The Cauchy problem for the Landau-Lifshitz-Gilbert equation in BMO and self-similar solutions - Archive ouverte HAL
Article Dans Une Revue Nonlinearity Année : 2019

The Cauchy problem for the Landau-Lifshitz-Gilbert equation in BMO and self-similar solutions

Résumé

We prove a global well-posedness result for the LandauLifshitz equation with Gilbert damping provided that the BMO semi-norm of the initial data is small. As a consequence, we deduce the existence of self-similar solutions in any dimension. In the one-dimensional case, we characterize the self-similar solutions associated with an initial data given by some (S^2-valued) step function and establish their stability. We also show the existence of multiple solutions if the damping is strong enough. Our arguments rely on the study of a dissipative quasilinear Schrödinger equation obtained via the stereographic projection and techniques introduced by Koch and Tataru.
Fichier principal
Vignette du fichier
Cauchy-BMO-LLG.pdf (600.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01948679 , version 1 (08-12-2018)
hal-01948679 , version 2 (20-03-2019)

Identifiants

Citer

Susana Gutiérrez, André de Laire. The Cauchy problem for the Landau-Lifshitz-Gilbert equation in BMO and self-similar solutions. Nonlinearity, 2019, 32 (7), pp.2522-2563. ⟨10.1088/1361-6544/ab1296⟩. ⟨hal-01948679v2⟩
167 Consultations
331 Téléchargements

Altmetric

Partager

More