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Lower Bounds on the Localisation Length of
Balanced Random Quantum Walks

Joachim Asch ∗, Alain Joye †

Abstract

We consider the dynamical properties of Quantum Walks defined on the d-dimensional
cubic lattice, or the homogeneous tree of coordination number 2d, with site dependent
random phases, further characterised by transition probabilities between neighbouring sites
equal to 1/(2d). We show that the localisation length for these Balanced Random Quantum
Walks can be expressed as a combinatorial expression involving sums over weighted paths on
the considered graph. This expression provides lower bounds on the localisation length by
restriction to paths with weight 1, which allows us to prove the localisation length diverges
on the tree as d2. On the cubic lattice, the method yields the lower bound 1/ ln(2) for all
d, and allows us to bound the localisation length from below by the correlation length of
self-avoiding walks computed at 1/(2d).

1 Introduction

The last decade has seen Quantum Walks, (QWs for short), deterministic or random, play
a growing role in several scientific fields, starting with the modeling of quantum dynamics
in various physical situations. Let us simply mention that QWs provide a simple descrip-
tion of the electronic motion in the Quantum Hall geometry [CC, KOK, ABJ1], while their
effectiveness in quantum optics as discrete models to study atoms trapped in time periodic
optical lattices or polarized photons propagating in networks of waveguides has found ex-
perimental confirmation [ZKGS+, SVAM+]. Theoretical quantum computing is another
field in which QWs prove to be useful as tools in the elaboration or assessment of quantum
algorithms, see [Sa, MNRS, P]. From a mathematical perspective, QWs have been consid-
ered as non commutative analogs of classical random walks, see e.g. [Ko, SKJ, GNVW],
or as subject of study in the spectral analysis of (random) unitary operators, in the line
of [BHJ, CMV, J1, HJS, DFV]. See the reviews and book [V-A, J3, Si1, ABJ2] for more
applications, mathematical results, and references.

The present paper addresses the mathematical (de)localisation properties of certain
Random Quantum Walks (RQWs for short) defined on infinite graphs, for the discrete time
random quantum dynamical system defined by the iterates of the RQW unitary operator.
Anderson localisation is ubiquitous in the Physics of disordered systems and has been the
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object of intense research since its discovery in the fifties [A-CAT], see e.g. [CL, Ki, AW].
Delocalisation of Quantum particles in presence of disorder, although expected to be present
in high dimensional lattices, is however difficult to exhibit; it has been proven to hold for
the Anderson model on the tree, or mild variants thereof [Kl, W]. In this context, certain
RQWs viewed as substitutes of the random evolution operators generated by the discrete
Anderson Hamiltonians, have proven to be mathematically more tractable and to display
analogous behaviours regarding the transport properties: these RQWs describe the motion
of a particle with internal degree of freedom, or quantum walker, hopping on the sites an
infinite underlying graph Gd, standing for the cubic lattice Zd or T2d, the homogeneous
tree of coordination number 2d, in a static random environment. The internal degree of
freedom, or coin state, lives in C2d and the deterministic part of the walk is defined as
follows. Given a natural basis in C2d, the one time step unitary evolution U(C) is obtained
by the action of a unitary matrix C ∈ U(2d) on the coin state of the particle, followed
by the action of a coin state conditioned shift S which moves the particle to its nearest
neighbours on Gd. Static disorder is introduced in the model via i.i.d. random phases used
to decorate the coin matrix C in such a way that the unitary coin state update becomes
site-dependent and random. The coin matrix C of the resulting random unitary operator
Uω(C), called the skeleton, is a parameter which, in a sense, monitors the strength of the
disorder; see the next section for precise definition.

Restricting attention to RQWs constructed this way, we recall some of their properties.
RQWs Uω(C) defined on the one dimensional lattice exhibit dynamical localisation for all
non-trivial choice of skeleton C, [JM, ASW]. Moreover, RQWs that have skeleton close
to certain permutation matrices are known to exhibit dynamical localisation on the cubic
lattice Zd, d > 1 [J2, J3]; a result analogous to the strong disorder regime in the Anderson
model framework. To complete the analogy, RQW’s Uω(C) defined on homogeneous trees
are proven to undergo a localisation-delocalisation spectral transition in [HJ1], when the
skeleton C moves from neighbourhoods of certain permutation matrices to neighbourhoods
of other permutation matrices, akin to the spectral transition occurring for the Anderson
model on the tree as a fonction of the strength of the disorder [W]. See also [ABJ3] for
delocalisation results of a topological nature for the Chalker Coddington model.

The goal of the present paper is to analyse the unitary operator Uω(C) in case the
skeleton C lies as far as possible from the permutation matrices, for which localisation results
hold, and to investigate the possible delocalisation properties of those RQWs. Therefore
we consider RQWs associated to balanced skeletons C ∈ U(2d) characterised by the fact
that in the natural basis the moduli of its entries are all equal to 1/

√
2d. This amounts

to saying that the quantum mechanical transition probabilities induced by Uω(C) between
neighbouring sites are all equal to 1/(2d), irrespective of the realisation of the random
phases decorating the balanced skeleton. Such RQWs are called Balanced Random Quantum
Walks, BRQWs for short. That BRQWs are likely to exhibit delocalisation properties on
the cubic lattice is not granted. However, numerics obtained for the Chalker-Coddington
model suggest delocalisation for values of the parameters of the model that correspond,
essentially, to the balanced behaviour introduced above, see [KOK]; hence, the analogy is
tempting. When considered on the tree T2d, BRQWs are thus neither related to localisation,
nor to delocalisation, a priori, and correspond to values of the parameter C that are not
covered by the analysis of [HJ1].
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Our results concern lower bounds on the localisation length of BRQWs Uω(C) defined on
the cubic lattice Zd or the tree T2d, making use of two characteristic specificities of BRQWs
operators: uniform transition probabilities between neighbouring sites and uniform distri-
bution of the iid random phases. The localisation length L we consider is defined, informally,
as the inverse of the largest α > 0 such that lim supn→∞ E(‖eα|X|/2Unω (C) ψ0‖2) < ∞, for
all initial state ψ0 with finite support on Gd, and |X| is the multiplication operator by the
norm of the position on Gd. The fact that RQWs couple nearest neighbours on Gd only
allows for a head on approach of the localisation length.

Since BRQWs are essentially parameter free models, we investigate the large d limit
of L, that we will dub (improperly for the tree case) the large dimension limit, a regime
in which delocalisation is intuitively more likely to occur, so that L is more likely to be
large. Our first contribution to this question is a reformulation of the problem in terms
of a combinatorics problem on the underlying graph Gd, presented in Section 3 . Within
this framework, lower bounds on the localisation length are obtained via the analysis of
partition functions defined on certain subsets of paths on Gd, with weights related to the
phases of the entries of the balanced skeleton in Uω(C). Using this framework for the ho-
mogeneous tree T2d in Section 3.2, we get the large d behaviour L ≥ 2d2(1 + O(1/d)) in
Theorem 3.11. We discuss this approach in the case of the cubic lattice Zd in Section 3.3.
We cannot show that the localisation length diverges with the dimension d, but get the
lower bound L ≥ 1/ ln(2), for all d ≥ 1, see Theorem 3.14. From a more general perspec-
tive, we relate the partition functions used to bound the localisation length to partition
functions or susceptibilities considered in the study of self-avoiding walks in Zd in the clos-
ing Section 4. In particular, we show in Proposition 4.3 that that the localisation length
satisfies L ≥ ξd(1/(2d)), where ξd(1/(2d)) is the correlation length of self-avoiding walks
in Zd, at the critical value of simple random walks. The large dimension analysis of this
expression remains to be performed which, according to experts in the field, represents a
nontrivial task.
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2 Balanced Random Quantum Walk

By Balanced Random Quantum Walk, BRQW for short, we mean a quantum walk defined
either on the cubic lattice Zd or on the homogeneous tree T2d, where d ∈ N is half the
coordination number in the latter case, such that the quantum mechanical transition am-
plitude between neighbouring sites has uniform modulus and random argument uniformly
distributed on the torus. We briefly recall the basics about RQWs below, for more details,
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see [HJ1, HJ2]

2.1 Random quantum walks on T2d

Let T2d denote the homogeneous tree of degree 2d of the free group F{a1,...,ad} generated by
the alphabet

A2d = {a1, . . . , ad, a
−1
1 , . . . , a−1

d }, (1)

with aja
−1
j = a−1

j aj = e, j = 1, . . . , d, e being the neutral element of the group. A vertex
of T2d denoted by e is chosen to be the root of the tree. Each vertex x = x1x2 . . . xn, n ∈ N
of T2d is a reduced word of finitely many letters from the alphabet A2d and an edge of T2d

is a pair of vertices (x, y) such that xy−1 ∈ A2d. Any pair of vertices x and y can be joined
by a unique set of edges, or path in T2d and the number of nearest neighbours of any vertex
in T2d is thus 2d. We identifying T2d with its set of vertices, and define the configuration
Hilbert space of the walker by

l2(T2d) =
{
ψ =

∑
x∈T2d

ψx|x〉 s.t. ψx ∈ C,
∑
x∈T2d

|ψx|2 <∞
}
, (2)

where |x〉 denotes the element of the canonical basis of l2(T2d) which sits at vertex x.
The coin Hilbert space (or spin Hilbert space) of the quantum walker on T2d is C2d. The
elements of the ordered canonical basis of C2d are labelled by letters in the alphabet A2d =
{a1, . . . , ad, a

−1
1 , . . . , a−1

d }, and the total Hilbert space is

Kd = l2(T2d)⊗ C2d with canonical basis
{
x⊗ τ ≡ |x〉 ⊗ |τ〉, x ∈ T2d, τ ∈ A2d

}
. (3)

The quantum walk on the tree is defined as the composition of a unitary update of the coin
(or spin) variables in C2d followed by a coin state dependent shift on the tree. Let C be a
unitary matrix on C2d, i.e. C ∈ U(2d). The unitary update operator given by I ⊗ C acts
on the canonical basis of Kd as

(I⊗ C)x⊗ τ = |x〉 ⊗ |Cτ〉 =
∑
σ∈A2d

Cστ x⊗ σ, (4)

where {Cστ}(σ,τ)∈A2
2d

denote the matrix elements of C. The coin state dependent shift S
on Kd is defined by

S =
∑

τ∈A2d

Sτ ⊗ |τ〉〈τ | (5)

where for all τ ∈ A2d the unitary operator Sτ is a shift that acts on l2(T2d) as

Sτ |x〉 = |xτ〉, ∀τ ∈ A2d, ∀x ∈ T2d. (6)

Note that S−1
τ = S∗τ = Sτ−1 . A homogeneous quantum walk on T2d is then defined as the

one step unitary evolution operator on Kd = l2(T2d)⊗ C2d given by

U(C) = S(I⊗ C) =
∑

τ∈A2d,x∈T2d

|xτ〉〈x| ⊗ |τ〉〈τ |C, (7)
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where C ∈ U(2d) is a parameter.
Consider now a family of coin matrices C = {C(x) ∈ U(2d)}x∈T2d , indexed by the

vertices x ∈ T2d. We generalise the construction to quantum walks with site dependent
coin matrices by means of the definition

U(C) =
∑

τ∈A2d,x∈T2d

|xτ〉〈x| ⊗ |τ〉〈τ |C(x). (8)

In order to deal with RQWs, we introduce a probability space Ω = TT2d×A2d , T being the
torus, with σ algebra generated by the cylinder sets and measure P = ⊗ x∈T2d

τ∈A2d

dν where dν

is a probability measure on T. Let {ωx,τ}x∈T2d,τ∈A2d
be a set of i.i.d. random variables on

the torus T with common distribution dν. We will note Ω 3 ω = {ωx,τ}x∈T2d,τ∈A2d
.

The RQWs we consider are constructed by means of families of site dependent random
coin matrices. Let Cω = {Cω(x) ∈ U(2d)}x∈T2d be the family of random coin matrices
depending on a fixed matrix C ∈ U(2d), the skeleton, where, for each x ∈ T2d, Cω(x) is
defined by its matrix elements

Cω(x)τσ = eiωxτ,τCτσ, (τ, σ) ∈ A2d ×A2d. (9)

The site dependence appears only in the random phases of the matrices Cω(x), which have
a fixed skeleton C ∈ U(2d). The RQWs considered depend parametrically on C ∈ U(2d)
and are defined by the random unitary operator

Uω(C) := U(Cω) on K = l2(T2d)⊗ C2d. (10)

Observe that defining a random diagonal unitary operator on Kd by

Dωx⊗ τ = eiωx,τx⊗ τ, ∀(x, τ) ∈ T2d ×A2d, (11)

we have the identity
Uω(C) = DωU(C) on Kd, (12)

which confirms that Uω(C) is manifestly unitary. Note also that the transition amplitudes
induced by Uω(C) are nonzero for nearest neighbours on the tree only and

〈x⊗ τ |Uω(C)y ⊗ σ〉 = eiωx,τ 〈x⊗ τ |U(C)y ⊗ σ〉. (13)

Remark 2.1 RQWs of a similar flavour defined on trees with odd coordination number are
studied in [HJ1].

2.2 Random quantum walks on Zd

The definition of a RQW Uω(C) on Zd instead of T2d is quite similar: the sites x ∈ T2d are
replaced by x ∈ Zd so that the configuration space l2(T2d) is replaced by l2(Zd) but the coin
space remains the same, i.e. C2d. Hence the complete Hilbert space is Kd = l2(Zd) ⊗ C2d

and the update operator I⊗C is the same as on the tree. The definition of the shifts Sτ in
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S =
∑

τ∈A2d
Sτ ⊗ |τ〉〈τ |, see (5), needs to be slightly adapted. We associate the letters τ of

the alphabet A2d with multiples of the canonical basis vectors {e1, . . . , ed} of Rd as follows

aτ ↔ eτ , a
−1
τ ↔ −eτ , τ ∈ {1, . . . , d}, (14)

and define the action of Sτ on l2(Z2) accordingly: for any x = (x1, . . . , xd) ∈ Zd

Saτ |x〉 = |x+ eτ 〉, Sa−1
τ
|x〉 = |x− eτ 〉, τ ∈ {1, . . . , d}. (15)

We shall sometimes abuse notations and write for short Sτ |x〉 = |x + τ〉, τ ∈ A2d. The
random quantum walk is then defined by Uω(C), as in (12).

The use of the same symbol Kd for the total Hilbert space is no coincidence: we deal
with the cases of the tree and cubic lattice in parallel in what follows, denoting by Gd the
graph corresponding either to Zd or T2d. We shall use the notations introduced for the
case of the tree only, with the understanding that the replacements just described yield the
corresponding statements for the lattice case.

2.3 Localisation Length

We will say that averaged dynamical localisation occurs when there exists an α > 0 such
that for all normalised ψ0 ∈ Kd with compact support on Gd,

sup
n∈Z

E(‖eα|X|/2Unω (C)ψ0‖2) <∞, (16)

where X denotes the position operator on Gd, and |X| is the multiplication operator given
by either the distance to the root of the point of T2d considered, or the l∞ or l1 norm of the
point considered in Zd. Averaged localisation may happen on certain spectral subspaces of
Uω(C) only, in which case ψ0 is restricted to these subspaces in (16).

This notion, weaker than exponential dynamical localisation, see Remark 2.3 below,
turns out to be useful in defining the quantitative criterion we need in our investigation of
the delocalisation properties of RQWs. We define the (dynamical) localisation length of a
RQW on Gd as follows.

Definition 2.2 The localisation length L of the model is given by L = 1/αs, where

αs = sup{α ≥ 0 | s.t. (16) holds} (17)

and with the convention ∞ = 1/0.

Considering ψ0 = e⊗ τ0, we will thus analyse the large n behaviour of the expectation
of

‖eα|X|/2Unω (C) e⊗ τ0‖2 =
∑
x,τ

e|x|α|〈x⊗ τ |Unω (C) e⊗ τ0〉|2, (18)

where
∑

τ∈A2d
|〈x⊗ τ |Unω e⊗ τ0〉|2 denotes the quantum mechanical probability to find the

quantum walker on site x ∈ Gd, knowing it started at time zero on the root e, with coin
state τ0. Hence, if the expectation of the right hand side of equation (18) is finite uniformly
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in n ∈ N, for some α > 0, it means that the limiting averaged distribution of the position
of the quantum walker has moments of exponential order and that the localisation length
L satisfies L < 1/α.

Our aim is to exhibit an αc ≥ 0, as small as possible, such that α ≥ αc implies

sup
n∈Z

E(‖eα|X|/2Unω (C) e⊗ τ0‖2) =∞, (19)

for certain choices of coin matrix C and phase distributions, that we will call balanced.
Hence, if averaged dynamical localisation takes place for some α, then α < αc, so that the
localisation length of the model is bounded below: L ≥ 1/αc. Moreover, (19) implies that
for all α ≥ αc,

E(sup
n∈Z
‖eα|X|/2Unω (C) e⊗ τ0‖2) =∞, (20)

which we interpret as a step towards delocalisation, all the more pertinent that αc is small,
i.e. L is large.

Remark 2.3 If exponential dynamical localisation holds, characterised by the existence of
a dynamical localisation length 0 < 1/µ <∞ and a constant c <∞ such that

E(sup
n∈Z
|〈x⊗ τ |Unω (C) e⊗ τ0〉|2) ≤ ce−µ|x| (21)

see [AW, HJS], then averaged dynamical localisation (16) holds, for all α < µ. The exis-
tence of αc such that (19) holds thus also implies the lower bound 1/µ > 1/αc.

3 From BRQW to Combinatorics

We focus on balanced random quantum walks on Zd and T2d that we now define.

Definition 3.1 A balanced random quantum walk (BRQW) on Gd is characterised by a
uniform distribution of random phases

dν(θ) =
dθ

2π
, (22)

and by a balanced skeleton matrix Cb ∈ U(2d) whose elements satisfy

Cbτ,τ ′ =
eiατ,τ ′√

2d
, ατ,τ ′ ∈ R, ∀(τ, τ ′) ∈ A2

2d. (23)

Remarks 3.2 i) There exist balanced skeleton matrices in all dimensions. An example is
provided by the unitary matrix related to the discrete Fourier transform such that Cbj,k =

e−iπjk/d/
√

2d, where j, k ∈ {0, . . . , 2d − 1}. Another example is provided by Hadamard
matrices whose coefficients are equal to ±1/

√
2d, which exist for d = 2k, k ∈ N, at least.

ii) BRQW are essentially parameter free models, besides the dimension d.
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For a BRQW Uω(Cb), we have thanks to (13)

〈x⊗ τ |Uω(Cb) y ⊗ σ〉 =
ei(ωx,τ+ατ,σ)

√
2d

δx,yτ . (24)

Thus, the quantum mechanical transition probabilities between neighbouring sites are all
equal to 1/(2d), and zero otherwise, be it on the tree or the cubic lattice. Thus, for BRQWs

(noted U below), we have the finite sums, for any n > 1,

〈xn ⊗ τn|Un e⊗ τ0〉=
∑

x1,...,xn−1
τ1,...,τn−1

〈xn ⊗ τn|Uxn−1 ⊗ τn−1〉 · · · 〈x2 ⊗ τ2|Ux1 ⊗ τ1〉〈x1 ⊗ τ1|Ue⊗ τ0〉

=
1√
2d

n

∑
τ1,...,τn−1 s.t.
τ1···τn−1τn=xn

ei
∑n
j=1(ατj ,τj−1+ωxj,τj ) with xj = τ1 · · · τj−1τj . (25)

The constraint on the τjs can be expressed by saying that the summation takes place on
all paths on the graph Gd from the root e to the end point xn, with steps of length one.

Remarks 3.3 i) Given the initial point x0 and initial coin state τ0, it is equivalent to
have the sequence of points visited {x1, . . . , xn−1, xn} or to have the sequence of coin states
{τ1, . . . , τn−1, τn}.
ii) The random phases ωxj ,τj are random variables attached to the oriented edge (xj , xj−1),

since xj−1 = xjτ
−1
j is defined uniquely by xj and τj. We adopt this point of view from now

on, using the notation
ωxj ,τj = ω(xj , xj−1), ∀ j = 1, . . . , n. (26)

By contrast, the deterministic phases ατj ,τj−1 depend on the orientation of the pair of edges

(xj−1, xj−2) and (xj , xj−1), (with a fictitious point x−1 = x0τ
−1
0 , in case j = 1).

Consequently, the right hand side of (18) reads

1

(2d)n
∑
xn,yn

δxn,yne
α|xn|/2eα|yn|/2

∑
τ1,...,τn−1 s.t.
τ1···τn−1τn=xn
σ1,...,σn−1 s.t.
σ1···σn−1σn=yn

ei
∑n
j=1(ατj ,τj−1+ω(xj ,xj−1)−ασj,σj−1−ω(yj ,yj−1)),

(27)
with

xj = τ1 · · · τj−1τj , yj = σ1 · · ·σj−1σj , ∀j ∈ {1, . . . , n}. (28)

Introducing the notation −→xn = {e, x1, . . . , xn−1, xn} for paths of length n, with steps of
length one, and keeping τj = x−1

j−1xj wherever more convenient, we can write the right
hand side of (18) using δxn,yn =

∑
x δx,xnδx,yn , as

1

(2d)n
∑
x

eα|x|
∑
−→xn,−→yn

δx,xnδx,yne
i
∑n
j=1(ατj ,τj−1+ω(xj ,xj−1)−ασj,σj−1−ω(yj ,yj−1)), (29)

with (28) again. At this point, we want take the expectation over the i.i.d. uniformly
distributed random phases. We need the following
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Definition 3.4 Given a path in Gd of length n starting at e, −→xn = {e, x1, . . . , xn−1, xn},
we define its phase content , PC(−→xn), by

PC(−→xn) = {m−→xn(y, z), (y, z) ∈ Gd ×Gd} where m−→xn(y, z) =
∑

(xk,xk−1)⊂−→xn

δ(xk,xk−1),(y,z) (30)

and we say that two such paths are equivalent if and only if

−→xn ∼ −→yn ⇐⇒ PC(−→xn) = PC(−→yn). (31)

Denoting by [−→xn] the equivalence class of −→xn and by P en the set of all paths of length n
starting at e we have

P en =
⋃

[−→xn]∈P en/∼

[−→xn]. (32)

The integer m−→xn(y, z) gives the number of times the oriented edge (y, z) is visited by the
path −→xn. Note that m(y, z) = 0 for all but a finite number of edges (y, z), and that P en is
finite.

Lemma 3.5 With the notations above,

E(‖eα|X|/2Unω e⊗ τ0‖2) =
1

(2d)n
∑
x∈Gd

eα|x|
∑

[−→xn]∈P en/∼

∣∣∣∣∣∣
∑
−→x ∈[−→xn]

δx,xne
i
∑n
j=1 ατj ,τj−1

∣∣∣∣∣∣
2

. (33)

Proof: By independence and the property E(einω(xj ,xj−1)) = δn,0 for any j, the expectation
of (29) is nonzero only if the paths −→xn and −→yn over which the summation is performed have
the same phase contents. Hence

E(‖eα|X|/2Unω e⊗ τ0‖2) =
1

(2d)n
∑
x∈Gd

eα|x|
∑
−→xn

∑
−→yn s.t.

PC(−→yn)=PC(−→xn)

δx,xnδx,yne
i
∑n
j=1(ατj ,τj−1−ασj,σj−1 ).

(34)
Splitting the sum over −→xn ∈ P en into a sum over all distinct equivalence classes [−→xn], and
using (31) in the sum over −→yn, we get (33).

Remarks 3.6 0) The computation of the exponential moments of the position operator
averaged over the disorder is thus equivalent to a combinatorial problem.
i) The function eα|x| can be replaced by any other function of the position. The average of
the quantum mechanical position moments at time n are obtained with |x|p, p > 0.

ii) For a given equivalence class [−→xn], the sum
∑
−→x ∈[−→xn]

δx,xne
i
∑n
j=1 ατj ,τj−1 may vanish, as

illustrated by the examples below.

Let us review some general properties of the combinatorial expression

Sτ0n (α) =
1

(2d)n
∑
x∈Gd

eα|x|
∑

[−→xn]∈P en/∼

∣∣∣∣∣∣
∑
−→x ∈[−→xn]

δx,xne
i
∑n
j=1 ατj ,τj−1

∣∣∣∣∣∣
2

(35)

9



e x e x

Figure 1: An equivalence class of paths on Z2 that does not contribute to (35).

For fixed n, Sτ0n (α) is finite for any α ∈ C, and is equal to one if α = 0. As a function
of α ∈ R, Sτ0n (·) is strictly increasing. Moreover, we have the trivial bounds for α ≥ 0,
1 ≤ Sτ0n (α) ≤ enα. More generally, for a non negative functions g on N the contribution in
(35) stemming for the summation over x ∈ Gd with |x| ≤ g(n) ≤ n is bounded by

1

(2d)n
∑
x∈Gd
|x|≤g(n)

eα|x|
∑

[−→xn]∈P en/∼

∣∣∣∣∣∣
∑
−→x ∈[−→xn]

δx,xne
i
∑n
j=1 ατj ,τj−1

∣∣∣∣∣∣
2

≤ eαg(n). (36)

Note also that we can consider 1
2d

∑
τ0∈A2d

Sτ0n (α), since the existence of a αc satisfying
(19) for this sum implies it satisfies (19) for some τ0 as well. Therefore we drop the super-
script τ0 from the notation.

Two-Dimensional Example:
Consider a BRQW on G2 driven by a 4×4 Hadamard matrix in the basis {a1, a2, a

−1
1 , a−1

2 }

1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 . (37)

The corresponding quantity
∑
−→x ∈[−→xn] δx,xne

i
∑n
j=1 ατj ,τj−1 thus belongs to Z, and a minus sign

is picked up at each step of the path which doesn’t change direction. One readily checks
that distinct paths can have the same phase content and are thus equivalent. Moreover,
the contribution from a given equivalence class may be zero, see Figures 1 and 2.

10



e x e x

Figure 2: An equivalence class of paths on T4 that does not contribute to (35).

3.1 Lower Bounds from Restrictions

In order to avoid dealing with the combinatorial factor
∑
−→x ∈[−→xn] δx,xne

i
∑n
j=1 ατj ,τj−1 , we

consider the following subsets of paths in P en:

Definition 3.7 Let SPn ⊂ P en be the set of paths the equivalence class of which consists of
a single path, i.e.

−→x ∈ SPn ⇔ #[−→x ] = 1. (38)

Let SAWn ⊂ SPn be the set of self avoiding walks on Gd, i.e. of paths −→x = {e, x1, . . . , xn}
s.t. xj 6= xk if j 6= k , and xj 6= e.

In particular, for n fixed, paths that are sufficiently stretched belong to SPn, whereas
self-avoiding walks belong to SPn by construction. Consequently, if xn ∈ SPn,∣∣∣∣∣∣

∑
−→x ∈[−→xn]

δx,xne
i
∑n
j=1 ατj ,τj−1

∣∣∣∣∣∣ = δx,xn . (39)

Hence, restricting the sum (35) to equivalence classes of such paths, Sn(α) is bounded from
below by quantities that do not depend on the phases of the balanced coin matrix Cb:

Sn(α) ≥ 1

(2d)n
∑
−→x ∈SPn

eα|xn| ≥ 1

(2d)n
∑

−→x ∈SAWn

eα|xn| ≥ 1

2n
. (40)

The last inequality corresponds to the very crude lower bound on the number of self-avoiding
walks of length n in Gd given by dn. We use the notations

ZSPn(α) =
∑
−→x ∈SPn

eα|xn|, and ZSAWn(α) =
∑

−→x ∈SAWn

eα|xn|, (41)
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for those partition functions. The following properties of these functions are derived in a
standard fashion, making use of the fact that they are quite similar to partition functions
of polymer models, see e.g [IV]. We provide a proof in Appendix for the convenience of the
reader.

Lemma 3.8 For all α ∈ R, both functions ZXn(α), X ∈ {SP, SAW} are strictly log-
convex. For α ≥ 0, one has

ΛX(α) = lim
n→∞

lnZXn(α)

n
= inf

n≥1

lnZXn(α)

n
, (42)

with ln d ≤ ΛX(α) ≤ α + ln(2d). Moreover ΛX is convex, increasing and continuous on
[0,∞), and the convergence is uniform on compact subsets of [0,∞).

Remarks 3.9 i) One gets therefore ZXn(α) ≥ enΛX(α), and

lim
n→∞

Sn(α) =∞ ∀α > αc ≥ 0, where ΛX(αc) = ln(2d). (43)

ii) The connective constant of the paths in the set X is given by

lim
n→∞

( ∑
−→x ∈Xn

1
)1/n

= eΛX(0) ∈ [d, 2d]. (44)

The connective constant on Zd for the set SP , respectively SAW , will be denoted by s(d),
respectively µ(d).

Let us introduce two auxiliary quantities, the 2-point function and the susceptibility,
that appear in the analysis of partition functions in the statistical mechanics of polymers.

Considering paths in Xn, with X = SP or X = SAW again, the 2-point function
Gα(z, x) is defined in our setup by

Gα(z, x) =
∑
n≥0

zn
∑
−→x∈Xn
xn=x

eα|x| (45)

and the the susceptibility χα(z) is given by

χα(z) =
∑
n≥0

zn
∑
−→x ∈Xn

eα|xn| =
∑
x∈Gd

Gα(z, x). (46)

Note that |xn| ≤ n implies that the sum over x ∈ Gd is finite. The foregoing and the root
test show that the radius of convergence of

χα(z) =
∑
n≥0

znZXn(α) (47)

is given by the continuous, decreasing log-concave function of α

zc(α) =
1

eΛX(α)
> 0. (48)

12



Given the interpretation of χα(z), this characterises zc(α) as a critical point. Moreover,

lim
z→z−c (α)

χα(z) =∞, (49)

Indeed, we get from Remark 3.9 that for z < zc(α)

χα(z) ≥
∑
n≥0

znenΛX(α) ≥ 1

1− zeΛX(α)
, (50)

where the lower bound tends to infinity as z → z−c (α). Hence, we can relate the behaviour
of ZXn(α)/(2d)n for n large to that of χα(z/(2d)) for z close to zc(α):

Lemma 3.10 Let αc be defined by ΛX(αc) = ln(2d), see (43). We have the characterisation

α < αc ⇔ zc(α) > 1/(2d) ⇔ χα(1/(2d)) <∞ ⇔ lim
n→∞

Z
1/n
Xn

(α)/2d = 0. (51)

3.1.1 SAW on T2d

The self avoiding walks on the tree are not numerous so that we can compute explicitly the
partition function ZSAWn(α) and the quantities that derive from it. Any self avoiding path
of length n in T2d , −→x ∈ SAWn, is such that |xn| = n, and there are 2d(2d − 1)n−1 such
paths. Hence

ZSAWn(α) =
2d

2d− 1
((2d− 1)eα)n, and ΛSAW (α) = ln(2d− 1) + α, on T2d. (52)

The function ΛSAW is linear, hence convex, and we get a value of αc according to (43), and
a lower bound on the localisation length which read

αc = ln

(
2d

2d− 1

)
=

1

2d
+O(d−2) ⇒ L ≥ 2d+O(1), when d→∞, on T2d. (53)

Since for any given x ∈ T2d, there exists a unique SAW of length n = |x| from e to x, we
have the following explicit expressions for Gα(z, x) and χα(z)

Gα(z, x) = (zeα)|x|, ∀ z ∈ R (54)

χα(z) =
2d

(2d− 1)(1− z(2d− 1)eα)
, ∀ 0 < z < e−α/(2d− 1), (55)

which lead to the same conclusion about αc.
We improve the bound (53) in the next Section, discussing the susceptibility χα(z) instead
of the partition function.

3.2 Lower Bound on Sn(α) on T2d via ZSPn
(α)

We estimate Sn(α) by the sum ZSPn(α) =
∑
−→x ∈SPn e

α|xn| on T2d, taking into account a
larger subset of paths in SPn than SAWn, which allows to improve the lower bound on L.
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Theorem 3.11 Let Uω be a balanced quantum walk on T2d, with d ≥ 2. Then
lim supn→∞ E(‖eα|X|/2Unω e⊗ τ0‖2) =∞ if

α ≥ ln

(
1− 1/(2d) + 1/(2d)2

(1− 1/(2d))(1− 1/(2d)2)

)
=

1

2d2
+O

(
1

d3

)
as d→∞,

so that the localisation length L satisfies

L > 2d2 +O (d) , as d→∞. (56)

Remark 3.12 This result shows that dynamical localisation of a BRQW on a symmetric
tree can only hold for larger and larger localisation length for higher and higher coordination
number. Again, BRQWs are far from the RQWs known to displaying delocalisation.

Proof: Let −→xk be one of the 2d(2d − 1)k−1 SAW of length k ≥ 1. We shall attach at
1 ≤ j ≤ k + 1 distinct sites of −→xk, decorations of variable lengths 1 ≤ ri, i ∈ {1, 2, . . . , j}
consisting of SAW of length ri that do not intersect −→xk. These decorations will be run back
and forth in sequence, so that such paths belong to SP by construction. Given ri ≥ 1, there
are 2(d − 1)(2d − 1)ri−1 ways to construct these decorations, the first factor taking into
account the fact they need to avoid the ingoing and outgoing directions of −→xk at the site
where they are attached. We neglect the extra possibilities at both ends of −→xk. There are(
k + 1
j

)
ways to choose the j sites of −→xk and, given ρ ≥ 1, there are

(
ρ− 1
j − 1

)
compositions

of ρ with j parts, i.e. distinct ordered sets {r1, r2, . . . , rj} such that ρ = r1 + r2 + · · ·+ rj ,
with 1 ≤ ri ≤ ρ. The total length of such a decorated path is thus n = k+ 2ρ, so that their
contribution to Sn(α) reads

Sn(α) ≥ 2d

2d− 1

∑
ρ≥1,k≥1
1≤j≤k+1

s.t. n=k+2ρ

(eα(2d− 1))k
(

2(d− 1)

(2d− 1)

)j
(2d− 1)ρ

(
k + 1
j

)(
ρ− 1
j − 1

)
. (57)

Note that the summand is non negative, and that the constraints on j and ρ can be taken
care of by the binomials. At this point it is convenient to consider the susceptibility χα(z),
see (46), which thus admits the lower bound

χα(z) ≥ c(d)
∑
n≥0

δn,k+2ρ z
n

∑
ρ≥1,k≥1,j≥1

(eα(2d−1))k
(

2(d− 1)

(2d− 1)

)j
(2d−1)ρ

(
k + 1
j

)(
ρ− 1
j − 1

)
,

(58)
where c(d) is an inessential constant that can change from line to line. Performing the sums
of k and ρ first, making use twice of the identity∑

k≥j

(
k
j

)
xj =

xj

(1− x)j+1
, if |x| < 1, (59)

we get

χα(z) ≥ c(d)
∑
j≥1

(
zeα(2d− 1)

1− zeα(2d− 1)

)j (2(d− 1)

(2d− 1)

)j ( z2(2d− 1)

1− z2(2d− 1)

)j
, (60)
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provided
z2(2d− 1) < 1, and zeα(2d− 1) < 1. (61)

Divergence of χα(z) thus holds if

z3eα(2d− 1)2(d− 1)

(1− zeα(2d− 1))(1− z2(2d− 1))
≥ 1 ⇔ eα ≥ 1− z2(2d− 1)

(1− z2)z(2d− 1)
. (62)

One checks that the second estimate above is compatible with the second condition (61) for
all values of z > 0 and d > 1, whereas the first condition holds in particular for z = 1/(2d)
for any d ≥ 1. Thus, in the limit of large d, (62) implies divergence of χα(1/(2d)) for

eα ≥ 1 + 1/(2d2) +O(1/d3), (63)

hence the announced upper bound on αc.

Remark 3.13 Actually, considering paths with decorations of length 1 only is enough to
improve the lower bound on L (53) to a constant times d2, whereas paths with decorations
of fixed length strictly larger than one do not provide such an improvement.

3.3 Lower Bound on Sn(α) on Zd

We now turn to the cubic lattice case in dimension larger than or equal to two. We
have the choice in the norm we use in (18), and the critical value αc beyond which
lim supn→∞ E(‖eα‖X‖/2Unω e⊗ τ0‖2) =∞ depends on this choice.

If ‖ · ‖a ≤ ν‖ · ‖b, and αc(a), αc(b) denote the corresponding critical values, we have

αc(b) ≤ ναc(a). (64)

This is a consequence of the fact that ‖X‖ 7→ E(‖eα‖X‖/2Unω e⊗τ0‖2) is increasing. Thanks
to the relations between lp norms on Zd,

‖x‖p ≤ ‖x‖q ≤ d1/q−1/p‖x‖p, for any 1 ≤ q < p ≤ ∞, and any x ∈ Zd, (65)

a critical value αc(∞) obtained for p = ∞ will do for all p ∈ [1,∞[, while an estimate for
αc(1) is easier to get.

We investigate here the dependence on dimension of the quantities involved so far,
in order to get a bound on αc(1). In the sequel, it will sometimes be useful to write
x = (L, y) ∈ Zd, with L ∈ Z and y ∈ Zd−1, so that ‖(L, y)‖1 = |L| + ‖y‖1. Dropping
the subscript SAW and emphasising the dependence on the dimension in the notation, the
partition function (41) writes

Z(d)
n (α) =

∑
L∈Z

y∈Zd−1

∑
−→x∈SAWn
xn=(L,y)

eα‖(L,y)‖1 =
∑
L∈Z

y∈Zd−1

∑
−→x∈SAWn
xn=(L,y)

eα(|L|+‖y‖1). (66)

For L 6= 0 fixed, we can further restrict summation to SAWs −→x in Zd of length n from the
origin to (L, y) that stem form a SAW −→y in Zd−1 of length n− |L| from the origin to y in
the following way:
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For r = 1, . . . , n − |L|, one attaches at r of the n − |L| + 1 sites of −→y a straight segment
along the first coordinate axis, of length ni ≥ 1, i = 1, . . . , r, such that

∑r
i=1 ni = |L|.

We observe that given |L| ≥ 1, and 1 ≤ r ≤ |L| there are

(
|L| − 1
r − 1

)
compositions of |L|

with r parts, i.e. ways to write |L| = n1 + n2 + · · ·+ nr, where (n1, · · · , nr) is an ordered
set, with nj ≥ 1. Since the number of ways to choose the r locations on −→y is

(
n−|L|+1

r

)
,

Vandermonde’s identity
n∑
k=0

(
p
k

)(
q

n− k

)
=

(
p+ q
n

)
, (67)

shows that, given a SAW −→y in Zd−1, there are
(
n
|L|
)

SAWs in Zd from the origin to (L, y)

constructed this way. If L = 0, we just consider −→y in Zd−1 as a SAW in Zd. Hence,
restricting attention to this subset of SAWs, we deduce∑

−→x∈SAWn
xn=(L,y)

1 ≥
(
n

|L|

) ∑
−→y ∈SAWn−|L|

yn=y

1 (68)

so that

Z(d)
n (α) ≥

∑
L∈Z

y∈Zd−1

eα|L|eα‖y‖1
(
n

|L|

) ∑
−→y ∈SAWn−|L|

yn=y

1 ≡
∑
L∈Z

eα|L|
(
n

|L|

)
Z

(d−1)
n−|L|(α). (69)

This last estimate yields

Theorem 3.14 For the l1 norm on Zd, we have the estimate for any d ∈ N,

αc(1) ≤ ln(2). (70)

Proof: From Z
(d)
n (α) ≥ enΛ(d)(α) and the starting point Λ(1)(α) = α, see (52), we get

from (69)

Λ(d)(α) ≥ ln(eα + eΛ(d−1)(α)) ≥ ln(deα). (71)

With the criterion (43), we get αc(1) ≤ ln(2).

Remark 3.15 For the lp norm with ∞ > p ≥ 1, using ‖(L, y)‖p ≥ |L|+‖y‖p
21−1/p , the same

argument yields an upper bound on αc(p) which, however, is not as good as ln(2).

For the sake of comparison, it is worth mentioning that for the l∞ norm, the same strategy
also provides an explicit bound. Indeed, using ‖(L, y)‖∞ = max(|L|, ‖y‖∞), we get

Z(d)
n (α) ≥

∑
y∈Zd−1

L∈Z
|L|≤‖y‖∞

eα‖y‖∞
(
n

|L|

) ∑
−→y ∈SAWn−|L|

yn=y

1 +
∑

y∈Zd−1

L∈Z
|L|>‖y‖∞

e|L|α
(
n

|L|

) ∑
−→y ∈SAWn−|L|

yn=y

1. (72)

Now, using eα‖y‖∞ ≥ eα|L| in the first sum yields

Z(d)
n (α) ≥

∑
y∈Zd−1

L∈Z

eα|L|
(
n

|L|

) ∑
−→y ∈SAWn−|L|

yn=y

1 ≡
∑

y∈Zd−1

L∈Z

eα|L|
(
n

|L|

)
Z

(d−1)
n−|L|(0). (73)
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Then, with Z
(d)
n−|L|(0) ≥ µ(d− 1)n−|L|, see (44), we obtain

Z(d)
n (α) ≥ (eα + µ(d− 1))n ⇒ Λ(d)(α) ≥ ln(eα + µ(d− 1)). (74)

Hence, together with the known asymptotics µ(d) = 2d−1 +O(1/d) in high dimension, see
e.g. [MS, BDGS], we obtain

αc(∞) ≤ ln(2d− µ(d− 1)) = ln(3) +O(1/d). (75)

Not only is this bound not as good as the one on αc(1) for d large, but, since d ≤ µ(d) ≤ 2d,
the method used here to estimate αc(∞) cannot yield a better estimate than ln(2), the
bound for αc(1).

4 Localisation length and correlation length of SAW

In this closing section, we make the link between the quantities involved in the analysis of
the localisation length of BRQWs and the correlation length appearing in the analysis of
SAWs in Zd. Our concern being in the large d limit, we assume d ≥ 5 in this section. We
recall the relevant notions and results to be found in [MS, BDGS], for example. The two
point function for SAWs, for paths starting at the origin, is given by (45) at α = 0, and
similarly for the corresponding susceptibility

G0(z, x) =
∑
n≥0

zn
∑

−→x∈SAWn
xn=x

1, and χ0(z) =
∑
x∈Zd

G0(z, x). (76)

If x 6= 0, both functions have radius of convergence zc(0) = 1/µ(d), for SAWs, see (48).

The inverse correlation length or mass for SAWs in Zd is defined for all z > 0 by

md(z) = lim inf
L→∞

− lnG0(z, (L, 0))

L
, (77)

where we stress the dependence on the dimension d in the notation. We provide below
alternative expressions of the inverse correlation length md(z) = 1/ξd(z). The mass md

enjoys several properties proven in [MS], that we summarise in the next proposition:

Proposition 4.1 For any 0 < z < 1/µ(d), z 7→ md(z) is real analytic, strictly decreasing,
concave in ln z, and

lim
z↓0

md(z) =∞, lim
z↑1/µ(d)

md(z) = 0. (78)

For z > 1/µ(d), md(z) = −∞ and, if d ≥ 5, md(1/µ(d)) = 0.

In order to make the link with the localisation length L, we introduce for all z > 0,

GL(z) =
∑

y∈Zd−1

G0(z, (L, y)), (79)

the generating functions of SAWs from the origin to the plane {x1 = L}. This generating
function is known to satisfy, among other things,
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Lemma 4.2 For all 0 < z < 1/µ(d),

md(z) = lim
L→∞

− lnGL(z)

L
= sup

L≥1

− lnGL(z)

L
, and (80)

e−md(z)L ≤ GL(z) ≤ χ0(z)2e−md(z)L, if L ≥ 1. (81)

This is enough to prove the sought for relationship between localisation length and corre-
lation length:

Proposition 4.3 On the cubic lattice Zd, the localisation length of BRQWs is bounded
below by the correlation length of SAWs at the critical value of simple random walks:

L ≥ ξd(1/(2d)) ⇔ αc ≤ md(1/(2d)). (82)

Remarks 4.4 i) If one can show that limd→∞md(1/(2d)) = 0, it would prove the diver-
gence with the dimension of the localisation length L. Despite the fact that 1/(2d) is the
critical point for simple random walks, to which 1/µ(d) converges, the control of the limit
seems to be non trivial according to experts in SAWs, and it is not clear that the limit
vanishes.
ii) An uncontrolled prediction on limd→∞ ξd(1/(2d)) is however not encouraging: for d ≥ 5
fixed, it is known that ξd(z) ' {D2d( zc

zc−z )}1/2, as z → zc = 1/µ(d), where D is the diffu-
sion constant of SAWs, such that 1 + c1/d ≤ D ≤ 1 + c2/d, for large d, with c1, c2 > 0,
see Thm 6.1.5 and Proposition 6.2.11 in [MS]. Ignoring the fact that error terms are a
priori not uniform in d, and plugging in the asymptotics µ(d) = 2d − 1 + O(1/d), we get
ξd(1/(2d)) ' 1. However, Theorem 3.14 yields the better bound L ≥ 1/ ln(2).

Proof: Considering χα(z) =
∑

n≥0 z
n
∑
−→x ∈SAWn

eα‖xn‖∞ and paths with end points of
the form xn = (L, y), we get with ‖(L, y)‖∞ ≥ |L|,

χα

( z
2d

)
=
∑
n≥0

( z
2d

)n ∑
L∈Z

y∈Zd−1

eα‖(L,y)‖∞
∑

−→x∈SAWn
xn=(L,y)

1 ≥
∑
L∈Z

eα|L|
∑

y∈Zd−1

G0

( z
2d
, (L, y)

)
. (83)

The last sum above coincides with GL
(
z
2d

)
, so that restricting to L ≥ 1, Lemma 4.2 yields

the estimate
χα

( z
2d

)
≥
∑
L>0

eαLe−md(
z
2d)L. (84)

The right hand side being convergent if and only if α < md

(
z
2d

)
, we deduce the result from

Lemma 3.10.

5 Appendix

Proof of Lemma 3.8:
For the log-convexity property we compute the second derivative of ΛXn(α) = 1

n lnZXn(α):

Λ′Xn(α) =
Z ′Xn(α)

nZXn(α)
, Λ′′Xn(α) =

ZXn(α)Z ′′Xn(α)− (Z ′Xn(α))2

nZ2
Xn

(α)
, (85)
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where Z
(p)
Xn

(α) =
∑
−→x ∈SPn |xn|

peα|xn|, for p ∈ N. Hence Λ′Xn(α) > 0 and

ZXn(α)Z ′′Xn(α)− (Z ′Xn(α))2 =
∑
−→x∈Xn−→y ∈Xn

(|xn|2 − |xn||yn|)eα(|xn|+|yn|)

=
1

2

∑
−→x∈Xn−→y ∈Xn

(|xn| − |yn|)2eα(|xn|+|yn|) ≥ 0. (86)

To prove the existence of the limit as n→∞ of ΛXn(α), we use a subadditivity argument.
For −→x ∈ Xn and −→y ∈ Xm, the concatenated path −→xy obtained by following −→x from e to
xn and then −→y from xn to xnym does not necessarily satisfy the requirements to belong to
Xn+m. By the triangular inequality, |xnym| ≤ |xn|+ |ym|, we have for α ≥ 0,

ZXn+m(α) =
∑

−→x ∈Xn+m

eα|xn+m| ≤
∑
−→x∈Xn−→y ∈Xm

eα|xnym|

=
∑
−→x∈Xn−→y ∈Xm

eα|xn|eα|ym| = ZXn(α)ZXm(α). (87)

Consequently, {ΛXn(α) = 1
n ln(ZXn(α))}n∈N∗ is a subadditive sequence, which implies (42)

for each α ≥ 0. The upper and lower bounds on ΛX(α) are consequences of Sn(α) ≤ enα

and (40). Since ΛXn is convex and increasing for all n ∈ N∗, we immediately get that ΛX
is convex and non decreasing on [0,∞). Moreover, ΛXn converges uniformly to ΛX on any
compact set of ]0,∞[, and ΛX is continuous on ]0,∞[, see [Si2]. It remains to extend the
result to compact sets of the form [0, b], b > 0. Let 0 < α < 1 and write α = 0(1−α) + 1α.
By convexity and monotony of ΛX , we have

0 ≤ ΛX(α)− ΛX(0) ≤ α(ΛX(1)− ΛX(0)), (88)

so that ΛX is continuous at 0. Since a sequence of monotonous functions that converges to
a continuous function on a compact set converges uniformly, this finishes the proof.

References

[A-CAT] R. Abou-Chacra, P. W. Anderson, and D. J. Thouless, A selfconsistent theory of
localization. J. Phys. C: Solid State Phys., 6, 1734-1752, (1973).

[ASW] Ahlbrecht, A., Scholz, V.B., Werner, A.H.: Disordered quantum walks in one lattice
dimension, J. Math. Phys. 52, 102201 (2011).

[AW] M. Aizenman, S. Warzel, Random Operators: Disorder Effects on Quantum Spectra
and Dynamics, AMS 2015.

[ABJ1] J. Asch , O. Bourget and A. Joye, Dynamical Localization of the Chalker-
Coddington Model far from Transition, J. Stat. Phys., 147, 194-205 (2012).

[ABJ2] J. Asch , O. Bourget and A. Joye, Spectral Stability of Unitary Network Models,
Rev. Math. Phys., 27, 1530004, (2015).

19



[ABJ3] J. Asch , O. Bourget and A. Joye, Chirality induced Interface Currents in the
Chalker Coddington Model, J. Spectr. Theor., to appear, (arXiv:1708.02120).

[BDGS] Bauerschmidt, R., Duminil-copin, H., Goodman, J., Slade, G., Lectures on self-
avoiding walks. Probability and Statistical Physics in Two and More Dimensions (D.
Ellwood, CM Newman, v. Sidoravicius, and W. Werner, Eds.), Clay Mathematics
Institute Proceedings, 15, 395476 (2012).

[BHJ] O. Bourget, J. S. Howland and A. Joye, Spectral Analysis of Unitary Band Matri-
ces.Commun. Math. Phys. 234, (2003), 191-227.

[CL] R. Carmona, J. Lacroix, Spectral theory of random Schrodinger Operators, Birkhauser,
1990.

[CC] Chalker, J. T., Coddington, P. D. Percolation, quantum tunnelling and the integer
Hall effect. J. Phys. C: Solid State Physics, 21, 2665, (1988).

[CMV] M.J. Cantero, L. Moral and L. Velázquez, Five-Diagonal Matrices and Zeros of
Orthogonal Polynomials on the Unit Circle, Linear Algebra and Its Applications 326
C, 29-56 (2003).

[DFV] Damanik, D., Fillman, J., Vance, R., Dynamics of unitary operators, Journal of
Fractal Geometry, 1, 391-425, (2014).

[GNVW] D. Gross, V. Nesme, H. Vogts, and R. F. Werner, Index theory of one dimensional
quantum walks and cellular automata. Comm. Math. Phys., 310, 419-454, (2012).
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Henri Poincaré, 16, 2499-2534, (2015).

[HJS] E. Hamza, A. Joye and G. Stolz, Dynamical Localization for Unitary Anderson
Models. Math. Phys., Anal. Geom. 12 (2009), 381-444.

[IV] Ioffe, D., Velenik, Y. ,The statistical mechanics of stretched polymers. Brazilian Jour-
nal of Probability and Statistics, 24(2) (2010), 279-299.

[J1] A. Joye, Density of States and Thouless Formula for Random Unitary Band Matrices.
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