. continuous (thanks to
the dominated converging Theorem) version of the density of X−u with respect
to µ−u. Let x−u ∈ X−u such that fX−u(x−u) ≤ ‖fX−u‖∞, fX−u(x−u) > 0 and
such that fX−u is continuous at x−u. We have that

fXu|X−u=x−u(xu) :=
fX(xu,x−u)

fX−u(x−u)

is a version of the density of Xu conditionally to X−u = x−u (defined for almost

all x−u). Let (x
(n)
−u) be a sequence converging to x−u. There exists n0 such that

for all n ≥ n0, fX−u(x
(n)
−u) > 0. Thus, by continuity of f which respect to

x−u and of fX−u , we have fXu|X−u=x−u(xu) = limn→+∞ f
Xu|X−u=x

(n)
−u

(xu) for

almost all xu. Then, using the dominated converging Theorem,

L(Xu|X−u = x
(n)
−u)

weakly−→
N→+∞

L(Xu|X−u = x−u).
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Remark 16. The assumption ”X = (Xu,X−u) has a bounded density fX with
respect to a finite measure µ =

⊗p
i=1 µi, which is continuous PX-a.e.” is only

used in the proof of Lemma 4. It would be interesting in future work to prove 4
with a weaker assumption.

Remark 17. There exists a different proof of Lemma 4 if we assume that µ is
regular. Theorem 8.1 of [Tju74] ensures that the conditional distribution in the
sense of Tjur is defined for all x−u such that fX−u > 0 (and not only for almost
all x−u) and the continuity of fXu|X−u=x−u(xu) with respect to x−u comes from
Theorem 22.1 of [Tju74].

Remark 18. To avoid confusion, we can now define L(Xu|X−u = x−u) as

the probability measure of density f(·,x−u)
fX−u (x−u) , which is defined for all (and not

”almost all”) x−u in {fX−u > 0}.

Proposition 9. If

L(Xu|X−u = .) : (X−u, d−u) −→ (M1(Xu), T (weak))

is continuous (where T (weak) is the topology of weak convergence) almost ev-

erywhere, then, for almost all
(

(x
(n)
−u)n,h

)
, we have

E
(
Êu,1

∣∣∣(X(n)
−u)n = (x

(n)
−u)n,k = h

)
−→

N→+∞
Var(Y |X−u = x

(1)
−u) (27)

and,
E(Êu,1) −→

N→+∞
Eu. (28)

Proof. Let Z = (Z1, ...,ZNI ) : (Ω,A) → (XNI , E⊗NI ) measurable, where E is

the σ-algebra on X , such that for almost all
(

(x
(n)
−u)n,h

)
, we have

L
(
Z|(X(n)

−u)n = (x
(n)
−u)n,k = h

)
=

NI⊗
i=1

L(X(1)|X(1)
−u = x

(1)
−u).

It suffices to show that, for almost all
(

(x
(n)
−u)n,h

)
,

(X(kN (i)))i≤NI

L
|(X(n)
−u)n=(x

(n)
−u)n,k=h

−→
N→+∞

Z. (29)

Indeed, if Equation (29) is true, then, using that Φ is bounded,

E
(
Êu,1

∣∣∣(X(n)
−u)n = (x

(n)
−u)n,k = h )

= E
[
Φ
(

(X(kN (i)))i≤NI

) ∣∣∣(X(n)
−u)n = (x

(n)
−u)n,k = h

]
−→

N→+∞
E(Φ(Z)

∣∣∣(X(n)
−u)n = (x

(n)
−u)n,k = h )

= Var(Y |X−u = x
(1)
−u),
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by definition of Z and of Φ. Thus, we have Equation 27. Furthermore, using

dominated convergence theorem, integrating on
(

(x
(n)
−u)n,h

)
, we obtain Equa-

tion 28.
Thus, it remains to show that conditionally to (X

(n)
−u)n = (x

(n)
−u)n,k = h,

the random vector (X(kN (i)))i≤NI converges in distribution to Z. We prove this
convergence step by step.

Lemma 5. For almost all (x
(n)
−u)n,

L((X(n)
u )n|(X(n)

−u)n = (x
(n)
−u)n) =

⊗
n≥1

L(Xu|X−u = x
(n)
−u).

Proof. Let (X̃
(n)
−u)n : Ω → XN−u be an i.i.d. sequence of distribution L(X−u).

Then, we let (X̃
(n)
u )n : Ω→ XNu be a sequence with conditional distribution

L((X̃(n)
u )n|(X̃(n)

−u)n = (x
(n)
−u)n) =

⊗
n≥1

L(Xu|X−u = x
(n)
−u).

We just have to prove that (X̃(n))n is an i.i.d. sample of distribution L(X).
Each X̃(n) has a distribution L(X) because for all bounded measurable φ,

E(φ(X̃(n))) =

∫
Ω

φ(X̃(n)(ω))dP(ω)

=

∫
Xu×X−u

φ(xu,x−u)dP(X̃u,X̃−u)(xu,x−u)

=

∫
X−u

(∫
Xu
φ(xu,x−u)dPXu|X−u=x−u(xu)

)
dPX−u(x−u)

=

∫
X
φ(x)dPX(x).

Moreover, (X̃(n))n are independent because if n 6= m, then, for all bounded
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Borel functions φ1 and φ2, we have:

E(φ1(X̃(n))φ2(X̃(m)))

=

∫
X 2
u×X 2

−u

φ1(x(n)
u ,x

(n)
−u)φ2(x(m)

u ,x
(m)
−u )dP

(X̃
(n)
u ,X̃

(m)
u ,X̃

(n)
−u,X̃

(m)
−u )

(x(n)
u ,x(m)

u ,x
(n)
−u,x

(m)
−u )

=

∫
X 2
−u

(∫
X 2
u

φ1(x(n)
u ,x

(n)
−u)φ2(x(m)

u ,x
(m)
−u )dP

(X̃
(n)
u ,X̃

(m)
u )|(X̃(n)

−u,X̃
(m)
−u )=(x

(n)
−u,x

(m)
−u )

(x(n)
u ,x(m)

u )

)
dP

(X̃
(n)
−u,X̃

(m)
−u )

(x
(n)
−u,x

(m)
−u )

=

∫
X 2
−u

(∫
X 2
u

φ1(x(n)
u ,x

(n)
−u)φ2(x(m)

u ,x
(m)
−u )dP

Xu|X−u=x
(n)
−u
⊗ P

Xu|X−u=x
(m)
−u

(x(n)
u ,x(m)

u )

)
dP⊗2

X−u
(x

(n)
−u,x

(m)
−u )

=

∫
X 2
−u

(∫
Xu
φ1(x(n)

u ,x
(n)
−u)dP

Xu|X−u=x
(n)
−u

(x(n)
u )

)
(∫
Xu
φ2(x(m)

u ,x
(m)
−u )dP

Xu|X−u=x
(m)
−u

(x(m)
u )

)
dP⊗2

X−u
(x

(n)
−u,x

(m)
−u )

=

∫
X−u

(∫
Xu
φ1(x(n)

u ,x
(n)
−u)dP

X̃u|X̃−u=x
(n)
−u

(x(n)
u )

)
dPX̃−u(x

(n)
−u)(∫

Xu
φ2(x(m)

u ,x
(m)
−u )dP

X̃u|X̃−u=x
(m)
−u

(x(m)
u )

)
dPX̃−u(x

(m)
−u )

= E(φ1(X̃(n)))E(φ2(X̃(m))).

The above calculation can be extended to finite products of more than two
terms. That concludes the proof of Lemma 5.

Lemma 6. For almost all
(

(x
(n)
−u)n,h

)
, we have:

L
(

(X(kN (i))
u )i≤NI |(X

(n)
−u)n = (x

(n)
−u)n,k = h

)
=

NI⊗
i=1

L
(
Xu|X−u = x

(hN (i))
−u

)
.

Proof. For all bounded Borel function φ,

E
(
φ((X(kN (i))

u )i≤NI )|(X
(n)
−u)n = (x

(n)
−u)n,k = h

)
= E

(
φ
(

(X(kN (i))
u )i≤NI )

)∣∣∣ (X(n)
−u)n = (x

(n)
−u)n, (kN ′(i))i≤NI ,N ′∈N∗ = (hN ′(i))i≤NI ,N ′∈N∗

)
= E

(
φ
(

(X(kN (i))
u )i≤NI

)∣∣∣ (X(n)
−u)n = (x

(n)
−u)n, (kN (i))i≤NI = (hN (i))i≤NI

)
= E

(
φ
(

(X(hN (i))
u )i≤NI

)
|(X(n)
−u)n = (x

(n)
−u)n

)
,
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using Lemmas 1 and 2 conditionally to (X
(n)
−u)n = (x

(n)
−u)n. Then,

E
(
φ
(

(X(hN (i))
u )i≤NI

)
|(X(n)
−u)n = (x

(n)
−u)n

)
=

∫
XNIu

φ(x(1)
u , ...,x(NI)

u )dP
(X

(hN (i))
u )i≤NI |(X

(n)
−u)n=(x

(n)
−u)n

(x(1)
u , ...,x(NI)

u )

=

∫
XNIu

φ(x(1)
u , ...,x(NI)

u )d

NI⊗
i=1

P
Xu|X−u=x

(hN (i))

−u
(x(1)
u , ...,x(NI)

u ).

That concludes the proof of Lemma 6.

Recall that X
(kN (i)))
−u −→

N→+∞
X

(1)
−u P-a.e., thus, for almost all

(
(x

(n)
−u)n,h

)
,

x
(hN (i))
−u −→

N→+∞
x

(1)
−u.

Thus, using the continuity of the conditional distribution given by Lemma 4,

for almost all
(

(x
(n)
−u)n,h

)
, we have,

L(Xu|X−u = x
(hN (i))
−u )

weakly−→
N→+∞

L(Xu|X−u = x
(1)
−u).

Thus, for almost all
(

(x
(n)
−u)n,h

)
,

NI⊗
i=1

L(Xu|X−u = x
(hN (i))
−u )

weakly−→
N→+∞

NI⊗
i=1

L(Xu|X−u = x
(1)
−u) = L(Zu|X(1)

−u = x
(1)
−u).

So, using Lemma 6, for almost all
(

(x
(n)
−u)n,h

)
,

L
(

(X(kN (i))
u )i≤NI |(X

(n)
−u)n = (x

(n)
−u)n,k = h

)
weakly−→
N→+∞

L(Zu|X(1)
−u = x

(1)
−u).

So, for almost all
(

(x
(n)
−u)n,h

)
,

L
(

(X(kN (i))
u )i≤NI |(X

(n)
−u)n = (x

(n)
−u)n,k = h

)
weakly−→
N→+∞

L
(
Zu|(X(n)

−u)n = (x
(n)
−u)n,k = h

)
.

Using Slutsky lemma, for almost all
(

(x
(n)
−u)n,h

)
,

L
(

(X(kN (i)))i≤NI |(X
(n)
−u)n = (x

(n)
−u)n,k = h

)
weakly−→
N→+∞

L
(
Z|(X(n)

−u)n = (x
(n)
−u)n,k = h

)
,

that concludes the proof of Proposition 9.

Lemma 7. The value of Var(Êu,1,MC) is bounded by 128‖f‖4∞.
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Proof. As f is bounded, Φ is bounded by 1
NI−1

∑NI
k=1(2‖f‖∞)2 = NI

NI−14‖f‖2∞ ≤
8‖f‖2∞ so Var(Êu,1) is bounded by 2‖Φ‖2∞ ≤ 128‖f‖4∞.

Proposition 10. We have

cov(Êu,1, Êu,2) −→
N→+∞

0.

Proof. We use the law of total covariance

cov(Êu,1, Êu,2) = E
(
cov

(
Êu,1, Êu,2|X(1)

−u,X
(2)
−u

))
+cov

(
E(Êu,1|X(1)

−u,X
(2)
−u),E(Êu,2|X(1)

−u,X
(2)
−u)
)
.

(30)
We will show that both terms go to 0 as N goes to +∞. Let us compute the
second term. Using Proposition 9,

cov
(

E(Êu,1|X(1)
−u,X

(2)
−u),E(Êu,2|X(1)

−u,X
(2)
−u)
)

= E
(

E(Êu,1|X(1)
−u,X

(2)
−u)E(Êu,2|X(1)

−u,X
(2)
−u)
)
− E(Êu,1)E(Êu,2)

−→
N→+∞

E
(

Var(Y |X−u = X
(1)
−u)Var(Y |X−u = X

(2)
−u)
)
− E2

u

= 0.

It remains to prove that E
(
cov

(
Êu,1, Êu,2|X(1)

−u,X
(2)
−u

))
goes to 0. By domi-

nated convergence theorem, it suffices to show that for almost all (x
(1)
−u,x

(2)
−u),

cov
(
Êu,1, Êu,2|X(1)

−u = x
(1)
−u,X

(2)
−u = x

(2)
−u

)
−→

N→+∞
0. (31)

From now on, we aim to proving Equation (31).

First, we want to prove Equation (31) for x
(1)
−u 6= x

(2)
−u. Using dominated

convergence theorem and Proposition 9, it will suffice to show that (conditionally

to X
(1)
−u = x

(1)
−u, X

(2)
−u = x

(2)
−u), for almost all ((x

(n)
−u)n≥3,h,h

′),

E
(
Êu,1, Êu,2|(X(n)

−u)n = (x
(n)
−u)n,k = h,k′ = h′

)
−→

N→+∞
Var

(
Y |X−u = x

(1)
−u

)
Var

(
Y |X−u = x

(2)
−u

)
.

Let

A :=

{(
(x

(n)
−u)n,h,h

′
)
| xhN (N1)
−u −→

N→+∞
x

(1)
−u, x

h′N (N1)
−u −→

N→+∞
x

(2)
−u

}
.

The set A has probability 1 thanks to Lemma 3. Let
(

(x
(n)
−u)n,h,h

′
)
∈ A be

such that x
(1)
−u 6= x

(2)
−u and let δ := d−u(x

(1)
−u,x

(2)
−u)/2. There exists N1 such that

for all N ≥ N1,

d−u

(
x

(1)
−u,x

(hN (NI))
−u

)
<
δ

2
, d−u

(
x

(2)
−u,x

(h′N (NI))
−u

)
<
δ

2
.
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Thus, for all N ≥ N1,

E(Êu,1Êu,2|(X(n)
−u)n = (x

(n)
−u)n,k = h,k′ = h′)

= E
[
Φ
(

(XkN (i))i≤NI

)
Φ
(

(Xk′N (i))i≤NI

)∣∣∣ (X(n)
−u)n = (x

(n)
−u)n,k = h,k′ = h′

]
= E

[
Φ
(

(XkN (i))i≤NI

)
Φ
(

(Xk′N (i))i≤NI

)∣∣∣ (X(n)
−u)n = (x

(n)
−u)n,kN = hN ,k

′
N = h′N

]
= E

[
Φ
(

(XhN (i))i≤NI

)
Φ
(

(Xk′N (i))i≤NI

)∣∣∣ (X(n)
−u)n = (x

(n)
−u)n,k

′
N = h′N

]
= E

[
Φ
(

(XhN (i))i≤NI

)
Φ
(

(Xh′N (i))i≤NI

)∣∣∣ (X(n)
−u)n = (x

(n)
−u)n

]
= E

[
Φ
(

(x
hN (i)
−u )i≤NI , (X

hN (i)
u )i≤NI

)
Φ
(

(x
h′N (i)
−u )i≤NI , (X

h′N (i)
u )i≤NI

)∣∣∣ (X(n)
−u)n = (x

(n)
−u)n

]
= E

[
Φ
(

(x
hN (i)
−u )i≤NI , (X

hN (i)
u )i≤NI

)∣∣∣ (X(n)
−u)n = (x

(n)
−u)n

]
E
[
Φ
(

(x
h′N (i)
−u )i≤NI , (X

h′N (i)
u )i≤NI

)∣∣∣ (X(n)
−u)n = (x

(n)
−u)n

]
= E

[
Êu,1

∣∣∣ (X(n)
−u)n = (x

(n)
−u)n,k = h

]
E
[
Êu,2

∣∣∣ (X(n)
−u)n = (x

(n)
−u)n,k

′ = h′
]

−→
N→+∞

Var
[
Y |X−u = x

(1)
−u

]
Var

[
Y |X−u = x

(2)
−u

]
,

thanks to Proposition 9.

Assume now that X
(1)
−u = X

(2)
−u = x−u. We can assume without lost of

generality that P(X−u = x−u) > 0 because if we write H := {x−u| P(X−u =

x−u) = 0}, we have P(X
(1)
−u = X

(2)
−u ∈ H) = 0. We have to show that

E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u

)
−Var(Y |X−u = x−u)2 −→

N→+∞
0.

Let ε > 0.

Let MN the number of observations which are equal to x−u,

MN := #{n ≤ N : X
(n)
−u = x−u},

and let HN be the number of nearest neighbours (up to NI -nearest) shared by

X
(1)
−u and X

(2)
−u,

HN := # [{kN (i) : i ≤ NI} ∩ {k′N (i) : i ≤ NI}] .

If Mn = m ≥ 2NI , X
(1)
−u = x−u = X

(2)
−u, then the NI -nearest neighbours kN of

X
(1)
−u and k′N of X

(2)
−u are independent and are samples of uniformly distributed
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variables on the same set of cardinal m, without replacement. Thus,

P(HN = 0|MN = m,X
(1)
−u = X

(2)
−u = x−u)

=

(
m−NI
NI

)
(
m
NI

)
=

(m− 2NI + 1)(m− 2NI + 2)...(m−NI)
(m−NI + 1)(m−NI + 2)...m

−→
m→+∞

1.

Thus, there exists m1 such that

αm1
:= P(HN = 0|MN ≥ m1,X

(1)
−u = X

(2)
−u = x−u) > 1− ε

5‖Φ‖2∞
. (32)

So,

E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u

)
= E

(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN < m1

)
P(MN < m1|X(1)

−u = X
(2)
−u = x−u)

+E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1

)
P(MN ≥ m1|X(1)

−u = X
(2)
−u = x−u).

Let

βN := E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN < m1

)
P(MN < m1|X(1)

−u = X
(2)
−u = x−u).

Conditionally to X
(1)
−u = X

(2)
−u = x−u, we know thatMN−2 ∼ B (N − 2,P(X−u = x−u)),

the binomial distribution. Thus, there exists N1 such that for all N ≥ N1,

P
(
MN < m1|X(1)

−u = X
(2)
−u = x−u

)
<

ε

5 max(1, ‖Φ‖2∞)
, (33)

and so, for all N ≥ N1, βN < ε/5. Furthermore

E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1

)
= E

(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1, HN = 0

)
P(HN = 0|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1)

+E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1, HN ≥ 1

)
P(HN ≥ 1|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1).

Let
γN := P

(
MN ≥ m1|X(1)

−u = X
(2)
−u = x−u

)
.

Moreover, conditionally to X
(1)
−u = X

(2)
−u = x−u,MN ≥ m1, HN = 0 implies that

Êu,1⊥⊥ Êu,2 thanks to Lemma 8.
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Lemma 8. Conditionally to X
(1)
−u = X

(2)
−u = x−u,MN ≥ m1, HN = 0, the vec-

tor
(

(X(kN (i)))i≤NI , (X
(k′N (i)))i≤NI

)
is composed of 2NI i.i.d. random variables

of distribution X conditionally to X−u = x−u.

Proof. We know that, conditionally to X
(1)
−u = X

(2)
−u = x−u,MN ≥ m1, HN = 0,

the vector
(

(X
(kN (i))
−u )i≤NI , (X

(k′N (i))
−u )i≤NI

)
is constant equal to (x−u)i≤2NI . It

suffices to show that, conditionally to X
(1)
−u = X

(2)
−u = x−u,MN ≥ m1, HN = 0,

the vector
(

(X
(kN (i))
u )i≤NI , (X

(k′N (i))
u )i≤NI

)
is composed of 2NI i.i.d. random

variables of distribution X conditionally to X−u = x−u. Let ((x
(n)
−u)n,hN ,h

′
N )

such that X
(1)
−u = X

(2)
−u = x−u,MN ≥ m1 and HN = 0. As MN ≥ m1 ≥ NI ,

for all i ≤ NI , we have x
(kN (i))
−u = x−u = x

(k′N (i))
−u . As HN = 0, then, for all i

and j smaller than NI , hN (i) 6= h′N (j). Thus, we have for any bounded Borel
function φ,

E
(
φ
[
(X(kN (i))

u )i≤NI , (X
(k′N (i))
u )i≤NI

]∣∣∣ (X(n)
−u)n = (x

(n)
−u)n,kN = hN ,k

′
N = h′N

)
= E

(
φ
[
(X(hN (i))

u )i≤NI , (X
(k′N (i))
u )i≤NI

]∣∣∣ (X(n)
−u)n = (x

(n)
−u)n,k

′
N = h′N

)
= E

(
φ
[
(X(hN (i))

u )i≤NI , (X
(h′N (i))
u )i≤NI

]∣∣∣ (X(n)
−u)n = (x

(n)
−u)n,

)
= E

(
φ
[
(X(hN (i))

u )i≤NI , (X
(h′N (i))
u )i≤NI

]∣∣∣ (X(hN (i))
−u )i≤NI = (x−u)i≤NI , (X

(h′N (i))
−u )i≤NI = (x−u)i≤NI

)
= E

(
φ
[
(X(i)

u )i≤NI , (X
(i+NI)
u )i≤NI

]∣∣∣ (X(i)
−u)i≤2NI = (x−u)i≤2NI

)
.

Thus,

E
(
φ
[
(X(kN (i))

u )i≤NI , (X
(k′N (i))
u )i≤NI

]∣∣∣X(1)
−u = X

(2)
−u = x−u,MN ≥ m1, HN = 0

)
= E

{
E
(
φ
[
(X(kN (i))

u )i≤NI , (X
(k′N (i))
u )i≤NI

]∣∣∣X(1)
−u = X

(2)
−u = x−u,MN ≥ m1, HN = 0, (X

(n)
−u)n,k,k

′
)}

= E
{

E
(
φ
[
(X(i)

u )i≤NI , (X
(i+NI)
u )i≤NI

]∣∣∣ (X(i)
−u)i≤2NI = (x−u)i≤2NI

)}
= E

(
φ
[
(X(i)

u )i≤NI , (X
(i+NI)
u )i≤NI

]∣∣∣ (X(i)
−u)i≤2NI = (x−u)i≤2NI

)
,

that concludes the proof of Lemma 8.

Thus

E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1, HN = 0

)
= E

(
Êu,1|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1, HN = 0

)2

and so, using Proposition 9, there exists N2 such that for all N ≥ N2,∣∣∣E(Êu,1Êu,2|X(1)
−u = X

(2)
−u = x−u,MN ≥ m1, HN = 0

)
−Var(Y |X−u = x−u)2

∣∣∣ < ε

5
.

(34)
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Thus, for all N ≥ max(N1, N2),∣∣∣E(Êu,1Êu,2|X(1)
−u = X

(2)
−u = x−u

)
−Var(Y |X−u = x−u)2

∣∣∣
≤ |βN |+

∣∣∣γNE
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1, HN ≥ 1

)
(1− αm1

)
∣∣∣

+
∣∣∣γNαm1

E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1, HN = 0

)
−Var(Y |X−u = x−u)2

∣∣∣ .
The upper-bound is a sum of three terms. The first one is bounded by ε/5 using
Equation 33 and the second one is bounded by ε/5 using Equation 32. For the
last one, we use that, for all C ∈ R,

γNαm1
C = (γNαm1

− 1)C + C.

Thus, ∣∣∣E(Êu,1Êu,2|X(1)
−u = X

(2)
−u = x−u

)
−Var(Y |X−u = x−u)2

∣∣∣
≤ ε

5
+
ε

5
+ |γNαm1

− 1| ‖Φ‖2∞ +
∣∣∣E(Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1, HN = 0

)
−Var(Y |X−u = x−u)2

∣∣∣
≤ 3ε

5
+ (|γN − 1|αN + |αN − 1|) ‖Φ‖2∞ using Equation 34

≤ ε,

using Equation 33 and Equation 32. Finally, we proved that

E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u

)
−Var(Y |X−u = x−u)2 −→

N→+∞
0.

Hence, Equation (31) is proved and the proof of Proposition 10 is concluded.

Proposition 11. We have

Êu − E
(
Êu,1

)
P−→

N→+∞,
Nu→+∞

0. (35)

Proof. Let ε > 0. By Chebyshev’s inequality,

P
(∣∣∣Êu − E

(
Êu

)∣∣∣ > ε
)
≤ Var(Êu)

ε2
. (36)

If (s(l))l≤Nu is a sample of uniformly distributed variables on [1 : N ] with
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replacement, we remark that for all i 6= j,

cov
(
Êu,s(i), Êu,s(j)

)
= E(Êu,s(i)Êu,s(j))− E(Êu,s(i))E(Êu,s(j))

= E(Êu,s(i)Êu,s(j)|s(i) 6= s(j))P(s(i) 6= s(j))

+E(Êu,s(i)Êu,s(j)|s(i) = s(j))P(s(i) = s(j))− E(Êu,s(i))E(Êu,s(j))

=
[
E(Êu,s(i)Êu,s(j)|s(i) 6= s(j))− E(Êu,1)E(Êu,2)

]
P(s(i) 6= s(j))

+
[
E(Êu,s(i)Êu,s(i)|s(i) = s(j))− E(Êu,1)2

]
P(s(i) = s(j))

=
[
E(Êu,1Êu,2|s(i) = 1, s(j) = 2)− E(Êu,1)E(Êu,2)

]
P(s(i) 6= s(j))

+
[
E(Êu,1Êu,1|s(i) = s(j) = 1)− E(Êu,1)2

]
P(s(i) = s(j))

= cov
(
Êu,1, Êu,2

)
P(s(i) 6= s(j)) + Var

(
Êu,1

)
P(s(i) = s(j)),

thus

Var(Êu) =
1

N2
u

Nu∑
i,j=1

cov
(
Êu,s(i), Êu,s(j)

)

=
1

N2
u

Nu∑
i 6=j=1

cov
(
Êu,1, Êu,2

)
P(s(i) 6= s(j))

+
1

N2
u

Nu∑
i 6=j=1

Var
(
Êu,1

)
P(s(i) = s(j)) +

1

N2
u

Nu∑
i=1

Var
(
Êu,s(i)

)

≤ 1

N2
u

Nu∑
i 6=j=1

∣∣∣cov (Êu,1, Êu,2)∣∣∣
+

1

N2
u

Nu∑
i 6=j=1

Var
(
Êu,1

) 1

N
+

1

N2
u

Nu∑
i=1

Var
(
Êu,1

)
≤

∣∣∣cov (Êu,1, Êu,2)∣∣∣+ Var
(
Êu,1

)( 1

N
+

1

Nu

)
.

If (s(l))l≤Nu is a sample of uniformly distributed variables on [1 : N ] without
replacement, we have

Var(Êu) =
1

N2
u

Nu∑
i,j=1

cov
(
Êu,s(i), Êu,s(j)

)

=
1

N2
u

Nu∑
i6=j=1

cov
(
Êu,s(i), Êu,s(j)

)
+

1

N2
u

Nu∑
i=1

Var
(
Êu,s(i)

)
=

Nu − 1

Nu
cov

(
Êu,1, Êu,2

)
+

1

Nu
Var

(
Êu,1

)
.
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In both cases (with or without replacement), thanks to Proposition 10, we have

P
(∣∣∣Êu − E

(
Êu

)∣∣∣ > ε
)
−→

N→+∞,
Nu→+∞

0.

Now, to prove Theorem 1, we only have to use Proposition 9 (which can be
applied thanks to Lemma 4) and Proposition 11.

A.2 Proof for rate of convergence: Theorems 2 and 4

We want to prove Theorems 2 and 4 about the rate of convergence of the double
Monte-Carlo and Pick-and-Freeze estimators. We have to add some notation.
We will write Csup for a generic non-negative finite constant (depending only
on u, f and the distribution of X). The actual value of Csup is of no interest
and can change in the same sequence of equations. Similarly, we will write
Cinf a generic strictly positive constant. We will write Csup(ε) for a generic
non-negative finite constant depending only on ε, u, f and the distribution of
X.

Recall that for all i, Xi is a compact subset of R and that f is C1. Moreover
recall that X has a probability density fX with respect to λp (the Lebesgue
measure on Rp) such that λp-a.e., we have 0 < Cinf ≤ fX ≤ Csup, and such that
fX is Lipschitz continuous.

Note that with these assumptions, Φ is C1 on the compact set X and so
Lipschitz continuous. For all n, we will write d for the euclidean distance on
Rn (for any value of n) and B(x, r) for the open ball of radius r and center x
in Rn. We also let S(x, r) be the sphere of center x and radius r.

Remark that

P
(
d(X

(1)
−u,X

(2)
−u) = d(X

(1)
−u,X

(3)
−u)
)

=

∫
X 2
−u

P
(
d(x

(1)
−u,x

(2)
−u) = d(x

(1)
−u,X

(3)
−u)
)
dP⊗2

X−u
(x

(1)
−u,x

(2)
−u)

≤ Csup

∫
X 2
−u

λ|−u|

(
S(x

(1)
−u, d(x

(1)
−u,x

(2)
−u))

)
dP⊗2

X−u
(x

(1)
−u,x

(2)
−u)

= 0,

because the Lebesgue measure of the sphere S(x
(1)
−u, d(x

(1)
−u,x

(2)
−u)) is zero. Thus,

almost everywhere, for all l and all i 6= j,

d
(
X

(l)
−u,X

(i)
−u

)
6= d

(
X

(l)
−u,X

(j)
−u

)
.

Thus, the indices of the nearest neighbours (kN (l, i))l,i are constant random

variables conditionally to (X
(n)
−u)n or to (X

(n)
−u)n≤N . In particular, for all N and
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l, kN (l, 1) = l. Thanks to Doob-Dynkin lemma, we can write, abusing notation,

kN (l, i)(ω) = kN (l, i)[(X
(n)
−u(ω))n] = kN (l, i)[(X

(n)
−u(ω))n≤N ]. To simplify nota-

tion, let us write kN (i) := kN (1, i) (the index of one i-th neighbour of X
(1)
−u)

and k′N (i) := kN (2, i) (the index of one i-th neighbour of X
(2)
−u).

Remark 19. We can prove the rate of convergence in a more general framework
than the Euclidean space with the Lebesgue measure. It suffices to have a com-
pact set X with a dominating finite measure µ =

⊗
µi such that for µi-almost

all xi ∈ Xi and for all δ > 0,

Cinfδ ≤ µi(B(xi, δ)) = µi(B(xi, δ)) ≤ Csupδ.

We prove Theorems 2 and 4 step by step.

Lemma 9. Assume that (ai)i and (bi)i are sequences such that for all i, |ai| ≤
M , |bi| ≤M and |ai − bi| ≤ ε. Then, for all N ∈ N∗∣∣∣∣∣

N∏
i=1

ai −
N∏
i=1

bi

∣∣∣∣∣ ≤ NMN−1ε.

Proof. By induction.

Lemma 10. If for all i ≤ N , d(x
(i)
−u,y

(i)
−u) < ε, then, for all (a

(i)
−u)i≤NI ∈ X

NI
−u ,∣∣∣E [Φ

(
(a

(i)
−u)i≤NI , (X

(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI = (x

(i)
−u)i≤NI

]
− E

[
Φ
(

(a
(i)
−u)i≤NI , (X

(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI = (y

(i)
−u)i≤NI

]∣∣∣ ≤ Csupε.

Proof. ∣∣∣E [Φ
(

(a
(i)
−u)i≤NI , (X

(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI = (x

(i)
−u)i≤NI

]
− E

[
Φ
(

(a
(i)
−u)i≤NI , (X

(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI = (y

(i)
−u)i≤NI

]∣∣∣
=

∣∣∣∣∫
XNIu

Φ((a
(i)
−u)i≤NI , (x

(i)
u )i≤NI )

(
f

(X
(i)
u )i≤NI |(X

(i)
−u)i≤NI=(x

(i)
−u)i≤NI

((x(i)
u )i≤NI )

−f
(X

(i)
u )i≤NI |(X

(i)
−u)i≤NI=(y

(i)
−u)i≤NI

((x(i)
u )i≤k)

)
d((x(i)

u )i≤NI )
∣∣∣

≤ Csup

∫
XNIu

∣∣∣∣∣
NI∏
i=1

f
Xu|X−u=x

(i)
−u

(x(i)
u )−

NI∏
i=1

f
Xu|X−u=y

(i)
−u

(x(i)
u )

∣∣∣∣∣ d((x(i)
u )i≤NI ).
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We know that,∣∣fXu|X−u=x−u(xu)− fXu|X−u=y−u(xu)
∣∣

≤

∣∣∣∣∣ fX(xu,x−u)∫
Xu fX(x′u,x−u)d(x′u)

− fX(xu,y−u)∫
Xu fX(x′u,y−u)d(x′u)

∣∣∣∣∣
≤ 1∫

Xu fX(x′u,x−u)d(x′u)
|fX(xu,x−u)− fX(xu,y−u)|

+fX(xu,y−u)

∣∣∣∣∣ 1∫
Xu fX(x′u,x−u)d(x′u)

− 1∫
Xu fX(x′u,y−u)d(x′u)

∣∣∣∣∣
≤ Csup |fX(xu,x−u)− fX(xu,y−u)|+ Csup |fX(xu,x−u)− fX(xu,y−u)|
≤ Csupd(x−u,y−u).

Thus, for all i ∈ [1 : Ni] and for all x
(i)
u ,∣∣∣fXu|X−u=x

(i)
−u

(x(i)
u )− f

Xu|X−u=y
(i)
−u

(x(i)
u )
∣∣∣ ≤ Csupε.

Thus, using Lemma 9,∣∣∣E [Φ
(

(a
(i)
−u)i≤NI , (X

(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI = (x

(i)
−u)i≤NI

]
− E

[
Φ
(

(a
(i)
−u)i≤NI , (X

(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI = (y

(i)
−u)i≤NI

]∣∣∣ ≤ Csupε.

Lemma 11. If for all i, d(x
(i)
−u,y

(i)
−u) < ε, then∣∣∣E [Φ

(
(x

(i)
−u)i≤NI , (X

(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI = (x

(i)
−u)i≤NI

]
− E

[
Φ
(

(y
(i)
−u)i≤NI , (X

(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI = (y

(i)
−u)i≤NI

]∣∣∣ ≤ Csupε.

Proof. ∣∣∣E [Φ
(

(x
(i)
−u)i≤NI , (X

(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI = (x

(i)
−u)i≤NI

]
− E

[
Φ
(

(y
(i)
−u)i≤NI , (X

(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI = (y

(i)
−u)i≤NI

]∣∣∣
≤

∣∣∣E [Φ
(

(x
(i)
−u)i≤NI , (X

(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI = (x

(i)
−u)i≤NI

]
− E

[
Φ
(

(x
(i)
−u)i≤NI , (X

(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI = (y

(i)
−u)i≤NI

]∣∣∣
+
∣∣∣E [Φ((x

(i)
−u)i≤NI , (X

(i)
u )i≤NI

)
− Φ

(
(y

(i)
−u)i≤NI , (X

(i)
u )i≤NI

)
|(X(i)
−u)i≤NI = (y

(i)
−u)i≤NI

]∣∣∣
≤ Csupε+ Csupε,

using Lemma 10 and using that Φ is Lipschitz continuous on X .
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Lemma 12. There exists Csup < +∞ such that for all a > 0,

P
(
d
(
X

(1)
−u,X

(kN (NI))
−u

)
≥ a

∣∣∣X(1)
−u

)
≤ CsupN

NI (1− Cinfa
|−u|)N−NI . (37)

Proof. Let K(a) := #{n ∈ [2 : N ], d(X
(1)
−u,X

(n)
−u) < a}. Conditionally to X

(1)
−u,

K(a) ∼ B(N − 1, p(a,X
(1)
−u)), writing p(a,X

(1)
−u) := P(d(X

(1)
−u,X

(2)
−u) < a|X(1)

−u).
Thus,

P
(
d
(
X

(1)
−u,X

(kN (NI))
−u

)
≥ a

∣∣∣X(1)
−u

)
= P

(
K(a) ≤ NI − 1|X(1)

−u

)
=

NI−1∑
k=0

(
N − 1
k

)
p(a,X

(1)
−u)k(1− p(a,X(1)

−u))N−1−k

≤ NI

(
N − 1
NI − 1

)
(1− p(a,X(1)

−u))N−NI

≤ CsupN
NI (1− p(a,X(1)

−u))N−NI .

We know that

p(a,X
(1)
−u) =

∫
B(X

(1)
−u,a)

fX−u(x−u)dx−u

≥ Cinfλ|−u|

(
B(X

(1)
−u, a)

)
≥ Cinfa

|−u|.

Thus

P
(
d
(
X

(1)
−u,X

(kN (NI))
−u

)
≥ a

∣∣∣X(1)
−u

)
≤ CsupN

NI (1− Cinfa
|−u|)N−NI . (38)

Remark 20. For the estimators V̂u,PF , we choose only one nearest neighbour

different from X
(1)
u in V̂u,1,PF , which is X

(kN (2))
u . Thus, in the previous compu-

tation, we do not have the NNI . Remark that this is also true for Êu,MC taking
NI = 2.

Lemma 13. For all ε > 0, there exists Csup(ε) such that

E
(
d
(
X

(1)
−u,X

(kN (NI))
−u

))
≤ Csup(ε)

N
1

p−|u|−ε
, (39)

and for all x
(1)
−u,

E
(
d
(
X

(1)
−u,X

(kN (NI))
−u

)∣∣∣X(1)
−u = x

(1)
−u

)
≤ Csup(ε)

N
1

p−|u|−ε
. (40)
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Proof. Using Lemma 12, we have

E
(

(N −NI)
1
|−u|−εd

(
X

(1)
−u,X

(kN (NI))
−u

)∣∣∣X(1)
−u

)
=

∫ +∞

0

P
(

(N −NI)
1
|−u|−εd

(
X

(1)
−u,X

(kN (NI))
−u

)
> t
∣∣∣X(1)
−u

)
dt

≤ 1 +

∫ +∞

1

P
(
d
(
X

(1)
−u,X

(kN (NI))
−u

)
> t(N −NI)−

1
|−u|+ε

∣∣∣X(1)
−u

)
dt

= 1 +
1

| − u|

∫ +∞

1

s
1
|−u|−1P

(
d
(
X

(1)
−u,X

(kN (NI))
−u

)
> s

1
|−u| (N −NI)−

1
|−u|+ε

∣∣∣X(1)
−u

)
ds

≤ 1 +
1

| − u|

∫ +∞

1

CsupN
NI (1− Cinfs(N −NI)|−u|ε−1)N−NIds,

and

(1− Cinfs(N −NI)|−u|ε−1)N−NI = exp
[
(N −NI) ln

(
1− Cinfs(N −NI)|−u|ε−1

)]
≤ exp

[
(N −NI)

(
−Cinfs(N −NI)|−u|ε−1

)]
= exp(−Cinfs(N −NI)|−u|ε).

Thus,

E
(

(N −NI)
1
|−u|−εd

(
X

(1)
−u,X

(kN (NI))
−u

)∣∣∣X(1)
−u

)
≤ 1 + Csup

∫ +∞

1

NNI exp(−Cinfs(N −NI)|−u|ε)ds

≤ 1 + Csup

[
NNI exp(−Cinf

1

2
(N −NI)|−u|ε)

] ∫ +∞

1

exp(−Cinf
s

2
(N −NI)|−u|ε)ds

≤ 1 + Csup(ε).

Indeed, the values NNI exp(−Cinf
1
2 (N − NI)

|−u|ε and
∫ +∞

1
exp(−Cinf

s
2 (N −

NI)
|−u|ε)ds go to 0 when N do +∞. Thus

E
(
d
(
X

(1)
−u,X

(kN (NI))
−u

)∣∣∣X(1)
−u

)
≤ 1 + Csup(ε)

(N −NI)
1

p−|u|−ε
≤ Csup(ε)

N
1

p−|u|−ε
.

That concludes the proof of Lemma 13.

Remark 21. For the estimators V̂u,PF , we do not have the NNI . Thus, we can
choose ε = 0 up to Proposition 12.

Proposition 12. For all ε > 0, there exists Csup(ε) such that∣∣∣E(Êu)− Eu∣∣∣ ≤ Csup(ε)

N
1

p−|u|−ε
(41)

and for almost all x
(1)
−u,∣∣∣E(Êu,1|X(1)
−u = x

(1)
−u

)
−Var(Y |X−u = x

(1)
−u)
∣∣∣ ≤ Csup(ε)

N
1

p−|u|−ε
. (42)
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Proof. For almost all (x
(n)
−u)n, using the definition of the random variable Z (in

the proof of Proposition 9) and using Lemma 6,∣∣∣∣E(Φ

(
(X

(kN (i)[(X
(n)
−u)n])

−u )i≤NI , (X
(kN (i)[(X

(n)
−u)n])

u )i≤NI

)∣∣∣∣ (X(n)
−u)n = (x

(n)
−u)n

)
−E

(
Φ (Z)|X(1)

−u = x
(1)
−u

) ∣∣∣∣
=

∣∣∣∣E(Φ

(
(x

(kN (i)[(x
(n)
−u)n])

−u )i≤NI , (X
(i)
u )i≤NI

)∣∣∣∣ (X(i)
−u)i≤NI = (x

(kN (i)[(x
(n)
−u)n])

−u )i≤NI

)
−E

(
Φ
(

(x
(1)
−u)i≤NI , (X

(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI = (x

(1)
−u)i≤NI

) ∣∣∣∣
≤ Csupd

(
x

(kN (NI)[(x
(n)
−u)n])

−u ,x
(1)
−u

)
,

thanks to Lemma 11. Thus, using Lemma 13, for all ε > 0,∣∣∣E(Êu,1|X(1)
−u = x

(1)
−u

)
−Var(Y |X−u = x

(1)
−u)
∣∣∣ ≤ CsupE

(
d
(
X

(1)
−u,X

(kN (NI))
−u

)∣∣∣X(1)
−u = x

(1)
−u

)
≤ Csup

Csup(ε)

N
1

p−|u|−ε
.

In the following, to simplify notation, we may write ”X
(1,2)
−u = x

(1,2)
−u ” for

”X
(1)
−u = x

(1)
−u and X

(2)
−u = x

(2)
−u”.

Lemma 14. For almost all (x
(1)
−u,x

(2)
−u) and for all a ≥ 0, we have

P
(
d(x

(1)
−u,X

(kN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
≤ P

(
d(x

(1)
−u,X

(kN−1(NI))
−u ) ≥ a

∣∣∣X(1)
−u = x

(1)
−u

)
,

and thus, integrating a on R+,

E
(
d
(
X

(kN (NI))
−u ,X

(1)
−u

)∣∣∣X(1,2)
−u = x

(1,2)
−u

)
≤ E

(
d
(
X

(kN−1(NI))
−u ,X

(1)
−u

)∣∣∣X(1)
−u = x

(1)
−u

)
.

Proof. Let gN (i) be the index of the i-th nearest neighbour of X
(1)
−u in (X

(n)
−u)n∈[1:N ]\{2}.

For almost all (x
(1)
−u,x

(2)
−u), we have

P
(
d(x

(1)
−u,X

(kN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
= P

(
d(x

(1)
−u,X

(kN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u , d(x

(1)
−u,x

(2)
−u) > d(x

(1)
−u,X

(gN (NI))
−u )

)
P
(
d(x

(1)
−u,x

(2)
−u) > d(x

(1)
−u,X

(gN (NI))
−u )

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
+P
(
d(x

(1)
−u,X

(kN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u , d(x

(1)
−u,x

(2)
−u) ≤ d(x

(1)
−u,X

(gN (NI))
−u )

)
P
(
d(x

(1)
−u,x

(2)
−u) ≤ d(x

(1)
−u,X

(gN (NI))
−u )

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
.
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Moreover, conditionally to X
(1,2)
−u = x

(1,2)
−u , if d(x

(1)
−u,x

(2)
−u) > d(x

(1)
−u,X

(gN (NI))
−u ),

then the NI -nearest neighbours of X
(1)
−u do not change if we do not take into

account X
(2)
−u. Thus

P
(
d(x

(1)
−u,X

(kN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u , d(x

(1)
−u,x

(2)
−u) > d(x

(1)
−u,X

(gN (NI))
−u )

)
= P

(
d(x

(1)
−u,X

(gN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u , d(x

(1)
−u,x

(2)
−u) > d(x

(1)
−u,X

(gN (NI))
−u )

)
= P

(
d(x

(1)
−u,X

(gN (NI))
−u ) ≥ a

∣∣∣X(1)
−u = x

(1)
−u, d(x

(1)
−u,x

(2)
−u) > d(x

(1)
−u,X

(gN (NI))
−u )

)
.

Similarly, conditionally to X
(1,2)
−u = x

(1,2)
−u , if d(x

(1)
−u,x

(2)
−u) ≤ d(x

(1)
−u,X

(gN (NI))
−u ,

then x
(2)
−u is one of the NI -nearest neighbours of X

(1)
−u. Thus

P
(
d(x

(1)
−u,X

(kN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u , d(x

(1)
−u,x

(2)
−u) ≤ d(x

(1)
−u,X

(gN (NI))
−u )

)
≤ P

(
d(x

(1)
−u,X

(gN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u , d(x

(1)
−u,x

(2)
−u) ≤ d(x

(1)
−u,X

(gN (NI))
−u )

)
= P

(
d(x

(1)
−u,X

(gN (NI))
−u ) ≥ a

∣∣∣X(1)
−u = x

(1)
−u, d(x

(1)
−u,x

(2)
−u) ≤ d(x

(1)
−u,X

(gN (NI))
−u )

)
.

Finally,

P
(
d(x

(1)
−u,X

(kN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
≤ P

(
d(x

(1)
−u,X

(gN (NI))
−u ) ≥ a

∣∣∣X(1)
−u = x

(1)
−u, d(x

(1)
−u,x

(2)
−u) > d(x

(1)
−u,X

(gN (NI))
−u )

)
P
(
d(x

(1)
−u,x

(2)
−u) > d(x

(1)
−u,X

(gN (NI))
−u )

∣∣∣X(1)
−u = x

(1)
−u

)
+P
(
d(x

(1)
−u,X

(gN (NI))
−u ) ≥ a

∣∣∣X(1)
−u = x

(1)
−u, d(x

(1)
−u,x

(2)
−u) ≤ d(x

(1)
−u,X

(gN (NI))
−u )

)
P
(
d(x

(1)
−u,x

(2)
−u) ≤ d(x

(1)
−u,X

(gN (NI))
−u )

∣∣∣X(1)
−u = x

(1)
−u

)
= P

(
d(x

(1)
−u,X

(gN (NI))
−u ) ≥ a

∣∣∣X(1)
−u = x

(1)
−u

)
= P

(
d(x

(1)
−u,X

(kN−1(NI))
−u ) ≥ a

∣∣∣X(1)
−u = x

(1)
−u

)
,

and we proved Lemma 14.

Proposition 13. For all ε > 0, there exists Csup(ε) such that∣∣∣cov(Êu,1, Êu,2)
∣∣∣ ≤ Csup(ε)

N
1

p−|u|−ε
. (43)

Proof. We use the law of total covariance,

cov(Ê1, Ê2) = E
[
cov

(
Ê1, Ê2

∣∣∣X(1)
−u,X

(2)
−u

)]
+cov

[
E
(
Êu,1|X(1)

−u,X
(2)
−u

)
,E
(
Êu,2|X(1)

−u,X
(2)
−u

)]
.

(44)
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Part 1: First, we will bound the second term of Equation 44. Thanks to Lemma
11, we have∣∣∣E(Êu,1|X(1)

−u = x
(1)
−u,X

(2)
−u = x

(2)
−u

)
−Var

(
Y |X−u = x

(1)
−u)
)∣∣∣

≤ E
{∣∣∣E [Φ

(
(X(kN (i)))i≤NI

)∣∣∣X(1)
−u = x

(1)
−u,X

(2)
−u = x

(2)
−u, (X

(n)
−u)n≥3

]
−Var

(
Y |X−u = x

(1)
−u)
)∣∣∣}

≤ CsupE
(
d
(
X

(1)
−u,X

(kN (NI))
−u

)∣∣∣X(1)
−u = x

(1)
−u,X

(2)
−u = x

(2)
−u

)
using Lemma 11,

≤ CsupE
(
d
(
X

(1)
−u,X

(kN−1(NI))
−u

)∣∣∣X(1)
−u = x

(1)
−u

)
using Lemma 14,

≤ Csup(ε)

(N − 1)
1

p−|u|−ε
using Lemma 13,

≤ Csup(ε)

N
1

p−|u|−ε
.

Similarly,∣∣∣E(Êu,2|X(1)
−u = x

(1)
−u,X

(2)
−u = x

(2)
−u

)
−Var

(
Y |X−u = x

(2)
−u)
)∣∣∣ ≤ Csup(ε)

N
1

p−|u|−ε
.

Thus, using that Φ is bounded,∣∣∣E(Êu,1|X(1)
−u = x

(1)
−u,X

(2)
−u = x

(2)
−u

)
E
(
Êu,2|X(1)

−u = x
(1)
−u,X

(2)
−u = x

(2)
−u

)
−Var

(
Y |X−u = x

(1)
−u)
)

Var
(
Y |X−u = x

(2)
−u)
)∣∣∣ ≤ Csup(ε)

N
1

p−|u| −ε
.

Moreover, using Proposition 12, we have∣∣∣E(Êu,1|X(1)
−u = x

(1)
−u

)
E
(
Êu,2|X(2)

−u = x
(2)
−u

)
−Var

(
Y |X−u = x

(1)
−u)
)

Var
(
Y |X−u = x

(2)
−u)
)∣∣∣ ≤ Csup(ε)

N
1

p−|u| −ε
.

Thus,∣∣∣E(Êu,1|X(1)
−u = x

(1)
−u,X

(2)
−u = x

(2)
−u

)
E
(
Êu,2|X(1)

−u = x
(1)
−u,X

(2)
−u = x

(2)
−u

)
−E

(
Êu,1|X(1)

−u = x
(1)
−u

)
E
(
Êu,2|X(2)

−u = x
(2)
−u

)∣∣∣ ≤ Csup(ε)

N
1

p−|u| −ε
.

Finally,∣∣∣cov [E(Êu,1|X(1)
−u,X

(2)
−u

)
,E
(
Êu,2|X(1)

−u,X
(2)
−u

)]∣∣∣
=

∣∣∣E [E(Êu,1|X(1)
−u,X

(2)
−u

)
E
(
Êu,2|X(1)

−u,X
(2)
−u

)]
− E

[
E
(
Êu,1|X(1)

−u

)
E
(
Êu,2|X(2)

−u

)]∣∣∣
≤ E

[∣∣∣E(Êu,1|X(1)
−u,X

(2)
−u

)
E
(
Êu,2|X(1)

−u,X
(2)
−u

)
− E

(
Êu,1|X(1)

−u

)
E
(
Êu,2|X(2)

−u

)∣∣∣]
≤ Csup(ε)

N
1

p−|u|−ε
.
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Remark 22. In this Part 1, we can choose ε = 0 for the estimators V̂u,PF or

for Êu,MC if we take NI = 2.

Part 2: Let ε > 0. We will bound the first term of Equation 44: E
[
cov

(
Ê1, Ê2

∣∣∣X(1)
−u,X

(2)
−u

)]
.

We want to prove that∣∣∣∣∣
∫
X 2
−u

E
(
Êu,1Êu,2|X(1,2)

−u = x
(1,2)
−u

)
− E(Êu,1|X(1,2)

−u = x
(1,2)
−u )E(Êu,2|X(1,2)

−u = x
(1,2)
−u )dP⊗2

X−u
(x

(1)
−u,x

(2)
−u)

∣∣∣∣∣ ≤ Csup(ε)

N1−ε .

Let us write

l(x
(1)
−u,x

(2)
−u) := min

(
d(x

(1)
−u,x

(2)
−u)/2,

1

N
1
|−u|−δ

)
where δ = ε/(4| − u|), and

G(x
(1)
−u,x

(2)
−u) :=

{
(x

(n)
−u)n∈[3:N ]| d(x

(1)
−u,x

(kN (NI)[(x
(n)
−u)n≤N ])

−u ) < l(x
(1)
−u,x

(2)
−u),

d(x
(2)
−u,x

(k′N (NI)[(x
(n)
−u)n≤N ])

−u ) < l(x
(1)
−u,x

(2)
−u)

}
.

Part 2.A: We prove the following lemmas.

Lemma 15. For all ε > 0, there exists Csup(ε) such that,∫
X 2
−u

P
(
d(X

(1)
−u,X

(kN−1(NI))
−u ) ≥ d(x

(1)
−u,x

(2)
−u)/2

∣∣∣X(1)
−u = x

(1)
−u

)
dP⊗2

X−u
(x

(1)
−u,x

(2)
−u) ≤ Csup(ε)

N1−ε .

(45)

Proof. We divide X 2
−u in F1 := {(x(1)

−u,x
(2)
−u) ∈ X 2

−u, d(x
(1)
−u,x

(2)
−u) < (N −NI −

1)
−1+ε
|−u| } and F2 := {(x(1)

−u,x
(2)
−u) ∈ X 2

−u, d(x
(1)
−u,x

(2)
−u) ≥ (N −NI − 1)

−1+ε
|−u| }.∫

F1

P
(
d(X

(1)
−u,X

(kN−1(NI))
−u ) ≥ d(x

(1)
−u,x

(2)
−u)/2

∣∣∣X(1)
−u = x

(1)
−u

)
dP⊗2

X−u
(x

(1)
−u,x

(2)
−u)

≤ Csupλ
⊗2
|−u|(F1)

≤ Csup

∫
X−u

λ|−u|

(
B
[
x−u, (N −NI − 1)

−1+ε
|−u|

])
dx−u

≤ Csup

∫
X−u

(N −NI − 1)
−1+ε
|−u| |−u|dx−u

≤ Csup(N −NI − 1)−1+ε

≤ Csup

N1−ε .
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Furthermore, using Lemma 12, we have∫
F2

P
(
d(X

(1)
−u,X

(kN−1(NI))
−u ) ≥ d(x

(1)
−u,x

(2)
−u)/2

∣∣∣X(1)
−u = x

(1)
−u

)
dP⊗2

X−u
(x

(1)
−u,x

(2)
−u)

≤
∫
F2

Csup(N − 1)NI (1− Cinfd(x
(1)
−u,x

(2)
−u)|−u|)N−1−NIdP⊗2

X−u
(x

(1)
−u,x

(2)
−u)

≤λ|−u|(X−u)2Csup(N − 1)NI (1− Cinf(N −NI − 1)
−1+ε
|−u| |−u|)N−1−NI

≤Csup(N − 1)NI (1− Cinf(N −NI − 1)−1+ε)N−1−NI

≤Csup(N − 1)NI exp
[
(N − 1−NI) ln

(
1− Cinf(N −NI − 1)−1+ε

)]
≤Csup(N − 1)NI exp [−Cinf(N −NI − 1)ε + o((N −NI − 1)ε)]

≤Csup(ε)

N1−ε .

Remark 23. In Lemma 15, we need ε > 0 even for the Pick-and-Freeze estima-
tors. That explains the rate of convergence when |u| = 1 for the Pick-and-Freeze
estimators.

Lemma 16. For all ε > 0, there exists Csup(ε) such that,∫
X 2
−u

P⊗(N−2)
X−u

(G(x
(1)
−u,x

(2)
−u)c)dP⊗2

X−u
(x

(1)
−u,x

(2)
−u) ≤ Csup(ε)

N1−ε . (46)

Proof. Using Lemma 12, we have

P
(
d(X

(kN−1(NI))
−u ,x

(1)
−u) ≥ N−

1
|−u|+δ|X(1)

−u

)
≤ Csup(N−1)NI (1−CinfN

−1+δ|−u|)N−1−NI ,

so

P
(
d(X

(kN−1(NI))
−u ,x

(1)
−u) ≥ N−

1
|−u|+δ|X(1)

−u

)
≤ Csup(ε)

N
. (47)
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Thus, we have∫
X 2
−u

P⊗(N−2)
X−u

(G(x
(1)
−u,x

(2)
−u)c)dP⊗2

X−u
(x

(1)
−u,x

(2)
−u)

≤
∫
X 2
−u

P
(
d(X

(1)
−u,X

(kN (NI))
−u ) ≥ d(x

(1)
−u,x

(2)
−u)/2

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
dP⊗2

X−u
(x

(1)
−u,x

(2)
−u)

+

∫
X 2
−u

P
(
d(X

(2)
−u,X

(k′N (NI))
−u ) ≥ d(x

(1)
−u,x

(2)
−u)/2

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
dP⊗2

X−u
(x

(1)
−u,x

(2)
−u)

+

∫
X 2
−u

P
(
d(X

(1)
−u,X

(kN (NI))
−u ) ≥ N−

1
|−u|+δ

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
dP⊗2

X−u
(x

(1)
−u,x

(2)
−u)

+

∫
X 2
−u

P
(
d(X

(2)
−u,X

(k′N (NI))
−u ) ≥ N−

1
|−u|+δ

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
dP⊗2

X−u
(x

(1)
−u,x

(2)
−u)

≤
∫
X 2
−u

P
(
d(X

(1)
−u,X

(kN−1(NI))
−u ) ≥ d(x

(1)
−u,x

(2)
−u)/2

∣∣∣X(1)
−u = x

(1)
−u

)
dP⊗2

X−u
(x

(1)
−u,x

(2)
−u)

+

∫
X 2
−u

P
(
d(X

(2)
−u,X

(k′N−1(NI))

−u ) ≥ d(x
(1)
−u,x

(2)
−u)/2

∣∣∣X(2)
−u = x

(2)
−u

)
dP⊗2

X−u
(x

(1)
−u,x

(2)
−u)

+

∫
X 2
−u

P
(
d(X

(1)
−u,X

(kN−1(NI))
−u ) ≥ N−

1
|−u|+δ

∣∣∣X(1)
−u = x

(1)
−u

)
dP⊗2

X−u
(x

(1)
−u,x

(2)
−u)

+

∫
X 2
−u

P
(
d(X

(2)
−u,X

(k′N−1(NI))

−u ) ≥ N−
1
|−u|+δ

∣∣∣X(2)
−u = x

(2)
−u

)
dP⊗2

X−u
(x

(1)
−u,x

(2)
−u),

and we conclude the proof of Lemma 16 using Lemma 15 and Equation 47.

For i = 1, 2, let Bi be the ball of center x
(i)
−u and of radius l(x

(1)
−u,x

(2)
−u), let

pi be the probability of Bi and Ni be the number of observations (X
(n)
−u)n∈[3:N ]

in the ball Bi. Remark that

pi ≤
Csup

N1−δ|−u| .

We have the two following lemmas.

Lemma 17. Conditionally to X
(1,2)
−u = x

(1,2)
−u , the random variable Ni is bino-

mial B(N − 2, pi).

Conditionally to X
(1,2)
−u = x

(1,2)
−u , Nj = nj, the random variable Ni is binomial

B(N − 2− nj , pi(1− pj)−1).

Proof. For the first assertion, we use that the (X
(n)
−u)n are i.i.d. For the second

assertion, we compute P(Ni = ni|X(1,2)
−u = x

(1,2)
−u , Nj = nj) with Bayes’ theorem.

Lemma 18. If Ni = ni, let X
(Mi)
−u be the random vector composed of the ni

observations in Bi of (X
(n)
−u)n∈[3:N ] and Mi ∈ [3 : N ]ni the vector containing
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the corresponding indices. We have:

L
(
X(M1),X(M2)|X(1,2)

−u = x
(1,2)
−u , N1 = n1, N2 = n2

)
= L

(
X(M1)|X(1,2)

−u = x
(1,2)
−u , N1 = n1

)
⊗ L

(
X(M2)|X(1,2)

−u = x
(1,2)
−u , N2 = n2

)
.

Proof. For any bounded Borel functions φ1, φ2, we have

E
(
φ1(X(M1))φ2(X(M2))|X(1,2)

−u = x
(1,2)
−u , N1 = n1, N2 = n2

)
=

E
(
φ1(X(M1))φ2(X(M2))1N1=n1

1N2=n2
|X(1,2)
−u = x

(1,2)
−u

)
P(N1 = n1, N2 = n2|X(1,2)

−u = x
(1,2)
−u )

.

Let

P([3 : N ], n1) := {(k1, · · · , kn1
) ∈ [3 : N ]n1 : ki < kj for i, j ∈ [1 : n1], i < j}

be the set of all possible two-by-two distinct elements in [3 : N ]. To simplify
notation, we also consider an element of P([3 : N ], n1) with the subset of [3 : N ]
that contains its indices. We have

E
(
φ1(X(M1))φ2(X(M2))1N1=n1

1N2=n2

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
=

∑
m1∈P([3:N ],n1)

∑
m2∈P([3:N ]\m1,n2)

E
(
φ1(X(m1))φ2(X(m2))1

X
(m1)
−u ∈B

n1
1

1
X

(m2)
−u ∈B

n2
2

×
∏

i∈[3:N ]\(m1∪m2)

1
X

(i)
−u /∈B1∪B2

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
Now, using the independence of (X(n))n and summing over m1 and m2, we

51



have, for any value of m1 ∈ P([3 : N ], n1) and m2 ∈ P([3 : N ], n2),

E
(
φ1(X(M1))φ2(X(M2))|X(1,2)

−u = x
(1,2)
−u , N1 = n1, N2 = n2

)
=

(
N − 2
n1

)(
N − 2− n1

n2

)
(1− p1 − p2)N−2−n1−n2

E
(
φ1(X(m1))1

X
(m1)
−u ∈B

n1
1

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
E
(
φ2(X(m2))1

X
(m2)
−u ∈B

n2
2

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
(
N − 2
n1

)(
N − 2− n1

n2

)
pn1

1 pn2
2 (1− p1 − p2)N−2−n1−n2

=
E
(
φ1(X(m1))1

X
(m1)
−u ∈B

n1
1

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
pn1

1

E
(
φ2(X(m2))1

X
(m2)
−u ∈B

n2
2

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
pn2

2

=

E

(
φ1(X(m1))1

X
(m1)
−u ∈B

n1
1

∏
i∈[3:N ]\m1

1
X

(i)
−u /∈B1

∣∣∣∣∣X(1,2)
−u = x

(1,2)
−u

)
pn1

1 (1− p1)n1

E

(
φ2(X(m2))1

X
(m2)
−u ∈B

n2
2

∏
i∈[3:N ]\m2

1
X

(i)
−u /∈B2

∣∣∣∣∣X(1,2)
−u = x

(1,2)
−u

)
pn2

2 (1− p2)n2

= E
(
φ1(X(M1))

∣∣∣X(1,2)
−u = x

(1,2)
−u , N1 = n1

)
E
(
φ2(X(M2))

∣∣∣X(1,2)
−u = x

(1,2)
−u , N2 = n2

)
.

That concludes the proof of Lemma 18.

Part 2.B: We aim to proving that∣∣∣∣∣
∫
X 2
−u

E
(
Êu,1Êu,2|X(1,2)

−u = x
(1,2)
−u

)
− E(Êu,1|X(1,2)

−u = x
(1,2)
−u )E(Êu,2|X(1,2)

−u = x
(1,2)
−u )dP⊗2

X−u
(x

(1)
−u,x

(2)
−u)

∣∣∣∣∣ ≤ Csup(ε)

N1−ε .

To simplify notation, let X(kN ) := (X(kN (i)))i≤NI and X(k′N ) := (X(k′N (i)))i≤NI .
We have

E
(

Φ(X(kN ))Φ(X(k′N ))|X(1,2)
−u = x

(1,2)
−u

)
=

N−2∑
n1,n2=0

E
(

Φ(X(kN ))|N1 = n1,X
(1,2)
−u = x

(1,2)
−u

)
E
(

Φ(X(k′N ))|N2 = n2,X
(1,2)
−u = x

(1,2)
−u

)
×P(N1 = n1, N2 = n2|X(1,2)

−u = x
(1,2)
−u ).

On the other hand, we have

E
(

Φ(X(kN ))|X(1,2)
−u = x

(1,2)
−u

)
E
(

Φ(X(k′N ))|X(1,2)
−u = x

(1,2)
−u

)
=

N−2∑
n1,n2=0

E
(

Φ(X(kN ))|N1 = n1,X
(1,2)
−u = x

(1,2)
−u

)
E
(

Φ(X(k′N ))|N2 = n2,X
(1,2)
−u = x

(1,2)
−u

)
×P(N1 = n1|X(1,2)

−u = x
(1,2)
−u )P(N2 = n2|X(1,2)

−u = x
(1,2)
−u ).
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Thus, using that Φ is bounded and using Lemma 16, it suffices to show that∑N−2
n1,n2=NI−1

∣∣P(N1 = n1, N2 = n2|X(1,2)
−u = x

(1,2)
−u )

−P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

∣∣ ≤ Csup(ε)

N1−ε .

Let KN := bNαc, where α = ε/3. We divide the previous sum into two sums:

A(x
(1)
−u,x

(2)
−u) :=

∑KN
n1,n2=NI−2

∣∣P(N1 = n1, N2 = n2|X(1,2)
−u = x

(1,2)
−u )

−P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

∣∣,
B(x

(1)
−u,x

(2)
−u) :=

N−2∑
n1,n2=NI−1,

n1>KN or n2>KN

∣∣P(N1 = n1, N2 = n2|X(1,2)
−u = x

(1,2)
−u )

−P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

∣∣.
Let us bound these two terms.

First, we have

A(x
(1)
−u,x

(2)
−u) =

∑KN
n1,n2=NI−1 P(N1 = n1|X(1,2)

−u = x
(1,2)
−u )P(N2 = n2|N1 = n1,X

(1,2)
−u = x

(1,2)
−u )

×

∣∣∣∣∣1− P(N2 = n2|X(1,2)
−u = x

(1,2)
−u )

P(N2 = n2|N1 = n1,X
(1,2)
−u = x

(1,2)
−u )

∣∣∣∣∣ .
Thus, it suffices to bound∣∣∣∣∣1− P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

P(N2 = n2|N1 = n1,X
(1,2)
−u = x

(1,2)
−u )

∣∣∣∣∣ ≤ Csup(ε)

N1−ε .

Thus, it suffices to show∣∣∣∣∣log

(
P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

P(N2 = n2|N1 = n1,X
(1,2)
−u = x

(1,2)
−u )

)∣∣∣∣∣ ≤ Csup(ε)

N1−ε .
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To simplify notation, let T = N − 2. Thanks to Lemma 17, we have,

log

(
P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

P(N2 = n2|N1 = n1,X
(1,2)
−u = x

(1,2)
−u )

)

= log

(
T (T − 1)...(T − n1 + 1)

(T − n2)(T − n2 − 1)...(T − n2 − n1 + 1)

(1− p1)T−n1(1− p2)T−n2

(1− p1 − p2)T−n1−n2

)
= log

(
1(1− 1

T
)...(1− n1 − 1

T
)

)
− log

(
(1− n2

T
)(1− n2 + 1

T
)...(1− n2 + n1 − 1

T
)

)
(T − n1) log(1− p1) + (T − n2) log(1− p2)− (T − n1 − n2) log(1− p1 − p2)

= −n1(n1 − 1)

2T
+ n1O(

n2
1

T 2
) +

n1(n1 + 2n2 − 1)

2T
+ n1O(

(n1 + n2)2

T 2
)

−(T − n2)p2 + (T − n2)O(p2
2)− (T − n1)p1 + (T − n1)O(p2

1)

+(T − n1 − n2)(p1 + p2) + (T − n1 − n2)O((p1 + p2)2)

=
n1n2

T
+O(

n3
1

T
) +O(

n1(n1 + n2)2

T 2
)− n2p1 − n1p2

+(T − n2)O(p2
1) + (T − n1)O(p2

2) + (T − n1 − n2)O((p1 + p2)2).

We know that

KNpi ≤
Csup

N1−δ|−u|−α ≤
Csup

N1−ε .

So, for all n1 ≤ KN and all n2 ≤ KN ,∣∣∣∣∣log

(
P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

P(N2 = n2|N1 = n1,X
(1,2)
−u = x

(1,2)
−u )

)∣∣∣∣∣ ≤ Csup(ε)

N1−ε .

Thus, we have shown that we have

A(x
(1)
−u,x

(2)
−u) ≤ Csup

N1−ε .

Now, let us bound B(x
(1)
−u,x

(2)
−u). Remark that {(n1, n2) ∈ [NI−1 : N−2]| n1 >

KN or n2 > KN} is a subset of

([KN + 1 : N − 2]× [NI − 1 : N − 2]) ∪ ([NI − 1 : N − 2]× [KN + 1 : N − 2]) .

Thus, it suffices to bound∑N−2
n1=KN+1

∑N−2
n2=NI−1

∣∣P(N1 = n1, N2 = n2|X(1,2)
−u = x

(1,2)
−u )

−P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

∣∣
=

N−2∑
n1=KN+1

P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )

N−2∑
n2=NI−1

∣∣P(N2 = n2|N1 = n1,X
(1,2)
−u = x

(1,2)
−u )− P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

∣∣.
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Thus, it suffices to bound

N−2∑
n1=KN+1

P(N1 = n1|X(1,2)
−u = x

(1,2)
−u ).

Let T := N − 2. We know that N1 has a binomial distribution with parameters
T and p1. Thus,

E(N1) = p1T ≤ CsupN
δ|−u| ≤ CsupN

ε
4 .

Thus, there exists Nε such that for N ≥ Nε, we have that, E(N1) ≤ KT + 1.
Thus, for N large enough and for all n1 > KT and, we have

P(N1 = n1|X(1,2)
−u = x

(1,2)
−u ) ≤ P(N1 = KT + 1|X(1,2)

−u = x
(1,2)
−u ).

Thus, for N ≥ Nε,

N−2∑
n1=KN+1

P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )

≤ (T −KT )P(N1 = KT + 1|X(1,2)
−u = x

(1,2)
−u )

= (T −KT )
T !

(T −KT − 1)!(KT + 1)!
pKT+1

1 (1− p1)T−KT+1

≤ (T −KT )
T !

(T −KT − 1)!(KT + 1)!
pKT+1

1

≤ Csup

(T −KT )
√

2πT
(
T
e

)T ( Csup

T 1−δ|−u|

)KT+1

√
2π(KT + 1)

(
KT+1
e

)(KT+1)√
2π(T −KT − 1)

(
T−KT−1

e

)(T−KT−1)

≤ Csup

(T −KT )
√
TTTCKT+1

sup√
(KT + 1)(T −KT − 1)(KT + 1)KT+1(T −KT − 1)T−KT−1T (1−δ|−u|)(KT+1)

≤ Csup(T −KT )KT+ 3
2−T (KT + 1)−KT−

3
2TT−

1
2 +δ|−u|(KT+1)−KTCKT+1

sup .

Using the Taylor expansion of x 7→ log(1− x) at 0, we can see that

(T −KT )−TTT ≤ Csup exp(KT ) ≤ CKTsup .

Moreover, we have

(KT + 1)T 1−δ|−u| ≥ T ε
3T 1− ε4 = T 1+ ε

12 ,

and so

(T −KT )KT (KT + 1)−KT T−KT (1−δ|−u|)CKTsup ≤ exp

(
KT log

[
Csup

T −KT

T 1+ ε
12

])
≤ Csup(ε)e−KT .
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Thus, we have

N−2∑
n1=KN+1

P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )

≤ Csup(ε)e−KT (T −KT )
3
2 (KT + 1)−

3
2T−

1
2 +δ|−u|

≤ Csup(ε)

T

≤ Csup(ε)

N
.

Finally, we have

A(x
(1)
−u,x

(2)
−u) ≤ Csup

N1−ε , and B(x
(1)
−u,x

(2)
−u) ≤ Csup(ε)

N
.

Thus∑N
n1,n2=NI

∣∣P(N1 = n1, N2 = n2|X(1,2)
−u = x

(1,2)
−u )

−P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

∣∣ ≤ Csup(ε)

N1−ε .

So, we have proved Proposition 13.

We conclude by the proof of Theorem 2.

Proof.

P
(∣∣∣Êu − Eu∣∣∣ > ε

)
≤ P

(∣∣∣Êu − E(Êu)
∣∣∣ > ε

2

)
+ P

(∣∣∣E(Êu)− Eu
∣∣∣ > ε

2

)
.

Then, we use the proof of Proposition 11. If (s(l))l≤Nu is a sample of uniformly
distributed variables on [1 : N ] with replacement, then for all ε > 0,

P
(∣∣∣Êu − E(Êu)

∣∣∣ > ε

2

)
≤ 4

ε2

(∣∣∣cov (Êu,1, Êu,2)∣∣∣+ Var
(
Êu,1

)( 1

N
+

1

Nu

))
≤ 1

ε2

(
Csup(ε′)

N
1

p−|u|−ε′
+
Csup

Nu

)
,

for all ε′ > 0, thanks to Proposition 13. If (s(l))l≤Nu is a sample of uniformly
distributed variables on [1 : N ] without replacement, then for all ε > 0,

P
(∣∣∣Êu − E(Êu)

∣∣∣ > ε

2

)
≤ 4

ε2

(
Nu − 1

Nu
cov

(
Êu,1, Êu,2

)
+

1

Nu
Var

(
Êu,1

))
≤ 1

ε2

(
Csup(ε′)

N
1

p−|u|−ε′
+
Csup

Nu

)
,
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for all ε′ > 0, thanks to Proposition 13. Moreover, for all ε > 0,

P
(∣∣∣Êu − Eu∣∣∣ > ε

2

)
≤ 2

ε

∣∣∣E(Êu)− Eu
∣∣∣

≤ Csup(ε′)

εN
1

p−|u|−ε′
,

for all ε′ > 0, thanks to Proposition 12. Finally, for all ε > 0, ε′ > 0, we have

P
(∣∣∣Êu − Eu∣∣∣ > ε

)
≤ 1

ε2

(
Csup(ε′)

N
1

p−|u|−ε′
+
Csup

Nu

)
.

That concludes the proof.

B Other proofs

Proof of Proposition 2

Proof.

E(f(X)f(Xu))

= E(E(f(X)f(Xu)|Xu))

= E

(∫
X 2
−u

f(Xu,x−u)f(Xu,x
′
−u)dPX−u|Xu

⊗ PX−u|Xu
(x−u,x

′
−u)

)

= E

(∫
X−u

f(Xu,x−u)dPX−u|Xu
(x−u)

∫
X−u

f(Xu,x
′
−u)dPX−u|Xu

(x′−u)

)
= E

(
E(f(X)|Xu)2

)
.

That concludes the proof of Proposition 2.

Proof of Proposition 3

Proof. Let

Ai,u :=


− 1
p

(
p− 1
|u|

)−1

if i /∈ u

1
p

(
p− 1
|u| − 1

)−1

if i ∈ u.

Under Assumption 1, we have
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Var(Y )2

p∑
i=1

Var(η̂i) =

p∑
i=1

∑
∅ u [1:p]

A2
i,uVar(Ŵu)

=
∑

∅ u [1:p]

Var(Ŵu)

p∑
i=1

A2
i,u

=
∑

∅ u [1:p]

Var(Ŵ
(1)
u )

Nu

p∑
i=1

A2
i,u.

Moreover,

p∑
i=1

A2
i,u =

∑
i∈−u

1

p2

(
p− 1
|u|

)−2

+
∑
i∈u

1

p2

(
p− 1
|u| − 1

)−2

=
1

p!2
(
(p− |u|)|u|!2(p− |u| − 1)!2 + |u|(|u| − 1)!2(p− |u|)!2

)
=

(p− |u|)!|u|!
p!2

(p− |u| − 1)!(|u| − 1)!(|u|+ p− |u|)

=
(p− |u|)!|u|!

p!

(p− |u| − 1)!(|u| − 1)!

(p− 1)!

=: C(|u|, p).

Thus, we want to minimize

∑
∅ u [1:p]

Var(Ŵ
(1)
u )

Nu
C(|u|, p)

subject to ∑
∅ u [1:p]

Nu =
Ntot
κ

.

Let U = (R∗+)2p−2. If x ∈ U , we index the components of x by the subsets
∅  u  [1 : p] and we write x = (xu)∅ u [1:p]. Let h be the C1 function on

U defined by h(x) =
∑
∅ u [1:p]

C(|u|,p)Var(Ŵ (1)
u )

xu
, let g be the C1 function on U

defined by g(x) = (
∑
∅ u [1:p] xu) − Ntot/κ and let A = g−1({0}). Using the

method of Lagrange multipliers, if h|A has a local minimum in a, there exists c
such that Dh(a) = cDg(a), i.e. ∇h(a) = ∇g(a) i.e.

a =
Ntot

κ
∑
∅ v [1:p]

√
C(|v|, p)Var(Ŵ

(1)
v )

(√
C(|u|, p)Var(Ŵ

(1)
u )

)
∅ u [1:p]

.

Moreover, note that h is strictly convex and the set A is convex, thus h|A is
strictly convex. Thus a is the strict global minimum point of h|A.
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Proof of Proposition 5

Proof. Let us write V := Var(Ŵ
(1)
u ) that does not depend on u by assumption.

To simplify notation, letN0 = Np = +∞. In this way, we have, for all u ⊂ [1 : p],

Var(Ŵu(m)) = V/N|u|.
We have

Var ( η̂i| (σm)m≤M ) =
1

p2Var(Y )2

∑
u⊂−i

1

M2

M∑
m=1

[
Var

(
Ŵu∪{i}(m)

)
+ Var

(
Ŵu(m)

)]
1Pi(σm)=u

=
V

p2Var(Y )2

∑
u⊂−i

1

M2

M∑
m=1

[
1

N|u∪{i}|
+

1

Nu

]
1Pi(σm)=u.

Thus,

E [Var ( η̂i| (σm)m≤M )] =
V

p2Var(Y )2

∑
u⊂−i

1

M2

M∑
m=1

[
1

N|u∪{i}|
+

1

Nu

]
P(Pi(σm) = u)

=
V

p2Var(Y )2

∑
u⊂−i

1

M2

M∑
m=1

1

p

(
p− 1
|u|

)−1 [
1

N|u∪{i}|
+

1

N|u|

]
=

V

p2Var(Y )2

∑
u⊂[1:p]

ai,u
1

N|u|
,

where

ai,u :=


1
p

(
p− 1
|u|

)−1

if i /∈ u(
p− 1
|u| − 1

)−1

if i ∈ u.

Remark that
∑p
i=1 ai,u = 2

(
p
|u|

)−1

. Then,

E

[
p∑
i=1

Var ( η̂i| (σm)m≤M )

]
=

p∑
i=1

V

p2Var(Y )2

∑
u⊂[1:p]

ai,u
1

N|u|

=
V

p2Var(Y )2

∑
u⊂[1:p]

1

N|u|

p∑
i=1

ai,u

=
2V

p2Var(Y )2

∑
u⊂[1:p]

1

N|u|

(
p
|u|

)−1

=
2V

p2Var(Y )2

p−1∑
k=1

1

Nk

59



We get the relaxed problem

min
(Nk)k∈[1:p−1]

2V

p2Var(Y )2

p−1∑
k=1

1

Nk

subject to M
∑p−1
k=1Nk = MNO(p − 1). Let U = (R∗+)p−1. Let h be the C1

function on U defined by h(x) = 2V
p2Var(Y )2

∑p−1
k=1

1
xk

, g be the C1 function on

U defined by g(x) = M
∑p−1
k=1 xk −MNO(p − 1). Finally, let A = g−1({0}).

Using the method of Lagrange multipliers, if h|A has a local minimum in a,

there exists c such that Dh(a) = cDg(a), i.e. ∇h(a) = ∇g(a) i.e. ∀u, − 1
a2u

= c′

i.e. au = c′′. To sum up, if h|A has a local minimum, it is in a defined by

au = NOMpu.

Moreover, note that h is strictly convex and the set A is convex, thus h|A is
strictly convex. Thus a is the strict global minimum point of h|A. Thus, a is the
global minimum on the constraint problem (where the inputs are integers).

Proof of Proposition 6 This proof totally arises from the appendix of
[SNS16]. The computations are the same.

Proof. Under Assumption 3, we have

Var(η̂i) =
1

MVar(Y )2

(
Var

(
ŴPi(σ1)∪{i}

)
+ Var

(
ŴPi(σ1)

))
=

1

MVar(Y )2

(
Var(E(ŴPi(σ1)∪{i}|σ1)) + E(Var(ŴPi(σ1)∪{i}|σ1))

+Var(E(ŴPi(σ1)|σ1)) + E(Var(ŴPi(σ1)|σ1))

)
=

1

CVar(Y )2

(
NOVar(WPi(σ1)∪{i}) +NOVar(WPi(σ1))

+E(Var(Ŵ
(1)
Pi(σ1)∪{i}|σ1)) + E(Var(Ŵ

(1)
Pi(σ1)|σ1))

)
.

Thus, the minimum is with NO = 1.

Proof of Proposition 7

Proof. We only prove the second item. The first one is easier and uses the same
idea. Let i ∈ [1 : p]. Remark that

η̂i =
1

MVar(Y )

M∑
m=1

(
ŴPi(σm)∪{i}(m)− ŴPi(σm)(m)

)
=

1

pVar(Y )

∑
u⊂−i

(
p− 1
|u|

)−1 (
W̃u∪{i},i − W̃u,i

)
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with

W̃u,i :=

(
p− 1
|u|

)
p

M

∑
m| Pi(σm)=u

Ŵu(m) and W̃u∪{i},i :=

(
p− 1
|u|

)
p

M

∑
m| Pi(σm)=u

Ŵu∪{i}(m),

where we sum over all the integers m ∈ [1 : M ] such that Pi(σm) = u. Thus,
for all u,

W̃u,i ∼
(

p− 1
|u \ {i}|

)
p

M
Ñu,i,MŴ

Ñu,i,M
u ,

where

Ŵ Ñu,i,M
u :=

1

Ñu,i,M

Ñu,i,M∑
k=1

Ŵu(k),

and Ñu,i,M = Ñu∪{i},i,M ∼ B(M, |u|!(p−1−|u|)!
p! ) (the binomial distribution).

Now, remark that M goes to +∞ when Ntot goes to +∞ (recall that Ntot =
κM(p− 1)). Hence, (

p− 1
|u \ {i}|

)
p

M
Ñu,i,M

P−→
Ntot→+∞

1.

It suffices to show that for all u ⊂ [1 : p], the estimator ω 7→ Ŵ
Ñu,i,M (ω)
u (ω)

converges to Wu in probability when N and Ntot go to +∞ and we could
conclude by

η̂i =
1

pVar(Y )

∑
u⊂−i

(
p− 1
|u|

)−1 (
W̃u∪{i},i − W̃u,i

)
P−→

Ntot→+∞
N→+∞

1

pVar(Y )

∑
u⊂−i

(
p− 1
|u|

)−1 (
Wu∪{i} −Wu

)
= ηi.

Let ε > 0 and δ > 0. Using the assumptions and Chebyshev’s inequality, we
have that (ŴNO

u )NO,N is consistent, thus there exists NO1 and N1 such that for
all NO ≥ NO1 and all N ≥ N1,

P
(∣∣∣ŴNO

u −Wu

∣∣∣ > δ
)
<
ε

2
.

Moreover,

P(Ñu,M ≤ NO1) −→
M→+∞

0.

Thus, there exists M1 such that for all M ≥M1,

P(Ñu,M ≤ NO1) <
ε

2
.

61



Thus, there exists Ntot1 such that for all Ntot ≥ Ntot1,

P(Ñu,M ≤ NO1) <
ε

2
.

Finally, for all Ntot ≥ Ntot1 and N ≥ N1, we have

P
(∣∣∣Ŵ Ñu,M

u −Wu

∣∣∣ > δ
)
≤ P

(∣∣∣Ŵ Ñu,M
u −Wu

∣∣∣ > δ, Ñu,M ≥ NO1

)
+ P(Ñu,M ≤ NO1)

< ε.

That proves that the estimator ω 7→ Ŵ
Ñu,i,M (ω)
u (ω) converges to Wu in proba-

bility when N and Ntot go to +∞.

Proof of Corollary 1 and Corollary 2
We do the proof for Corollary 1. The proof of Corollary 2 uses the same

idea.

Proof. Let δ > 0. Thanks to Theorem 2, with ε′ = δ, we have

P
(
N

1
2(p−|u|)−δ

∣∣∣Êu,MC − Eu
∣∣∣ > ε

)
≤ Csup(δ)N

1
p−|u|−2δ

ε2N
1

p−|u|−δ
−→

N→+∞
0.

That concludes the proof of Corollary 1.

Proof of Proposition 8

Proof. If we use the subset W -aggregation procedure, we just have to use the
consistency of Ŵu from Theorems 1 and 3 and to use Proposition 4.

If we use the subset W -aggregation procedure, the consistency of the esti-
mators of the Shapley effects comes from the second part of Proposition 7. We
just have to verify Assumption 4. Let Ŵu(m) of Proposition 7 be Êu,s(m),MC or

V̂u,s(m),PF defined in Section 6.1, where (s(m))m are independent and uniformly
distributed on [1 : N ]. Then, following the end of the proof of Theorems 1 and
3, we obtain

1

M2

M∑
m,m′=1

cov
(
Ŵu(m), Ŵu(m′)

)
−→

N,M→+∞
0,

and, by Proposition 9, we have

E
(
Ŵu(1)

)
= E

(
Ŵ (1)
u

)
−→

N→+∞
Wu.

Thus, Assumption 4 holds.
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