Lower Bounds on the Localisation Length of Balanced Random Quantum Walks - Archive ouverte HAL
Article Dans Une Revue Letters in Mathematical Physics Année : 2019

Lower Bounds on the Localisation Length of Balanced Random Quantum Walks

Résumé

We consider the dynamical properties of Quantum Walks defined on the d-dimensional cubic lattice, or the homogeneous tree of coordination number 2d, with site dependent random phases, further characterised by transition probabilities between neighbouring sites equal to 1/(2d). We show that the localisation length for these Balanced Random Quantum Walks can be expressed as a combinatorial expression involving sums over weighted paths on the considered graph. This expression provides lower bounds on the localisation length by restriction to paths with weight 1, which allows us to prove the localisation length diverges on the tree as d 2. On the cubic lattice, the method yields the lower bound 1/ ln(2) for all d, and allows us to bound the localisation length from below by the correlation length of self-avoiding walks computed at 1/(2d).
Fichier principal
Vignette du fichier
BRQW.pdf (347.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01953415 , version 1 (12-12-2018)

Identifiants

Citer

Joachim Asch, Alain Joye. Lower Bounds on the Localisation Length of Balanced Random Quantum Walks. Letters in Mathematical Physics, 2019, 109 (9), pp.2133-2155. ⟨10.1007/s11005-019-01180-0⟩. ⟨hal-01953415⟩
200 Consultations
85 Téléchargements

Altmetric

Partager

More