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We prove a global well-posedness result for the LandauLifshitz equation with Gilbert damping provided that the BMO semi-norm of the initial data is small. As a consequence, we deduce the existence of self-similar solutions in any dimension. In the one-dimensional case, we characterize the self-similar solutions associated with an initial data given by some (S 2 -valued) step function and establish their stability. We also show the existence of multiple solutions if the damping is strong enough.

Our arguments rely on the study of a dissipative quasilinear Schrödinger equation obtained via the stereographic projection and techniques introduced by Koch and Tataru.

Introduction and main results

We consider the LandauLifshitzGilbert (LLG) equation ∂ t m = βm × ∆m -αm × (m × ∆m), on R N × R + , (LLG α ) where m = (m 1 , m 2 , m 3 ) : R N × R + -→ S 2 is the spin vector, β ≥ 0, α ≥ 0, × denotes the usual cross-product in R 3 , and S 2 is the unit sphere in R 3 . This model introduced by Landau and Lifshitz describes the dynamics for the spin in ferromagnetic materials [START_REF] Landau | On the theory of the dispersion of magnetic permeability in ferromagnetic bodies[END_REF][START_REF] Gilbert | A lagrangian formulation of the gyromagnetic equation of the magnetization eld[END_REF] and constitutes a fundamental equation in the magnetic recording industry [START_REF] Wei | Micromagnetics and Recording Materials[END_REF]. The parameters β ≥ 0 and α ≥ 0 are respectively the so-called exchange constant and Gilbert damping, and take into account the exchange of energy in the system and the eect of damping on the spin chain. Note that, by performing a time-scaling, we assume w.l.o.g. that α ∈ [0, 1] and β = 1 -α 2 .

The LandauLifshitz family of equations includes as special cases the well-known heat-ow for harmonic maps and the Schrödinger map equation onto the 2-sphere. In the limit case β = 0 (and so α = 1) the LLG equation reduces to the heat-ow equation for harmonic maps

∂ t m -∆m = |∇m| 2 m, on R N × R + . (HFHM)
The case when α = 0 (i.e. no dissipation/damping) corresponds to the Schrödinger map equation

∂ t m = m × ∆m, on R N × R + . (SM)
In the one-dimensional case N = 1, we established in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF] the existence and asymptotics of the family {m c,α } c>0 of self-similar solutions of (LLG α ) for any xed α ∈ [0, 1], extending the results in Gutiérrez, Rivas and Vega [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF] in the setting of the Schrödinger map equation and related binormal ow equation. The motivation for the results presented in this paper rst originated from the desire to study further properties of the self-similar solutions found in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF], and in particular their stability. In the case α = 0, the stability of the self-similar solutions of the Schrödinger map has been considered in the series of papers by Banica and Vega [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF][START_REF] Banica | Scattering for 1D cubic NLS and singular vortex dynamics[END_REF][START_REF] Banica | Stability of the self-similar dynamics of a vortex lament[END_REF], but no stability result is known for these solutions in the presence of damping, i.e. α > 0. One of the key ingredients in the analysis given by Banica and Vega is the reversibility in time of the equation in the absence of damping. However, since (LLG α ) is a dissipative equation for α > 0, this property is no longer available and a new approach is needed.

In the one-dimensional case and for xed α ∈ [0, 1], the self-similar solutions of (LLG α ) constitute a uniparametric family {m c,α } c>0 where m c,α is dened by

m c,α (x, t) = f x √ t ,
for some prole f : R -→ S 2 , and is associated with an initial condition given by a step function (at least when c is small) of the form

m 0 c,α := A + c,α χ R + + A - c,α χ R -, (1.1) 
where A ± c,α are certain unitary vectors and χ E denotes the characteristic function of a set E. In particular, when α > 0, the Dirichlet energy associated with the solutions m c,α given by

∇m c,α (•, t) 2 L 2 = c 2 2π αt 1/2 , t > 0, (1.2) 
diverges as t → 0 +3 .

A rst natural question in the study of the stability properties of the family of solutions {m c,α } c>0 is whether or not it is possible to develop a well-posedness theory for the Cauchy problem for (LLG α ) in a functional framework that allows us to handle initial conditions of the type (1.1). In view of (1.1) and (1.2), such a framework should allow some rough functions (i.e. function spaces beyond the classical energy ones) and step functions.

A few remarks about previously known results in this setting are in order. In the case α > 0, global well-posedness results for (LLG α ) have been established in N ≥ 2 by Melcher [START_REF] Melcher | Global solvability of the Cauchy problem for the Landau-Lifshitz-Gilbert equation in higher dimensions[END_REF] and by Lin, Lai and Wang [START_REF] Lin | Global well-posedness of the Landau-Lifshitz-Gilbert equation for initial data in Morrey spaces[END_REF] for initial conditions with a smallness condition on the gradient in the L N (R N ) and the Morrey M 2,2 (R N ) norm 4 , respectively. Therefore these results do not apply to the initial condition m 0 c,α . When α = 1, global well-posedness results for the heat ow for harmonic maps (HFHM) have been obtained by Koch and Lamm [START_REF] Koch | Geometric ows with rough initial data[END_REF] for an initial condition L ∞ -close to a point and improved to an initial data with small BMO semi-norm by Wang [START_REF] Wang | Well-posedness for the heat ow of harmonic maps and the liquid crystal ow with rough initial data[END_REF].

The ideas used in [START_REF] Koch | Geometric ows with rough initial data[END_REF] and [START_REF] Wang | Well-posedness for the heat ow of harmonic maps and the liquid crystal ow with rough initial data[END_REF] rely on techniques introduced by Koch and Tataru [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF] for the NavierStokes equation. Since m 0 c,α has a small BMO semi-norm if c is small, the results in [START_REF] Wang | Well-posedness for the heat ow of harmonic maps and the liquid crystal ow with rough initial data[END_REF] apply to the case α = 1.

There are two main purposes in this paper. The rst one is to adapt and extend the techniques developed in [START_REF] Koch | Geometric ows with rough initial data[END_REF][START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF][START_REF] Wang | Well-posedness for the heat ow of harmonic maps and the liquid crystal ow with rough initial data[END_REF] to prove a global well-posedness result for (LLG α ) with α ∈ (0, 1] for data m 0 in L ∞ (R N ; S 2 ) with small BMO semi-norm. The second one is to apply this result to establish the stability of the family of self-similar solutions {m c,α } c>0 found in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF] and derive further properties for these solutions. In particular, a further understanding of the properties of the functions m c,α will allow us to prove the existence of multiple smooth solutions of (LLG α ) associated with the same initial condition, provided that α is close to one.

In order to state the rst of our results, we introduce the function space X as follows:

X = { v : R n × R + → R 3 : v, ∇v ∈ L 1 loc (R N × R + ) and v X := sup t>0 v(t) L ∞ + [v] X < ∞} where [v] X := sup t>0 √ t ∇v L ∞ + sup x∈R N r>0 1 r N ˆBr(x)×[0,r 2 ] |∇v(y, t)| 2 dt dy 1 2
, and B r (x) denotes the ball with center x and radius r > 0 in R N . Let us remark that the rst term in the denition of [v] X allows to capture a blow-up rate of 1/ √ t for ∇v(t) L ∞ , as t → 0 + . This is exactly the blow-up rate for the self-similar solutions (see (3.1) and (3.12)). The integral term in [v] X is associated with the space BMO as explained in Subsection 2.1, and it is also well adapted to the self-similar solutions (see Proposition 3.4 and its proof ).

We can now state the following (global) well-posedness result for the Cauchy problem for the LLG equation:

Theorem 1.1. Let α ∈ (0, 1]. There exist constants M 1 , M 2 , M 3 > 0, depending only on α and N such that the following holds. For any m 0 ∈ L ∞ (R N ; S 2 ), Q ∈ S 2 , δ ∈ (0, 2] and ε 0 > 0 such that

ε 0 ≤ M 1 δ 6 , inf R N |m 0 -Q| 2 ≥ 2δ and [m 0 ] BM O ≤ ε 0 , (1.3) 
there exists a unique solution m ∈ X(R N × R + ; S 2 ) of (LLG α ) with initial condition m 0 such that

inf x∈R N t>0 |m(x, t) -Q| 2 ≥ 4 1 + M 2 2 (M 3 δ 4 + δ -1 ) 2 and [m] X ≤ 4M 2 (M 3 δ 4 + 8δ -2 ε 0 ). (1.4)
3 We refer the reader to Theorem A.5 in the Appendix and to [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF] for precise statements of these results. 4 See footnote in Section 3.3 for the denition of the Morrey space M 2,2 (R N ).

In addition, m is a smooth function belonging to C ∞ (R N × R + ; S 2 ). Furthermore, assume that n is a solution to (LLG α ) fullling (1.4), with initial condition n 0 satisfying (1.3). Then

m -n X ≤ 120M 2 δ 2 m 0 -n 0 L ∞ .
(1.5)

As we will see in Section 2, the proof of Theorem 1.1 relies on the use of the stereographic projection to reduce Theorem 1.1 to establish a well-posedness result for the associated dissipative (quasilinear) Schrödinger equation (see Theorem 2.1). In order to be able to apply Theorem 1.1

to the study of both the initial value problem related to the LLG equation with a jump initial condition, and the stability of the self-similar solutions found in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF], we will need a more quantitative version of this result. A more rened version of Theorem 1.1 will be stated in Theorem 2.9 in Subsection 2.2.

Theorem 1.1 (or more precisely Theorem 2.9) has two important consequences for the Cauchy problem related to (LLG α ) in one dimension:

   ∂ t m = βm × ∂ xx m -αm × (m × ∂ xx m), on R × R + , m 0 A ± := A + χ R + + A -χ R -, (1.6) 
where A ± are two given unitary vectors such that the angle between A + and A -is suciently small:

(a) From the uniqueness statement in Theorem 1.1, we can deduce that the solution to (1.6) provided by Theorem 1.1 is a rotation of a self-similar solution m c,α for an appropriate value of c (see Theorem 3.3 for a precise statement).

(b) (Stability ) From the dependence of the solution with respect to the initial data established in (1.5) and the analysis of the 1d-self-similar solutions m c,α carried out in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF], we obtain the following stability result: For any given m 0 ∈ S 2 satisfying (1.3) and close enough to m 0 A ± , the solution m of (LLG α ) associated with m 0 given by Theorem 1.1 must remain close to a rotation of a self-similar solution m c,α , for some c > 0. In particular, m remains close to a self-similar solution.

The precise statement is provided in the following theorem.

Theorem 1.2. Let α ∈ (0, 1]. There exist constants L 1 , L 2 , L 3 > 0, δ * ∈ (-1, 0), ϑ * > 0 such that the following holds. Let A + , A -∈ S 2 with angle ϑ between them. If 0 < ϑ ≤ ϑ * ,
then there is c > 0 such that for every m 0 satisfying

m 0 -m 0 A ± L ∞ ≤ c √ π 2 √ α ,
there exists R ∈ SO(3), depending only on A + , A -, α and c, such that there is a unique global smooth solution m of (LLG α ) with initial condition m 0 that satises

inf x∈R t>0 (Rm) 3 (x, t) ≥ δ * and [m] X ≤ L 1 + L 2 c. (1.7)
Moreover,

m -Rm c,α X ≤ L 3 m 0 -m 0 A ± L ∞ .
In particular,

∂ x m -∂ x Rm c,α L ∞ ≤ L 3 √ t m 0 -m 0 A ± L ∞ ,
for all t > 0.

Notice that Theorem 1.2 provides the existence of a unique solution in the set dened by the conditions (1.7), and hence it does not exclude the possibility of the existence of other solutions not satisfying these conditions. In fact, as we will see in Theorem 1.3 below, one can prove the existence of multiple solutions of the initial value problem (1.6), at least in the case when α is close to 1.

We point out that our results are valid only for α > 0. If we let α → 0, then the constants M 1 and M 3 in Theorem 1.1 go to 0 and M 2 blows up. Indeed, we use that the kernel associated with the GinzburgLandau semigroup e (α+iβ)t∆ belongs to L 1 and its exponential decay. Therefore our techniques cannot be generalized (in a simple way) to cover the critical case α = 0. In particular, we cannot recover the stability results for the self-similar solutions in the case of Schrödinger maps proved by Banica and Vega in [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF][START_REF] Banica | Scattering for 1D cubic NLS and singular vortex dynamics[END_REF][START_REF] Banica | Stability of the self-similar dynamics of a vortex lament[END_REF].

As mentioned before, in [START_REF] Lin | Global well-posedness of the Landau-Lifshitz-Gilbert equation for initial data in Morrey spaces[END_REF] and [START_REF] Melcher | Global solvability of the Cauchy problem for the Landau-Lifshitz-Gilbert equation in higher dimensions[END_REF] some global well-posedness results for (LLG α ) with α ∈ (0, 1] were proved for initial conditions with small gradient in L N (R N ) and M 2,2 (R N ), respectively (see footnote in Subsection 3.3 for the denition of the space M 2,2 (R N )). In view of the embeddings

L N (R N ) ⊂ M 2,2 (R N ) ⊂ BM O -1 (R N ),
for N ≥ 2, Theorem 1.1 can be seen as generalization of these results since it covers the case of less regular initial conditions. The arguments in [START_REF] Lin | Global well-posedness of the Landau-Lifshitz-Gilbert equation for initial data in Morrey spaces[END_REF][START_REF] Melcher | Global solvability of the Cauchy problem for the Landau-Lifshitz-Gilbert equation in higher dimensions[END_REF] are based on the method of moving frames that produces a covariant complex GinzburgLandau equation. In Subsection 3.3 we give more details and discuss the corresponding equation in the one-dimensional case and provide some properties related to the self-similar solutions.

Our existence and uniqueness result given by Theorem 1.1 requires the initial condition to be small in the BMO semi-norm. Without this condition, the solution could develop a singularity in nite time. In fact, in dimensions N = 3, 4, Ding and Wang [START_REF] Ding | Finite time singularity of the Landau-Lifshitz-Gilbert equation[END_REF] have proved that for some smooth initial conditions with small (Dirichlet) energy, the associated solutions of (LLG α ) blow up in nite time.

In the context of the initial value problem (1.6), the smallness condition in the BMO seminorm is equivalent to the smallness of the angle between A + and A -. As discussed in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF], in the one dimensional case N = 1 for xed α ∈ (0, 1] there is some numerical evidence that indicates the existence of multiple (self-similar) solutions associated with the same initial condition of the type in (1.6) (see Figures 2 and3 in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF]). This suggests that the Cauchy problem for (LLG α ) with initial condition (1.6) is ill-posed for general A + and A -unitary vectors.

The following result states that in the case when α is close to 1, one can actually prove the existence of multiple smooth solutions associated with the same initial condition m 0 A ± . Moreover, given any angle ϑ ∈ (0, π) between two vectors A + and A -∈ S 2 , one can generate any number of distinct solutions by considering values of α suciently close to 1.

Theorem 1.3. Let k ∈ N, A + , A -∈ S 2 and let ϑ be the angle between A + and A -. If ϑ ∈ (0, π), then there exists α k ∈ (0, 1) such that for every α ∈ [α k , 1] there are at least k distinct smooth self-similar solutions {m j } k j=1 in X(R × R + ; S 2 ) of (LLG α ) with initial condition m 0 A ± . These solutions are characterized by a strictly increasing sequence of values

{c j } k j=1 , with c k → ∞ as k → ∞, such that m j = R j m c j ,α , (1.8)
where R j ∈ SO(3). In particular

√ t ∂ x m j (•, t) L ∞ = c j ,
for all t > 0.

(1.9) Furthermore, if α = 1 and ϑ ∈ [0, π], then there is an innite number of distinct smooth selfsimilar solutions {m j } j≥1 in X(R × R + ; S 2 ) of (LLG α ) with initial condition m 0 A ± . These solutions are also characterized by a sequence {c j } ∞ j=1 such that (1.8) and (1.9) are satised. This sequence is explicitly given by

c 2 +1 = √ π - ϑ 2 √ π , c 2 = √ π + ϑ 2 √ π ,
for ≥ 0.

(1.10)

It is important to remark that in particular Theorem 1.3 asserts that when α = 1, given A + , A -∈ S 2 such that A + = A -, there exists an innite number of distinct solutions {m j } j≥1 in X(R × R + ; S 2 ) of (LLG α ) with initial condition m 0 A ± such that [m 0 A ± ] BM O = 0. This particular case shows that a condition on the size of X-norm of the solution as that given in (1.4) in Theorem 1.1 is necessary for the uniqueness of solution. We recall that for nite energy solutions of (HFHM) there are several nonuniqueness results based on Coron's technique [START_REF] Coron | Nonuniqueness for the heat ow of harmonic maps[END_REF] in dimension N = 3. Alouges and Soyeur [START_REF] Alouges | On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness[END_REF] successfully adapted this idea to prove the existence of multiple solutions of the (LLG α ), with α > 0, for maps m : Ω -→ S 2 , with Ω a bounded regular domain of R 3 . In our case, since {c j } k j=1 is strictly increasing, we have at least k genuinely dierent smooth solutions. Notice also that the identity (1.9) implies that the X-norm of the solution is large as j → ∞.

Structure of the paper. This paper is organized as follows: in Section 2 we use the stereographic projection to reduce matters to the study the initial value problem for the resulting dissipative Schrödinger equation, prove its global well-posedness in well-adapted normed spaces, and use this result to establish Theorem 2.9 (a more quantitative version of Theorem 1.1). In Section 3 we focus on the self-similar solutions and we prove Theorems 1.2 and 1.3. In Section 3.3

we discuss some implications of the existence of explicit self-similar solutions for the Schrödinger equation obtained by means of the Hasimoto transformation. Finally, and for the convenience of the reader, we have included some regularity results for the complex GinzburgLandau equation and some properties of the self-similar solutions m c,α in the Appendix.

Notations. We write R + = (0, ∞). Throughout this paper we will assume that α ∈ (0, 1] and the constants can depend on α. In the proofs A B stands for A ≤ C B for some constant C > 0 depending only on α and N . We denote in bold the vector-valued variables.

Since we are interested in S 2 -valued functions, with a slightly abuse of notation, we denote by

L ∞ (R N ; S 2 ) (resp. X(R N ; S 2 )) the space of function in L ∞ (R N ; R 3 ) (resp. X(R N ; R 3 )) such that |m|=1 a.e. on R N . 2 The Cauchy problem 2.1
The Cauchy problem for a dissipative quasilinear Schrödinger equation

Our approach to study the Cauchy problem for (LLG α ) consists in analyzing the Cauchy prob- lem for the associated dissipative quasilinear Schrödinger equation through the stereographic projection, and then transferring the results back to the original equation. To this end, we introduce the stereographic projection from the South Pole P : S 2 \ {(0, 0, -1)} → C dened for by

P(m) = m 1 + im 2 1 + m 3 .
Let m be a smooth solution of (LLG α ) with m 3 > -1, then its stereographic projection u = P(m) satises the quasilinear dissipative Schrödinger equation (see e.g. [START_REF] Lakshmanan | Landau-Lifshitz equation of ferromagnetism: Exact treatment of the Gilbert damping[END_REF] for details)

iu t + (β -iα)∆u = 2(β -iα) ū(∇u) 2 1 + |u| 2 .
(DNLS)

At least formally, the Duhamel formula gives the integral equation:

u(x, t) = S α (t)u 0 + ˆt 0 S α (t -s)g(u)(s) ds, (IDNLS) 
where u 0 = u(•, 0) corresponds to the initial condition,

g(u) = -2i(β -iα) ū(∇u) 2 1 + |u| 2
and S α (t) is the dissipative Schrödinger semigroup (also called the complex GinzburgLandau semigroup) given by S α (t)φ = e (α+iβ)t∆ φ, i.e.

(S α (t)φ)(x) = ˆRN G α (x -y, t)φ(y) dy, with G α (x, t) = e - |x| 2 4(α+iβ)t (4π(α + iβ)t) N/2 . (2.1)
One diculty in studying (IDNLS) is to handle the term g(u). Taking into account that

|β -iα| = 1 and a 1 + a 2 ≤ 1 2
, for all a ≥ 0,

we see that

|g(u)| ≤ |∇u| 2 , (2.3) 
so we need to control |∇u| 2 . Koch and Taratu dealt with a similar problem when studying the well-posedness for the NavierStokes equation in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF]. Their approach was to introduce some new spaces related to BMO and BMO -1 . Later, Koch and Lamm [START_REF] Koch | Geometric ows with rough initial data[END_REF] and Wang [START_REF] Wang | Well-posedness for the heat ow of harmonic maps and the liquid crystal ow with rough initial data[END_REF] have adapted these spaces to study some geometric ows. Following these ideas, we dene the Banach spaces

X(R N × R + ; F ) = {v : R N × R + → F : v, ∇v ∈ L 1 loc (R N × R + ), v X < ∞} and Y (R N × R + ; F ) = {v : R N × R + → F : v ∈ L 1 loc (R N × R + ), v Y < ∞}, where v X := sup t>0 v L ∞ + [v] X , with [v] X := sup t>0 √ t ∇v L ∞ + sup x∈R N r>0 1 r N ˆQr(x) |∇v(y, t)| 2 dt dy 1 2
,

and v Y = sup t>0 t v L ∞ + sup x∈R N r>0 1 r N ˆQr(x) |v(y, t)| dt dy.
Here Q r (x) denotes the parabolic ball Q r (x) = B r (x) × [0, r 2 ] and F is either C or R 3 . The absolute value stands for the complex absolute value if F = C and for the euclidean norm if F = R 3 . We denote with the same symbol the absolute value in F and F 3 . Here and in the sequel we will omit the domain in the norms and semi-norms when they are taken in the whole space, for example

• L p stands for • L p (R N ) , for p ∈ [1, ∞].
The spaces X and Y are related to the spaces BMO(R N ) and BMO -1 (R N ) and are welladapted to study problems involving the heat semigroup S 1 (t) = e t∆ . In order to establish the properties of the semigroup S α (t) with α ∈ (0, 1], we introduce the spaces BMO α (R N ) and BMO -1 α (R N ) as the space of distributions f ∈ S (R N ; F ) such that the semi-norm and norm given respectively by

[f ] BM Oα := sup x∈R N r>0 1 r N ˆQr(x) |∇S α (t)f | 2 dt dy 1 2
, and

f BM O -1 α := sup x∈R N r>0 1 r N ˆQr(x) |S α (t)f | 2 dt dy 1 2
, are nite.

On the one hand, the Carleson measure characterization of BMO functions (see [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF]Chapter 4] and [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF]Chapter 10]) yields that for xed α ∈ (0, 1], BM O α (R N ) coincides with the classical BMO(R N ) space 5 , that is for all α ∈ (0, 1] there exists a constant Λ > 0 depending only on α

and N such that

Λ[f ] BM O ≤ [f ] BM Oα ≤ Λ -1 [f ] BM O .
(2.4)

On the other hand, Koch and Tataru proved in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF] that BMO -1 (or equivalently BMO -1 1 , using our notation) can be characterized as the space of derivatives of functions in BMO. A straightforward generalization of their argument shows that the same result holds for BMO -1 α (see Theorem A.1). Hence, using the Carleson measure characterization theorem, we conclude that BMO -1 α coincides with the space BMO -1 and that there exists a constant Λ > 0, depending only on α and N , such that

Λ f BM O -1 ≤ f BM O -1 α ≤ Λ-1 f BM O -1 .
(2.5)

The above remarks allows us to use several of the estimates proved in [START_REF] Koch | Geometric ows with rough initial data[END_REF][START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF][START_REF] Wang | Well-posedness for the heat ow of harmonic maps and the liquid crystal ow with rough initial data[END_REF] in the case α = 1 to study the integral equation (IDNLS) by using a xed-point approach.

Our rst result concerns the global well-posedness of the Cauchy problem for (IDNLS) with small initial data in BMO(R N ).

Theorem 2.1. Let α ∈ (0, 1]. There exist constants C, K ≥ 1 such that for every L ≥ 0, ε > 0, and ρ > 0 satisfying

8C(ρ + ε) 2 ≤ ρ, (2.6) if u 0 ∈ L ∞ (R N ; C), with u 0 L ∞ ≤ L and [u 0 ] BM O ≤ ε, (2.7) 
then there exists a unique solution

u ∈ X(R N × R + ; C) to (IDNLS) such that [u] X ≤ K(ρ + ε). (2.8) Moreover, 5 BM O(R N ) = {f : R N × [0, ∞) → F : f ∈ L 1 loc (R N ), [f ]BMO < ∞},
with the semi-norm

[f ]BMO = sup x∈R N r>0 Br (x) |f (y) -fx,r| dy,
where fx,r is the average

fx,r = Br (x) f (y) dy = 1 |Br(x)| ˆBr(x) f (y) dy. (i) sup t>0 u L ∞ ≤ K(ρ + L). (ii) u ∈ C ∞ (R N × R +
) and (DNLS) holds pointwise.

(iii) lim t→0 + u(•, t) = u 0 as tempered distributions. Moreover, for every ϕ ∈ S(R N ), we have

(u(•, t) -u 0 )ϕ L 1 → 0, as t → 0 + .
(2.9)

(iv) (Dependence on the initial data) Assume that u and v are respectively solutions to (IDNLS) fullling (2.8) with initial conditions u 0 and v 0 satisfying (2.7). Then

u -v X ≤ 6K u 0 -v 0 L ∞ .
(2.10)

Although condition (2.6) appears naturally from the xed-point used in the proof, it may be no so clear at rst glance. To better understand it, let us dene for C > 0

S(C) = {(ρ, ε) ∈ R + × R + : C(ρ + ε) 2 ≤ ρ}. (2.11) We see that if (ρ, ε) ∈ S(C), then ρ, ε > 0 and ε ≤ √ ρ √ C -ρ.
(2.12)

Therefore the set S(C) is non-empty and bounded. The shape of this set is depicted in Figure 1.

In particular, we infer from (2.12) that if (ρ, ε) ∈ S(C), then

1 4C 1 4C 1 C ρ ε Figure 1: The shape of the set S(C). ρ ≤ 1 C and ε ≤ 1 4C . (2.13) In addition, if C ≥ C, then S( C) ⊆ S(C).
(2.14)

Moreover, taking for instance ρ = 1/(32C), Theorem 2.1 asserts that for xed α ∈ (0, 1], we can take for instance ε = 1/(32C) (that depends on α and N , but not on the L ∞ -norm of the initial data) such that for any given initial condition

u 0 ∈ L ∞ (R N ) with [u 0 ] BM O ≤ ε, there exists a global (smooth) solution u ∈ X(R N × R + ; C) of (DNLS).
Notice that u 0 is allowed to have a large L ∞ -norm as long as [u 0 ] BM O is suciently small; this is a weaker requirement that asking for the L ∞ -norm of u 0 to be suciently small, since

[f ] BM O ≤ 2 f L ∞ , for allf ∈ L ∞ (R N ).
(2.15)

Remark 2.2. The smallness condition in (2.8) is necessary for the uniqueness of the solution.

As we will see in Subsection 3.2.2, at least in dimension one, it is possible to construct multiple

solutions of (IDNLS) in X(R N × R + ; C), if α is close enough to 1.
The aim of this section is to prove Theorem 2.1 using a xed-point technique. To this pursuit we write (IDNLS) as

u(t) = T u 0 (u)(t), (2.16) 
where

T u 0 (u)(t) = S α (t)u 0 + T (g(u))(t) and T (f )(t) = ˆt 0 S α (t -s)f (s) ds.
(2.17)

In the next lemmas we study the semigroup S α and the operator T to establish that the application T u 0 is a contraction on the ball

B ρ (u 0 ) = {u ∈ X(R N × R + ; C) : u -S α (t)u 0 X ≤ ρ},
for some ρ > 0 depending on the size of the initial data.

Lemma 2.3. There exists

C 0 > 0 such that for all f ∈ BM O -1 α (R N ), sup t>0 √ t S α (t)f L ∞ (R N ) ≤ C 0 f BM O -1 α .
(2.18)

Proof. The proof in the case α = 1 is done in [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF]Lemma 16.1]. For α ∈ (0, 1), decomposing S α (t) = S α (t -s)S α (s) and using the decay properties of the kernel G α associated with the operators S α (t) (see (2.1)), we can check that the same proof still applies.

Lemma 2.4. There exists

C 1 ≥ 1 such that for all f ∈ Y (R N × R + ; C), T (f ) X ≤ C 1 f Y . (2.19)
Proof. Estimate (2.19) can be proved using the arguments given in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF] or [START_REF] Wang | Well-posedness for the heat ow of harmonic maps and the liquid crystal ow with rough initial data[END_REF]. For the convenience of the reader, we sketch the proof following the lines in [START_REF] Wang | Well-posedness for the heat ow of harmonic maps and the liquid crystal ow with rough initial data[END_REF]Lemma 3.1]. By scaling and translation, it suces to show that

|T (f )(0, 1)| + |∇T (f )(0, 1)| + ˆQ1 (0) |∇T (f )| 2 1/2 f Y . (2.20) Let B r = B r (0). Setting W = T (f ), we have W (0, 1) = ˆ1 0 ˆRN G α (-y, 1 -s)f (y, s)dyds = ˆ1 1/2 ˆRN + ˆ1/2 0 ˆB2 + ˆ1/2 0 ˆRN \B 2 G α (-y, 1 -s)f (y, s)dyds :=I 1 + I 2 + I 3 . Since |G α (y, 1 -s)| = e - α|y| 2 4(1-s) (4π(1 -s)) N/2 , we obtain |I 1 | ≤ ˆ1 1/2 ˆRN |G α (-y, 1 -s)||f (y, s)|dyds ≤ sup 1 2 ≤s≤1 f (s) L ∞ ˆ1 1 2 ˆRn |G α (-y, 1 -s)|dyds f Y , |I 2 | ≤ ˆ1/2 0 ˆB2 |G α (-y, 1 -s)||f (y, s)|dyds sup 0≤s≤ 1 2 G α (•, 1 -s) L ∞ (R N ) ˆB2 ×[0, 1 2 ] |f (y, s)|dyds f Y and |I 3 | ≤ ˆ1/2 0 ˆRN \B 2 |G α (-y, 1 -s)||f (y, s)|dyds ≤ C ˆ1 2 0 ˆRN \B 2 e -α|y| 2 4 |f (y, s)|dyds ≤ C ∞ k=2 k n-1 e -α k 2 4 sup y∈R N ˆQ1 (y) |f (y, s)|dyds f Y .
The quantity |∇T (f )(0, 1)| can be bounded in a similar way. The last term in the l.h.s. of (2.20) can be controlled using an energy estimate. Indeed, W satises the equation

i∂ t W + (β -iα)∆W = if (2.21) with initial condition W (•, 0) = 0. Let η ∈ C ∞ 0 (B 2 ) be a real-valued cut-o function such that 0 ≤ η ≤ 1 on R N and η = 1 on B 1 . By multiplying (2.21) by -iη 2 W , integrating and taking real part, we get 1 2 ∂ t ˆRN η 2 |W | 2 + α ˆRN η 2 |∇W | 2 + 2 Re (α + iβ) ˆRN η∇ηW ∇W = ˆRN η 2 Re(f W ).
Using that |α + iβ| = 1 and integrating in time between 0 and 1, it follows that

1 2 ˆRN η 2 |W (x, 1)| 2 + α ˆRN ×[0,1] η 2 |∇W | 2 ≤ ˆRN ×[0,1] (2η|∇η||W ||∇W | + η 2 |f ||W |).
From the inequality ab ≤

εa 2 + b 2 /(4ε), with a = η|∇W |, b = 2|∇η||W | and ε = α/2, we deduce that α 2 ˆRN ×[0,1] η 2 |∇W | 2 ≤ ˆRN ×[0,1] 2 α |∇η| 2 |W | 2 + η 2 |f ||W | .
By the denition of η, this implies that

∇W 2 L 2 (B 1 ×[0,1]) W 2 L ∞ (B 2 ×[0,1]) + W L ∞ (B 2 ×[0,1]) f L 1 (B 2 ×[0,1]) . (2.22)
From the rst part of the proof, we have

W L ∞ (B 2 ×[0,1]) ≤ C f Y .
Using also that

f L 1 (B 2 ×[0,1]) f Y , we conclude from (2.22) that ∇W L 2 (B 1 ×[0,1]) f Y ,
which nishes the proof.

Lemma 2.5. Let α ∈ (0, 1] and ρ, ε, L > 0. There exists C 2 ≥ 1, depending on α and N , such that for all

u 0 ∈ L ∞ (R N ) S α (t)u 0 X ≤ C 2 ( u 0 L ∞ + [u 0 ] BM O ). (2.23) If in addition u 0 L ∞ ≤ L and [u 0 ] BM O ≤ ε, then for all u ∈ B ρ (u 0 ) we have sup t>0 u L ∞ ≤ C 2 (ρ + L) and [u] X ≤ C 2 (ρ + ε).
(2.24)

Proof. We rst control S α (t)u 0

X . On the one hand, using the denition of G α and the relation

α 2 + β 2 = 1, we obtain S α (t)u 0 L ∞ = G α * u 0 L ∞ ≤ G α L 1 u 0 L ∞ = α -N 2 u 0 L ∞ , ∀ t > 0. Thus sup t>0 S α (t)u 0 L ∞ ≤ α -N 2 u 0 L ∞ .
(2.25)

On the other hand, using Lemma 2.3, Theorem A.1 and (2.4),

[S α (t)u 0 ] X = sup t>0 √ t ∇S α (t)u 0 L ∞ + sup x∈R N r>0 1 r N ˆQr(x) |∇S α (t)u 0 | 2 dt dy 1 2 ∇u 0 BM O -1 α + [u 0 ] BM Oα [u 0 ] BM Oα [u 0 ] BM O . (2.26)
The estimate in (2.23) follows from (2.25) and (2.26), and we w.l.o.g. can choose C 2 ≥ 1.

Finally, using (2.25), given u 0 such that u 0

L ∞ ≤ L and [u 0 ] BM O ≤ ε, for all u ∈ B ρ (u 0 ) we have u L ∞ ≤ u -S α (t)u 0 L ∞ + S α (t)u 0 L ∞ ≤ u -S α (t)u 0 X + S α (t)u 0 L ∞ ≤ C 2 (ρ + L),
and, using (2.26),

[u] X ≤ [u -S α (t)u 0 ] X + [S α (t)u 0 ] X ≤ u -S α (t)u 0 X + [S α (t)u 0 ] X ≤ C 2 (ρ + ε),
which nishes the proof of (2.24). Now we proceed to bound the nonlinear term

g(u) = -2i(β -iα) ū(∇u) 2 1 + |u| 2 .
Lemma 2.6. For all u ∈ X(R N × R + ; C), we have

g(u) Y ≤ [u] 2 X . Proof. Let u ∈ X(R N × R + ; C). Using (2.
3) and the denitions of the norms in Y and X, it follows that

g(u) Y ≤ sup t>0 √ t ∇u L ∞ 2 + sup x∈R N r>0 1 r N ˆQr(x) |∇u| 2 dt dy ≤ [u] 2 X .
Now we have all the estimates to prove that T u 0 is a contraction on B ρ (u 0 ).

Proposition 2.7. Let α ∈ (0, 1] and ρ, ε > 0. Given any u 0 ∈ L ∞ (R N ) with [u 0 ] BM O ≤ ε, the operator T u 0 given in (2.17) denes a contraction on B ρ (u 0 ), whenever ρ and ε satisfy

8C 1 C 2 2 (ρ + ε) 2 ≤ ρ.
(2.27)

Moreover, for all u, v ∈ X(R N × R + ; C),

T (g(u)) -T (g(v)) X ≤ C 1 (2[u] 2 X + [u] X + [v] X ) u -v X .
(2.28)

Here, 

C
C 2 (ρ + ε) ≤ 5 32 . 
(2.30)

Proof. Let u 0 ∈ L ∞ (R N ) with u 0 L ∞ ≤ L and [u 0 ] BM O ≤ ε, and u ∈ B ρ (u 0 ). Using Lemma 2.4,
Lemma 2.5 and Lemma 2.6, we have

T u 0 (u) -S α (t)u 0 X = T (g(u)) X ≤ C 1 g(u) Y ≤ C 1 [u] 2 X ≤ C 1 C 2 2 (ρ + ε) 2 .
Therefore T u 0 maps B ρ (u 0 ) into itself provided that

C 1 C 2 2 (ρ + ε) 2 ≤ ρ.
(2.31)

Notice that by (2.14), the condition (2.27) implies that (2.31) is satised.

To prove (2.28), we use the decomposition

g(u) -g(v) = -2i(β -iα) ū 1 + |u| 2 - v 1 + |v| 2 (∇u) 2 + v 1 + |v| 2 ((∇u) 2 -(∇v) 2 )) . Since ū 1 + |u| 2 - v 1 + |v| 2 ≤ |u -v| 1 + |u| |v| (1 + |u| 2 )(1 + |v| 2 )
≤ |u -v|, and using (2.2), we obtain

|g(u) -g(v)| ≤ 2 |u -v| |∇u| 2 + |∇u -∇v| (|∇u| + |∇v|). Therefore g(u) -g(v) Y ≤ 2 |u -v||∇u| 2 Y + |∇u -∇v|(|∇u| + |∇v|) Y := I 1 + I 2 .
(2.32)

For I 1 , it is immediate that

I 1 ≤ 2 sup t>0 u -v L ∞    sup t>0 √ t ∇u L ∞ 2 + sup x∈R N r>0 1 r N ˆQr(x) |∇u| 2 dt dy    ≤ 2 u -v X [u] 2 X .
(2.33)

Similarly, using the CauchySchwarz inequality,

I 2 ≤ sup t>0 √ t ∇u -∇v L ∞ sup t>0 √ t( ∇u L ∞ + ∇v L ∞ ) + sup x∈R N r>0 1 r N ∇u -∇v L 2 (Qr(x)) ∇u L 2 (Qr(x)) + ∇v L 2 (Qr(x)) ≤ u -v X ([u] X + [v] X ).
( 

T (g(u)) -T (g(v)) X ≤ C 1 (2[u] 2 X + [u] X + [v] X ) u -v X .
(2.35)

Let u, v ∈ B ρ (u 0 ), by Lemma 2.5 and (2.30)

[u] X ≤ C 2 (ρ + ε) ≤ 5 32 , (2.36) so that 2[u] 2 X + [u] X + [v] X ≤ 37 16 C 2 (ρ + ε) < 3C 2 (ρ + ε).
(2.37)

Then (2.35) implies that T u 0 (u) -T u 0 (v) X ≤ 3C 1 C 2 (ρ + ε) u -v X .
(2.38) From (2.29), we conclude that

3C 1 C 2 (ρ + ε) ≤ 15 32 ≤ 1 2 , (2.39) 
and then (2.38) yields that the operator T u 0 dened in (2.17) is a contraction on B ρ (u 0 ). This concludes the proof of the proposition.

Proof of Theorem 2.1. Let us set C = C 1 C 2 2 and K = C 2 , where C 1 and C 2 are the constants in Lemma 2.4 and Lemma 2.5 respectively. Since ρ satises (2.6), Proposition 2.7 implies that there exists a solution u of equation (2.16) in the ball B ρ (u 0 ), and in particular from Lemma 2.5

sup t>0 u L ∞ ≤ K(ρ + L) and [u] X ≤ K(ρ + ε).
To prove the uniqueness part of the theorem, let us assume that u and v are solutions of (IDNLS) in X(R 

N × R + ; C) such that [u] X , [v] X ≤ K(ρ + ε), ( 2 
u -v X = T (g(u)) -T (g(v)) X ≤ C 1 (2[u] 2 X + [u] X + [v] X ) u -v X ≤ 1 2 u -v X .
From which it follows that u = v.

To prove the dependence of the solution with respect to the initial data (part (iv)), consider u and v solutions of (IDNLS) satisfying (2.40) with initial conditions u 0 and v 0 . Then, by denition,

u = T u 0 (u), v = T v 0 (v) and u -v X = T u 0 (u) -T v 0 (v) X ≤ S α (u 0 -v 0 ) X + T (g(u)) -T (g(v)) X .
Using (2.15), (2.23) and (2.28) and arguing as above, we have

u -v X ≤ C 2 ( u 0 -v 0 L ∞ + [u 0 -v 0 ] BM O ) + C 1 (2[u] 2 X + [u] X + [v] X ) u -v X ≤ 3C 2 u 0 -v 0 L ∞ + 1 2 u -v X .
This yields (2.10), since K = C 2 .

The assertions in (ii) and (iii) follow from Theorem A.3.

2.2

The Cauchy problem for the LLG equation By using the inverse of the stereographic projection P -1 :

C → S 2 \ {0, 0, -1}, that is explicitly given by m = (m 1 , m 2 , m 3 ) = P -1 (u), with m 1 = 2 Re u 1 + |u| 2 , m 2 = 2 Im u 1 + |u| 2 , m 3 = 1 -|u| 2 1 + |u| 2 ,
(2.41)

we will be able to establish the following global well-posedness result for (LLG α ).

Theorem 2.9. Let α ∈ (0, 1]. There exist constants C ≥ 1 and K ≥ 4, such that for any δ ∈ (0, 2], ε 0 > 0 and ρ > 0 such that

8K 4 Cδ -4 (ρ + 8δ -2 ε 0 ) 2 ≤ ρ, (2.42) 
if m 0 = (m 0 1 , m 0 2 , m 0 3 ) ∈ L ∞ (R N ; S 2 ) satises inf R N m 0 3 ≥ -1 + δ and [m 0 ] BM O ≤ ε 0 , (2.43) 
then there exists a unique solution m = (m 1 , m 2 , m 3 ) ∈ X(R N × R + ; S 2 ) of (LLG α ) such that

inf x∈R N t>0 m 3 (x, t) ≥ -1 + 2 1 + K 2 (ρ + δ -1 ) 2 and [m] X ≤ 4K(ρ + 8δ -2 ε 0 ).
(2.44) Moreover, we have the following properties.

i) m ∈ C ∞ (R N × R + ; S 2 ). ii) |m(•, t) -m 0 | -→ 0 in S (R N ) as t -→ 0 + .
iii) Assume that m and n are respectively smooth solutions to (IDNLS) satisfying (2.44) with initial conditions m 0 and n 0 satisfying (2.43). Then

m -n X ≤ 120Kδ -2 m 0 -n 0 L ∞ .
(2.45)

Remark 2.10. The restriction (2.42) on the parameters is similar to (2.27), but we need to include δ. To better understand the role of δ, we can proceed as before. Indeed, setting for a, δ > 0,

S δ (a) = {(ρ, ε 0 ) ∈ R + × R + : aδ -4 (ρ + 8δ -2 ε 0 ) 2 ≤ ρ},
we see that its shape is similar to the one in Figure 1. It is simple to verify that for any (ρ, ε 0 ) ∈ S δ (a), we have the bounds

ρ ≤ δ 4 a and ε 0 ≤ δ 6 32a , (2.46) 
and the maximum value ε * 0 = δ 6 32a is attained at ρ * = δ 4 4a . Also, the sets are well ordered, i.e. if ã ≥ a > 0, then S δ (ã) ⊆ S δ (a).

We emphasize that the rst condition in (2.43) is rather technical. Indeed, we need the essential range of m 0 to be far from the South Pole in order to use the stereographic projection.

In the case α = 1, Wang [START_REF] Wang | Well-posedness for the heat ow of harmonic maps and the liquid crystal ow with rough initial data[END_REF] proved the global well-posedness using only the second restriction in (2.43).

It is an open problem to determinate if this condition is necessary in the case α ∈ (0, 1).

The choice of the South Pole is of course arbitrary. By using the invariance of (LLG α ) under rotations, we have the existence of solutions provided that the essential range of the initial condition m 0 is far from an arbitrary point Q ∈ S 2 . Precisely, Corollary 2.11. Let α ∈ (0, 1], Q ∈ S 2 , δ ∈ (0, 2], and ε 0 , ρ > 0 such that (2.42) holds. Given

m 0 = (m 0 1 , m 0 2 , m 0 3 ) ∈ L ∞ (R N ; S 2 ) satisfying inf R N |m 0 -Q| 2 ≥ 2δ and [m 0 ] BM O ≤ ε 0 ,
there exists a unique smooth solution m ∈ X(R N × R + ; S 2 ) of (LLG α ) with initial condition m 0 such that

inf x∈R N t>0 |m(x, t) -Q| 2 ≥ 4 1 + K 2 (ρ + δ -1 ) 2 and [m] X ≤ 4K(ρ + 8δ -2 ε 0 ). (2.47)
For the sake of clarity, before proving Theorem 2.9, we provide a precise meaning of what we refer to as a weak and smooth global solution of the (LLG α ) equation. The denition below is motivated by the following vector identities for a smooth function m with |m| = 1:

m × ∆m = div(m × ∇m), -m × (m × ∆m) = ∆m + |∇m| 2 m.
Denition 2.12. Let T ∈ (0, ∞] and m 0 ∈ L ∞ (R N ; S 2 ). We say that

m ∈ L ∞ loc ((0, T ), H 1 loc (R N ; S 2 ))
is a weak solution of (LLG α ) in (0, T ) with initial condition

m 0 if -m, ∂ t ϕ = β m × ∇m, ∇ϕ -α ∇m, ∇ϕ + α |∇m| 2 m, ϕ ,
and

(m(t) -m 0 )ϕ L 1 → 0, as t → 0 + , for all ϕ ∈ C ∞ 0 (R N × (0, T )).
(2.48)

If T = ∞, and in addition m ∈ C ∞ (R N × R + ), we say that m is a smooth global solution of (LLG α ) in R N × R + with initial condition m 0 . Here •, • stands for

f 1 , f 2 = ˆ∞ 0 ˆRN f 1 • f 2 dx dt.
With this denition, we see the following: Assume that m is a smooth global solution of (LLG α ) with initial condition m 0 and consider its stereographic projection P(m). If P(m) and P(m 0 ) are well-dened, then P(m) ∈ C ∞ (R N × R + ; C) satises (DNLS) pointwise, and

lim t→0 + P(m) = P(m 0 ) in S (R N ).
Therefore, if in addition P(m) ∈ X(R N ×R; C), then P(m) is a smooth global solution of (DNLS) with initial condition P(m 0 ). Reciprocally, suppose that u ∈ X(R

N × R + ; C) ∩ C ∞ (R N × R + )
is a solution of (IDNLS) with initial condition u 0 ∈ L ∞ (R N ) such that (2.9) holds. If P -1 (u) and P -1 (u 0 ) are in appropriate spaces, then P -1 (u) is a global smooth solution of (LLG α ) with initial condition P -1 (u 0 ). The above (formal) argument allows us to obtain Theorem 2.9 from Theorem 2.1 once we have established good estimates for the mappings P and P -1 . In this context, we have the following Lemma

2.13. Let u, v ∈ C 1 (R N ; C), m = (m 1 , m 2 , m 3 ), n = (n 1 , n 2 , n 3 ) ∈ C 1 (R N ; S 2 ). a) Assume that inf R N m 3 ≥ -1+δ and inf R N n 3 ≥ -1+δ for some constant δ ∈ (0, 2]. If u = P(m) and v = P(n), then |u(x) -v(x)| ≤ 4 δ 2 |m(x) -n(x)|, (2.49) [u] BM O ≤ 8 δ 2 [m] BM O , (2.50) |∇u(x)| ≤ 4 δ 2 |∇m(x)|, (2.51) for all x ∈ R N . b) Assume that u L ∞ ≤ M , v L ∞ ≤ M , for some constant M ≥ 0. If m = P -1 (u) and n = P -1 (v) , then inf R N m 3 ≥ -1 + 2 1 + M 2 , (2.52) |m(x) -n(x)| ≤ 3|u(x) -v(x)|, (2.53) |∇m(x)| ≤ 4|∇u(x)|, (2.54) |∇m(x) -∇n(x)| ≤ 4|∇u(x) -∇v(x)| + 12|u(x) -v(x)|(|∇u(x)| + |∇v(x)|). (2.55)
Proof. In the proof we will use the notation m := m 1 + im 2 . To establish (2.49), we write

u(x) -v(x) = m(x) -ň(x) 1 + m 3 (x) + ň(x)(n 3 (x) -m 3 (x)) (1 + m 3 (x))(1 + n 3 (x))
.

Hence, since |ň| ≤ 1, m 3 (x) + 1 ≥ δ and n 3 (x) + 1 ≥ δ, ∀x ∈ R N , |u(x) -v(x)| ≤ | m(x) -ň(x)| δ + |n 3 (x) -m 3 (x)| δ 2 .
Using that

| m -ň| ≤ |m -n| (2.56) and that max 1 a , 1 a 2 ≤ 2 a 2 , for all a ∈ (0, 2],
we obtain (2.49). The same argument also shows that

|u(y) -u(z)| ≤ 4 δ 2 |m(y) -m(z)|, for all y, z ∈ R N .
(2.57)

To verify (2.50), we recall the following inequalities in BMO (see [START_REF] Brezis | Degree theory and BMO. I. Compact manifolds without boundaries[END_REF]): 

[f ] BM O ≤ sup x∈R N Br(x) Br(x) |f (y) -f (z)| dy dz ≤ 2[f ] BM O . ( 2 
|∇u| ≤ 2 δ 2 (|∇m 1 | + |∇m 2 | + |∇m 3 |) ≤ 4 δ 2 |∇m|.
We turn into (b). Using the explicit formula for P -1 in (2.41), we can write

m 3 = -1 + 2 1 + |u| 2 .
Since u L ∞ ≤ M , we obtain (2.52).

To show (2.53), we compute

m -ň = 2u 1 + |u| 2 - 2v 1 + |v| 2 = 2(u -v) + 2uv(v -ū) (1 + |u| 2 )(1 + |v| 2 ) , (2.59) m 3 -n 3 = 1 -|u| 2 1 + |u| 2 - 1 -|v| 2 1 + |v| 2 = 2(|v| 2 -|u| 2 ) (1 + |u| 2 )(1 + |v| 2 )
.

(2.60)

Using the inequalities

a 1 + a 2 ≤ 1 2 , 1 + ab (1 + a 2 )(1 + b 2 ) ≤ 1, and a + b (1 + a 2 )(1 + b 2 )
≤ 1, for all a, b ≥ 0, (2.62)

Hence |m -n| = | m -ň| 2 + |m 3 -n 3 | 2 ≤ √ 8|u -v| ≤ 3|u -v|.
To estimate the gradient, we compute

∇ m = 2∇u 1 + |u| 2 - 4u Re(ū∇u) (1 + |u| 2 ) 2 , (2.63) from which it follows that |∇ m| ≤ |∇u| 2 1 + |u| 2 + 4|u| 2 (1 + |u| 2 ) 2 ≤ 3|∇u|, since 4a (1+a) 2 ≤ 1, for all a ≥ 0. For m 3 , we have ∇m 3 = - 2 Re(ū∇u) 1 + |u| 2 - 2 Re(ū∇u)(1 -|u| 2 ) (1 + |u| 2 ) 2 = - 4 Re(ū∇u) (1 + |u| 2 ) 2 ,
and therefore

|∇m 3 | ≤ 2|∇u|, since a (1 + a 2 ) 2 ≤ 1 2
, for all a ≥ 0.

(2.64)

Hence |∇m| = |∇m 1 | 2 + |∇m 2 | 2 + |∇m 3 | 2 ≤ √ 13|∇u| ≤ 4|∇u|,
which gives (2.54).

In order to prove (2.55), we start dierentiating (2.59)

∇ m -∇ň =2 ∇(u -v) + ∇(uv)(v -ū) + uv∇(v -ū) (1 + |u| 2 )(1 + |v| 2 ) -4 ((u -v) + uv(v -ū))(Re(ū∇u)(1 + |v| 2 ) + Re(v∇v)(1 + |u| 2 )) (1 + |u| 2 ) 2 (1 + |v| 2 ) 2 , Hence, setting R = max{|∇u(x)|, |∇v(x)|}, |∇ m -∇ň| ≤2|∇u -∇v| 1 + |u||v| (1 + |u| 2 )(1 + |v| 2 ) + 2R|u -v| |u| + |v| (1 + |u| 2 )(1 + |v| 2 ) + 4R|u -v| |u|(1 + |u||v|) (1 + |u| 2 ) 2 (1 + |v| 2 ) + |v|(1 + |u||v|) (1 + |u| 2 )(1 + |v| 2 ) 2 .
Using again (2.61), we get

|u|(1 + |u||v|) (1 + |u| 2 ) 2 (1 + |v| 2 ) ≤ |u| (1 + |u| 2 ) ≤ 1 2 .
By symmetry, the same estimate holds interchanging u by v. Therefore, invoking again (2.61), we obtain

|∇ m -∇ň| ≤ 2|∇u -∇v| + 6R|u -v|.

(2.65)

Similarly, writing |u| 2 -|v| 2 = (u -v)ū + (ū -v)v, from (2.60) we have |∇m 3 -∇n 3 | ≤ 2|∇u -∇v| + 6R|u -v|.
(2.66) Therefore, since

a 2 + b 2 ≤ a + b, ∀ a, b ≥ 0, inequalities (2 
.65) and (2.66) yield (2.55).

Now we have all the elements to establish Theorem 2.9.

Proof of Theorem 2.9. We continue to use the constants C and K dened in Theorem 2.1. We recall that they are given by C = C 1 C 2 2 and K = C 2 , where C 1 ≥ 1 and C 2 ≥ 1 are the constants in Lemmas 2.4 and 2.5, respectively. In addition, w.l.o.g. we assume that

K = C 2 ≥ 4, (2.67) 
in order to simplify our computations.

First we notice that by Remark 2.10, any ρ and ε 0 fullling the condition (2.42), also satisfy

8C(ρ + 8δ -2 ε 0 ) 2 ≤ ρ, (2.68) since δ 4 /K 4 ≤ 1 (notice that K ≥ 4 and δ ∈ (0, 2]).
Let m 0 as in the statement of the theorem and set u 0 = P(m 0 ). Using (2.50) in Lemma 2.13, we have

u 0 L ∞ ≤ 1 1 + m 0 3 L ∞ ≤ 1 δ and [u 0 ] BM O ≤ 8ε 0 δ 2 .
Therefore, bearing in mind (2.68), we can apply Theorem 2.1 with

L := 1 δ and ε := 8δ -2 ε 0 ,
to obtain a smooth solution u ∈ X(R N × R + ; C) to (IDNLS) with initial condition u 0 . In particular u satises

sup t>0 u L ∞ ≤ K(ρ + δ -1 ) and [u] X ≤ K(ρ + 8δ -2 ε 0 ).
(2.69) Dening m = P -1 (u), we infer that m is a smooth solution to (LLG α ) and, using the fact that (u(•, t) -u 0 )ϕ L 1 → 0 (see (2.9)) and (2.53),

|m(•, t) -m 0 | -→ 0 in S (R N ), as t → 0 + .
Notice also that applying Lemma 2.13 we obtain

inf x∈R N t>0 m 3 (x, t) ≥ -1 + 2 1 + K 2 (ρ + δ -1 ) 2 and [m] X ≤ 4[u] X ≤ 4K(ρ + 8δ -2 ε 0 ), which yields (2.

44).

Let us now prove the uniqueness. Let n be a another smooth solution of (LLG α ) with initial condition u 0 satisfying inf

x∈R N t>0 n 3 (x, t) ≥ -1 + 2 1 + K 2 (ρ + δ -1 ) 2 and [n] X ≤ 4K(ρ + 8δ -2 ε 0 ), (2.70)
and let v = P(n) be its stereographic projection. Then by (2.51),

[v] X ≤ 1 + K 2 (ρ + δ -1 ) 2 2
[n] X .

( 

C = C 1 C 2 2 ) ρ ≤ δ 4 8C 1 C 6 2 and 8ε 0 δ 2 ≤ δ 4 32C 1 C 6 2 . (2.72) Hence K(ρ + 8δ -2 ε 0 ) ≤ 5δ 4 32C 1 C 5 2 .
(2.73) Also, using (2.72), we have

1 + K 2 (ρ + δ -1 ) 2 =1 + C 2 2 δ 2 (ρδ + 1) 2 = C 2 2 δ 2 δ 2 C 2 2 + (ρδ + 1) 2 ≤ C 2 2 δ 2 δ 2 C 2 2 + δ 5 8C 1 C 6 2 + 1 2 ≤ 2 C 2 2 δ 2 , (2.74) since C 1 ≥ 1, C 2 ≥ 4 and δ ≤ 2.
From the bounds in (2.73) and (2.74), combined with (2.69), (2.70) and (2.71), we obtain

[u] X ≤ K(ρ + 8δ -2 ε 0 ) ≤ 5δ 4 32C 1 C 5 2 ≤ 5 2 11 C 1 and [v] X ≤ (1+K 2 (ρ+δ -1 ) 2 ) 2 [n] X ≤ (1+K 2 (ρ+δ -1 ) 2 ) 2 4K(ρ+8δ -2 ε 0 ) ≤ 2 C 2 2 δ 2 2 20δ 4 32C 1 C 5 2 ≤ 5 8C 1 ,
since δ ≤ 2 and C 2 ≥ 4. Finally, since u and v are solutions to (IDNLS) with initial condition u 0 , (2.28) and the above inequalities for

[u] X and [v] X yield u -v X ≤C 1 (2[u] 2 X + [u] X + [v] X ) u -v X ≤C 1 2 5 2 11 C 1 2 + 5 2 11 C 1 + 5 8C 1 u -v X ,
which implies that u = v, bearing in mind that the constant on the r.h.s. of the above inequality is strictly less that one. This completes the proof of the uniqueness.

It remains to establish (2.45). Let m and n two smooth solutions of (LLG α ) satisfying (2.44). As a consequence of the uniqueness, we see that m and n are the inverse stereographic projection of some functions u and v that are solutions of (IDNLS) with initial condition u 0 = P(m 0 ) and v 0 = P(n 0 ), respectively. In particular, u and v satisfy the estimates in (2.69). Using also (2.53) and (2.55), we deduce that

m -n X ≤ 3 sup t>0 u -v L ∞ + 4[u -v] X + 12 sup t>0 u -v L ∞ ([u] X + [v] X ]) ≤ 4 u -v X + 24C 2 (ρ + 8δ -2 ε 0 ) u -v X , ≤ 5 u -v X ,
where we have used (2.73) in obtaining the last inequality. Finally, using also (2.43) and (2.49), and applying (2.10) in Theorem 2.1,

m -n X ≤ 30K u 0 -v 0 L ∞ ≤ 120Kδ -2 m 0 -n 0 L ∞ ,
which yields (2.45).

Proof of Corollary 2.11. Let R ∈ SO(3) such that RQ = (0, 0, -1), i.e. R is the rotation that maps Q to the South Pole. Let us set m 0 R = Rm 0 . Then

|m 0 -Q| 2 = |R(m 0 -Q)| 2 = |m 0 R -(0, 0, -1)| 2 = 2(1 + m 0 3,R ). Hence, inf x∈R N m 0 3,R ≥ -1 + δ and [m 0 R ] BM O = [m 0 ] BM O ≤ ε 0 .
Therefore, Theorem 2.9 provides the existence of a unique smooth solution m R ∈ X(R N ×R + ; S 2 ) of (LLG α ) satisfying (2.44). Using the invariance of (LLG α ) and setting m = R -1 m R we obtain the existence of the desired solution. To establish the uniqueness, it suces to observe that if n is another smooth solution of (LLG α ) satisfying (2.47), then n R := Rn is a solution of (LLG α ) with initial condition m 0 R and it fullls (2.44). Therefore, from the uniqueness of solution in Theorem 2.9, it follows that m R = n R and then m = n.

Proof of Theorem 1.1. In Theorem 2.9 and Corollary 2.11, the constants are given by C = C 1 C 2 2 and K = C 2 . As discussed in Remark 2.10, the value

ρ * = δ 4 32C 1 C 2 2
maximizes the range for ε 0 in (2.27) and this inequality is satised for any ε 0 > 0 such that

ε 0 ≤ δ 6 256C 1 C 2 2 . Taking M 1 = 1 256C 1 C 2 2 , M 2 = C 2 and M 3 = 1 32C 1 C 2 2
, so that ρ * = M 3 δ 4 , the conclusion follows from Theorem 2.9 and Corollary 2.11.

Remark 2.14. We nally remark that is possible to state local (in time) versions of Theorems 2.1 and 2.9 as it was done in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF][START_REF] Koch | Geometric ows with rough initial data[END_REF][START_REF] Wang | Well-posedness for the heat ow of harmonic maps and the liquid crystal ow with rough initial data[END_REF]. In our context, the local well-posedness would concern solutions with initial condition m 0 ∈ V M O(R N ), i.e. such that

lim r→0 + sup x∈R N Br(x)
|m 0 (y) -m 0

x,r | dy = 0.

(2.75) Moreover, some uniqueness results have been established for solutions with this kind of initial data by Miura [START_REF] Miura | On the regularizing rate estimates of Koch-Tataru's solution to the Navier-Stokes equations[END_REF] for the NavierStokes equation, and adapted by Lin [START_REF] Lin | Uniqueness of harmonic map heat ows and liquid crystal ows[END_REF] to (HFHM). It is also possible to do this for (LLG α ), for α > 0. We do not pursuit here these types of results because they do not apply to the self-similar solutions m c,α . This is due to the facts that the function m 0 A ± does not belong to V M O(R) and that lim

T →0 + sup 0<t<T √ t ∂ x m c,α L ∞ = 0.
3 Applications

3.1

Existence of self-similar solutions in R N

The LLG equation is invariant under the scaling (x, t) → (λx, λ 2 t), for λ > 0, that is if m satises (LLG α ), then so does the function

m λ (x, t) = m(λx, λ 2 t), λ > 0.
Therefore is natural to study the existence of self-similar solutions (of expander type), i.e. a solution m satisfying m(x, t) = m(λx, λ 2 t), ∀λ > 0,

(3.1)
or, equivalently,

m(x, t) = f x √ t ,
for some f : R N -→ S 2 prole of m. In particular we have the relation f (y) = m(y, 1), for all y ∈ R N . From (3.1) we see that, at least formally, a necessary condition for the existence of a self-similar solution is that initial condition m 0 be homogeneous of degree 0, i.e.

m 0 (λx) = m 0 (x), ∀λ > 0.

Since the norm in X(R

N × R + ; R 3 ) is invariant under this scaling, i.e. m λ X = m X , ∀λ > 0,
where m λ is dened by (3.1), Theorem 2.9 yields the following result concerning the existence of self-similar solutions.

Corollary 3.1. With the same notations and hypotheses as in Theorem 2.9, assume also that m 0 is homogeneous of degree zero. Then the solution m of (LLG α ) provided by Theorem 2.9 is self-similar. In particular there exists a smooth prole f :

R N → S 2 such that m(x, t) = f x √ t ,
for all x ∈ R N and t > 0, and f satises the equation

- 1 2 y • ∇f (y) = βf (y) × ∆f (y) -αf (y) × (f (y) × ∆f (y)),
for all y ∈ R N . Here y • ∇f (y) = (y • ∇f 1 (y), . . . , y • ∇f N (y)).

Remark 3.2. Analogously, Theorem 2.1 leads to the existence of self-similar solutions for (DNLS), provided that u 0 is a homogeneous function of degree zero.

For instance, in dimensions N ≥ 2, Corollary 3.1 applies to the initial condition

m 0 (x) = H x |x| ,
with H a Lipschitz map from S N -1 to S 2 ∩{(x 1 , x 2 , x 3 ) : x 3 ≥ -1/2}, provided that the Lipschitz constant is small enough. Indeed, using (2.58), we have

[m 0 ] BM O ≤ 4 H Lip , so that taking δ = 1/2, ρ = δ 4 32K 4 C , ε 0 = δ 6 256K 4 C
and H Lip ≤ ε 0 , the condition (2.42) is satised and we can invoke Corollary 3.1.

Other authors have considered self-similar solutions for the harmonic map ow (i.e. (LLG α ) with α = 1) in dierent settings. Actually, equation (HFHM) can be generalized for maps m : M × R + → N , with M and N Riemannian manifolds. Biernat and Bizo« [START_REF] Biernat | Shrinkers, expanders, and the unique continuation beyond generic blowup in the heat ow for harmonic maps between spheres[END_REF] established results when M = N = S d and 3 ≤ d ≤ 6. Also, Germain and Rupin [START_REF] Germain | Selfsimilar expanders of the harmonic map ow[END_REF] have investigated the case M = R d and N = S d , in d ≥ 3. In both works the analysis is done only for equivariant solutions and does not cover the case M = R N and N = S 2 .

3.2

The Cauchy problem for the one-dimensional LLG equation with a jump initial data

This section is devoted to prove Theorems 1.2 and 1.3 in the introduction. These two results concern the question of well-posedness/ill-posedness of the Cauchy problem for the one-dimensional LLG equation associated with a step function initial condition of the form

m 0 A ± := A + χ R + + A -χ R -, (3.2) 
where A + and A -are two given unitary vectors in S 2 .

Existence, uniqueness and stability. Proof of Theorem 1.2

As mentioned in the introduction, in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF] we proved the existence of the uniparametric smooth family of self-similar solutions {m c,α } c>0 of (LLG α ) for all α ∈ [0, 1] with initial condition of the type (3.2) given by

m 0 c,α := A + c,α χ R + + A - c,α χ R -, (3.3) 
where A ± c,α ∈ S 2 are given by Theorem A.5. For the convenience of the reader, we collect some of the results proved in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF] in the Appendix. The results in this section rely on a further understanding of the properties of the self-similar solutions m c,α .

In Proposition 3.4 we show that

m c,α = (m 1,c,α , m 2,c,α , m 3,c,α ) ∈ X(R × R + ; S 2 ),
that m 3,c,α is far from the South Pole and that [m c,α ] X is small, if c is small enough. This will yield that m c,α corresponds (up to a rotation) to the solution given by Corollary 3.1. More precisely, using the invariance under rotations of (LLG α ), we can prove that, if the angle between A + and A -is small enough, then the solution given by Corollary 3.1 with initial condition m 0 A ± coincides (modulo a rotation) with m c,α , for some c. We have the following:

Theorem 3.3. Let α ∈ (0, 1]. There exist L 1 , L 2 > 0, δ * ∈ (-1, 0
) and ϑ * > 0 such that the following holds. Let A + , A -∈ S 2 and let ϑ be the angle between them. If

0 < ϑ ≤ ϑ * , (3.4) 
then there exists a solution m of (LLG α ) with initial condition m 0 A± . Moreover, there exists

0 < c < √ α 2 √
π , such that m coincides up to a rotation with the self-similar solution m c,α , i.e. there exists R ∈ SO(3), depending only on A + , A -, α and c, such that m = Rm c,α , (3.5) and m is the unique solution satisfying

inf x∈R t>0 m 3 (x, t) ≥ δ * and [m] X ≤ L 1 + L 2 c. (3.6)
In order to prove Theorem 3.3, we need some preliminary estimates for m c,α in terms of c and α. To obtain them, we use some properties of the prole prole

f c,α = (f 1,c,α , f 2,c,α , f 3,c,α )
constructed in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF] using the SerretFrenet equations with initial conditions

f 1,c,α (0) = 1, f 2,c,α (0) = f 3,c,α (0) = 0. Also, |f j,c,α (s)| ≤ ce -αs 2 /4 , for all s ∈ R, for j ∈ {1, 2, 3} and m c,α (x, t) = f c,α x √ t , for all (x, t) ∈ R × R + . (3.7) 
Hence, for any x ∈ R,

|f 3,cα (x)| = |f 3,cα (x) -f 3,cα (0)| ≤ ˆ|x| 0 ce -ασ 2 /4 dσ ≤ c √ π √ α .
Since the same estimate holds for f 2,c,α , we conclude that

|m 2,c,α (x, t)| ≤ c √ π √ α , and |m 3,c,α (x, t)| ≤ c √ π √ α for all (x, t) ∈ R × R + . (3.8) 
Moreover, since

A ± c,α = lim x→±∞ f c,α (x),
we also get

|A ± j,c,α | ≤ c √ π √ α , for j ∈ {2, 3}. (3.9) 
We now provide some further properties of the self-similar solutions.

Proposition 3.4. For α ∈ (0, 1] and c > 0, we have

m 0 2,c,α L ∞ ≤ c √ π √ α , m 0 3,c,α L ∞ ≤ c √ π √ α , sup t>0 m 3,c,α L ∞ ≤ c √ π √ α , (3.10) 
[m 0 c,α ] BM O ≤ 2c √ 2π √ α , (3.11) 
√ t ∂ x m c,α ∞ = c, for all t > 0, (3.12) 
sup

x∈R r>0 1 r ˆQr(x) |∂ y m c,α (y, t)| 2 dt dy ≤ 2 √ 2πc 2 √ α . (3.13) 
In particular, m c,α ∈ X(R × R + ; S 2 ) and 

[m c,α ] X ≤ 4c
A - c,α = (A + 1,c,α , -A + 2,c,α , -A + 3,c,α ), (3.15) 
(see Theorem A.5) to get

[m 0 c,α ] BM O ≤ sup x∈R N Br(x) Br(x) |m 0 c,α (y) -m 0 c,α (z)| dy dz ≤ 2 (A + 2,c,α ) 2 + (A + 3,c,α ) 2 sup x∈R N Br(x) Br(x)
dy dz

≤ 2c √ 2π √ α .
From (A.12) we obtain the equality in (3.12) and also 

t dt = E 1 αy 2 2r 2 , (3.17) 
where E 1 is the exponential integral function

E 1 (y) = ˆ∞ y e -z z dz.
This function satises that lim y→0 + E 1 (y) = ∞ and lim y→∞ E 1 (y) = 0 (see e.g. [1, Chapter 5]).

Moreover, taking > 0 and integrating by parts,

ˆ∞ E 1 (y 2 ) dy = yE 1 (y 2 ) ∞ + 2 ˆ∞ e -y 2 dy, (3.18) 
so L'Hôpital's rule shows that the rst term in the r.h.s. of (3.18) vanishes as → 0 + . Therefore, the Lebesgue's monotone convergence theorem allows to conclude that E 1 (y

2 ) ∈ L 1 (R + ) and ˆ∞ 0 E 1 (y 2 ) = √ π. (3.19) 
By using (3.16), (3.17), (3.19), and making the change of variables z = √ αy/(r √ 2), we obtain

I r,x = c 2 r ˆx+r x-r E 1 αy 2 2r 2 dy = √ 2c 2 √ α ˆ√α √ 2 ( x r +1) √ α √ 2 ( x r -1) E 1 (z 2 ) dz ≤ √ 2c 2 √ α • 2 √ π, (3.20) 
which leads to (3.13). Finally, the bound in (3.14) easily follows from those in (3.12) and (

and the elementary inequality

1 + 2 √ 2π √ α 1/2 ≤ 1 α 1 4 1 + (2 √ 2π) 1/2 ≤ 4 α 1 4 , α ∈ (0, 1]. 
Proof of Theorem 3.3. First, we consider the case when A + = A + c,α and A -= A - c,α (i.e. when m 0 A ± = m 0 c,α ) for some c > 0. We will continue to show that the solution provided by Theorem 2.9 is exactly m c,α , for c small. Indeed, bearing in mind the estimates in Proposition 3.4, we consider

c ≤ √ α 2 √ π , so that inf x∈R m 0 3,c,α (x) ≥ - 1 2 . (3.21) 
In view of (3.11), (3.21) and Remark 2.10, we set

ε 0 := 4c √ π √ α , δ := 1 2 , ρ := δ 4 8K 4 C = 1 2 7 K 4 C , (3.22) 
where C, K ≥ 1 are the constants given by Theorem 2.9. In this manner, from (3.11), (3.21) and

(3.22), we have inf R m 0 3 ≥ -1 + δ and [m 0 ] BM O ≤ ε 0 ,
and the condition (2.42) is fullled if

ε 0 ≤ δ 6 256K 4 C , or equivalently, if c ≤ c, with c := √ α 2 16 K 4 C √ π .
Observe that in particular c <

√ α 2 √ π .
For xed 0 < c < c, we can apply Theorem 2.9 to deduce the existence and uniqueness of a solution m of (LLG α ) satisfying 

inf x∈R t>0 m 3 (x, t) ≥ -1 + 2 1 + K 2 (ρ + 2) 2 and [m] X ≤ 4Kρ + 2 9 Kc √ π √ α .
L 1 = 4Kρ, L 2 = 2 9 K √ π √ α and δ * = -1 + 2 1 + K 2 (ρ + 2) 2 , (3.24) the theorem is proved in the case A ± = A ± c,α .
For the general case, we would like to understand which angles can be reached by varying the parameter c in the range (0, c]. To this end, for xed 0 < c ≤ c, let ϑ c,α be the angle between

A + c,α and A - c,α . From Lemma A.6, ϑ c,α ≥ arccos 1 -c 2 π + 32 c 3 √ π α 2 , for all c ∈ 0, α 2 √ π 32 .
Now, it is easy to see that the function

F (c) = arccos 1 -c 2 π + 32 c 3 √ π α 2 is strictly increasing on the interval [0, α 2 √ π 48 ] so that F (c) > F (0) = 0, for all c ∈ 0, α 2 √ π 48 . (3.25) 
Let c * = min(c, α 2 √ π 48 ) and consider the map

T α : c -→ ϑ c,α on [0, c * ]. By Lemma A.6, T α is continuous on [0, c * ], T α (0) = lim c→0 + T α (c) = 0 and, bearing in mind (3.25), T (c * ) = ϑ c * ,α > 0.
Thus, from the intermediate value theorem we infer that for any ϑ ∈ (0, ϑ c * ,α ), there exists c ∈ (0, c * ) such that ϑ = T α (c) = ϑ c,α .

We can now complete the proof for any A + , A -∈ S 2 . Let ϑ be the angle between A + and A -. From the previous lines, we know that there exists ϑ * := ϑ c * ,α such that if ϑ ∈ (0, ϑ * ), there exists c ∈ (0, c * ) such that ϑ = ϑ c,α . For this value of c, consider the initial value problem associated with m 0 c,α and the constants dened in (3.24). We have already seen the existence of a unique solution m c,α of the LLG equation associated with this initial condition satisfying (3.6). Let R ∈ SO(3) be the rotation on R 3 such that A + = RA + c,α and A -= RA - c,α . Then m := Rm c,α solves (LLG α ) with initial condition m 0 A ± . Finally, recalling the above denition of L 1 , L 2 and δ * , using the invariance of the norms under rotations and the fact that m c,α is the unique solution satisfying (3.23), it follows that m is the unique solution satisfying the conditions in the statement of the theorem.

We are now in position to give the proof of Theorem 1.2, the second of our main results in this paper. In fact, we will see that Theorem 1.2 easily follows from Theorem 3.3 and the well-posedness for the LLG equation stated in Theorem 2.9.

Proof of Theorem 1.2. Let ϑ * , δ * , L 1 and L 2 be the constants dened in the proof of Theorem 3.3.

Given A + and A -such that 0 < ϑ < ϑ * , Theorem 3.3 asserts the existence of

0 < c < √ α 2 √ π (3.26)
and R ∈ SO(3) such that Rm c,α is the unique solution of (LLG α ) with initial condition m 0 A ± satisfying (3.6), and in particular m 0 

A ± = Rm 0 c,α . By hypothesis m 0 satises m 0 -m 0 A ± L ∞ ≤ c √ π 2 √ α . (3.27) Hence, dening m 0 R = R -1 m 0 , recalling that [f ] BM O ≤ 2 f L ∞ and
m 0 R L ∞ ≤ m 0 c,α L ∞ + c √ π 2 √ α and [m 0 R ] BM O ≤ [m 0 c,α ] BM O + c √ π √ α .
Then, by Proposition 3.4,

m 0 3,R L ∞ ≤ 2c √ π √ α and [m 0 R ] BM O ≤ 4c √ π √ α . (3.28) 
From (3.26) and (3.28), it follows that m 0 3,R (x) ≥ -1/2, for all x ∈ R.

Therefore, as in the proof of Theorem 3.3, we can apply Theorem 2.9 with the values of ε 0 , δ and ρ given in (3.22) to deduce the existence of a unique (smooth) solution m R of (LLG α ) with initial condition m 0

R satisfying inf x∈R t>0 m 3,R (x, t) ≥ -1 + 2 1 + K 2 (ρ + 2) 2 = δ * and [m R ] X ≤ 4Kρ + 2 9 Kc √ π √ α = L 1 + L 2 c.
Since we have taken the values for ε 0 , δ and ρ as in the proof Theorem 3.3, Theorem 2.9 also

implies that m R -m c,α X ≤ 480K m 0 R -m 0 c,α L ∞ .
The conclusion of the theorem follows dening m = Rm R and L 3 = 480K, and using once again the invariance of the norm under rotations.

Multiplicity of solutions. Proof of Theorem 1.3

As proved in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF], when α = 1, the self-similar solutions are explicitly given by

m c,1 (x, t) = (cos(c Erf(x/ √ t)), sin(c Erf(x/ √ t)), 0), for all (x, t) ∈ R × R + , (3.29) 
for every c > 0, where Erf(•) is the non-normalized error function Erf(s) = ˆs 0 e -σ 2 /4 dσ.

In particular, (3.30) Formula (3.30) and Figure 2 show that there are innite values of c that allow to reach any angle in [0, π]. Therefore, using the invariance of (LLG α ) under rotations, in the case when α = 1, one can easily prove the existence of multiple solutions associated with a given initial data of the form m 0 A ± for any given vectors A ± ∈ S 2 (see argument in the proof included below). In the case that α is close enough to 1, we can use a continuity argument to prove that we still have multiple solutions. More precisely, Theorem 1.3 asserts that for any given initial data of the form m 0 A ± with angle between A + and A -in the interval (0, π), if α is suciently close to one, then there exist at least k-distinct solutions of (LLG α ) associated with the same initial condition, for any given k ∈ N.

A ± c,1 = (cos(c √ π), ± sin(c √ π), 0) ϑ c,1 π c
The rest of this section is devoted to the proof of Theorem 1.3.

Proof of Theorem 1.3. Let k ∈ N, A ± ∈ S 2 and ϑ ∈ (0, π) be the angle between A + and A -.

Using the invariance of (LLG α ) under rotations, it suces to prove the existence of α k ∈ (0, 1) such that for every α ∈ [α k , 1] there exist 0 < c 1 < • • • < c k such that the angle ϑ c j ,α between A + c j ,α and A - c j ,α , satises ϑ c j ,α = ϑ, for all j ∈ {1, . . . , k}.

(

In what follows, and since we want to show the existence of at least k-distinct solutions, we will assume without loss of generality that k is large enough.

First observe that, since A - c,α = (A + 1,c,α , -A + 2,c,α , -A + 3,c,α ), we have the explicit formula

cos(ϑ c,α ) = 2(A + 1,c,α ) 2 -1,
and using Lemma A.8 in the Appendix, we get

| cos(ϑ c,α ) -cos(ϑ c,1 )| = |2((A + 1,c,α ) 2 -(A + 1,c,1 ) 2 )| ≤ 4|A + 1,c,α -A + 1,c,1 | ≤ 4h(c) √ 1 -α, (3.32)
for all α ∈ [1/2, 1], with h : R + -→ R + an increasing function satisfying lim s→∞ h(s) = ∞.

For j ∈ N, we set a j = (2j + 1) √ π/2 and b j = (2j + 2) √ π/2, so that (3.30) and (3.32) yield cos(ϑ a j ,α )

≤ -1 + 4h(a j ) √ 1 -α and cos(ϑ b j ,α ) ≥ 1 -4h(b j ) √ 1 -α, ∀α ∈ [1/2, 1]. (3.33)
Dene l = cos(ϑ) and

α k = max 1 - 1 -l 8h(b k ) 2 , 1 - 1 + l 8h(b k ) 2 .
Notice that, since ϑ ∈ (0, π), we have -1 < l < 1 and thus α k < 1. Also, since h diverges to ∞, we can assume without loss of generality that α k ∈ [1/2, 1), and from the denition of α k we have

0 < √ 1 -α k < min 1 -l 8h(b k ) , 1 + l 8h(b k ) .
Therefore, from (3.33) and h(a 

j ) < h(b j ) ≤ h(b k ) (
c j ∈ [a j , b j ] such that cos(ϑ c j ,α ) = l = cos(ϑ),
or equivalently, such that ϑ c j ,α = ϑ.

Finally, for each j ∈ {1, . . . , k}, let R j ∈ SO(3) be such that m 0 A ± = R j m 0 c j ,α , and dene m j by m j = R j m c j ,α . Then m j solves (LLG α ) with initial data m 0 A ± and the control of ∂ x m j in (1.9) follows from the denition of m j in terms of m c j ,α and the analogous property established in Theorem A.5 for the self-similar solution m c j ,α (see (A.12)).

In the case when α = 1 and ϑ ∈ [0, π], formula (3.30) shows that sequence {c j } j≥1 in (1.10) satises ϑ c j ,1 = ϑ for all j ∈ N * . The result follows by considering the sequence of solutions {m j } j≥1 described above. Remark 3.5. Notice that the proof given above also shows how close α k needs to be to 1 in terms of the (xed) angle ϑ ∈ (0, π), and in particular α k → 1 as k → ∞, and α k → 1 as ϑ → 0 (i.e. when l → 1).

Remark 3.6. For α = 1 and c > 0, the function

u(x, t) = P(m c,1 ) = exp ic Erf(x/ √ t)
is a solution of (DNLS) with initial condition

u 0 = e ic √ π χ R + + e -ic √ π χ R -.
Therefore there is also a multiplicity phenomenon for the equation (DNLS).

A singular solution for a nonlocal Schrödinger equation

We have used the stereographic projection to establish a well-posedness result for (LLG α ).

Melcher [START_REF] Melcher | Global solvability of the Cauchy problem for the Landau-Lifshitz-Gilbert equation in higher dimensions[END_REF] showed a global well-posedness result, provided that

∇m 0 L N ≤ ε, m 0 -Q ∈ H 1 (R N ) ∩ W 1,N (R N ), α > 0, N ≥ 3,
for some Q ∈ S 2 and ε > 0 small. Later, Lin, Lan and Wang [START_REF] Lin | Global well-posedness of the Landau-Lifshitz-Gilbert equation for initial data in Morrey spaces[END_REF] improved this result and proved global well-posedness under the conditions

∇m 0 M 2,2 ≤ ε, m 0 -Q ∈ L 2 (R N ), α > 0, N ≥ 2,
for some Q ∈ S 2 and ε > 0 small. 6 In the context of Theorem 1.1 and using the characterization of BM O -1 in Theorem A.1, the second condition in (1.3) says that ∇m 0 BM O -1 is small. In view of the embeddings

L N (R N ) ⊂ M 2,2 (R N ) ⊂ BM O -1 (R N ),
for N ≥ 2, we deduce that Theorem 1.1 includes initial conditions with less regularity, as long as their essential range is not S 2 . The argument in [START_REF] Lin | Global well-posedness of the Landau-Lifshitz-Gilbert equation for initial data in Morrey spaces[END_REF][START_REF] Melcher | Global solvability of the Cauchy problem for the Landau-Lifshitz-Gilbert equation in higher dimensions[END_REF] is based on the method of moving frames that produces a covariant complex GinzburgLandau equation. One of the aims of this subsection is to compare their approach in the context of the self-similar solutions m c,α , and in particular to draw attention to a possible diculty in using it to study these solutions.

In the sequel we consider the one-dimensional case N = 1 and α ∈ [0, 1]. Then the moving frames technique can be recast as a Hasimoto transformation as follows. Assume that m is the tangent vector of a curve in R 3 , i.e. m = ∂ x X, for some curve X(x, t) ∈ R 3 parametrized by the arc-length. It can be shown (see [START_REF] Daniel | Perturbation of solitons in the classical continuum isotropic Heisenberg spin system[END_REF]) that if m evolves under (LLG α ), then the torsion τ and the curvature c of X satisfy

∂ t τ =β c∂ x c + ∂ x ∂ xx c -cτ 2 c + α c 2 τ + ∂ x ∂ x (cτ ) + τ ∂ x c c , ∂ t c =β (-∂ x (cτ ) -τ ∂ x c) + α ∂ x c -cτ 2 .
Hence, dening the Hasimoto transformation [START_REF] Hasimoto | A soliton on a vortex lament[END_REF] (also called lament function)

v(x, t) = c(x, t)e i ´x 0 τ (σ,t) dσ ,

we verify that v solves the following dissipative Schrödinger (or complex GinzburgLandau)

equation i∂ t v + (β -iα)∂ xx v + v 2 β|v| 2 + 2α ˆx 0 Im(v∂ x v) -A(t) = 0, (3.36) 
where

β = √ 1 -α 2 and A(t) = β c 2 + 2(∂ xx c -cτ 2 ) c + 2α ∂ x (cτ ) + τ ∂ x c c (0, t).
The curvature and torsion associated with the self-similar solutions m c,α are (see [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF]):

c c,α (x, t) = c √ t e -αx 2 4t and τ c,α (x, t) = βx 2 √ t .
(3.37) Therefore in this case 

A(t) = βc 2 t (3.38) 6 We recall that v ∈ M 2,2 (R N ) if v ∈ L 2 loc (R N ) and v M 2,2 := sup x∈R N r>0 1 r (N -2)/2 v L 2 (Br (x)) < ∞.
v c,α (x, t) = c √ t e (-α+iβ) x 2 4t .
In particular v c,α is a solution of (3.36) with A(t) as in (3.38), for all α ∈ [0, 1] and c > 0.

Moreover, the Fourier transform of this function (w.r.t. the space variable) is v c,α (ξ, t) = 2c π(α + iβ)e -(α+iβ)ξ 2 t , so that v c,α is a solution of (3.36) with a Dirac delta as initial condition:

v c,α (•, 0) = 2c π(α + iβ)δ.
Here δ denotes the delta distribution at the point x = 0 and √ z denotes the square root of a complex number z such that Im( √ z) > 0.

In the limit cases α = 0 and α = 1, the rst three terms in equation (3.36) lead to a cubic Schrödinger equation and to a linear heat equation, respectively. The Cauchy problem with a Dirac delta for these kind of equations associated with a power type non-linearity has been studied by several authors (see e.g. [START_REF] Banica | On the Dirac delta as initial condition for nonlinear Schrödinger equations[END_REF] and the reference therein). We recall two classical results.

Theorem 3.7 ([9]). Let p ≥ 2 and u ∈ L p loc (R × R + ) be a solution in the sense of distributions of

∂ t u -∂ xx u + |u| p u = 0 on R × R + . (3.39) 
Assume that

lim t→0 + ˆR u(x, t)ϕ(x) dx = 0, for all ϕ ∈ C 0 (R \ {0}), (3.40) 
where C 0 (R \ {0}) denotes the space of continuous functions with compact support in R \ {0}.

Then u ∈ C 2,1 (R × [0, ∞)) and u(x, 0) = 0 for all x ∈ R. In particular there is no solution of (3.39) such that

lim t→0 + ˆR u(x, t)ϕ(x) dx = ϕ(0),
for all ϕ ∈ C 0 (R N ).

In [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF] it is also proved that if Either there is no solution in the sense of distributions of

i∂ t u + ∂ xx u + |u| p u = 0 on R × R + , (3.41) 
with

lim t→0 + u(•, t) = δ in S (R),
in the class u, |u| p u ∈ L ∞ (R + ; S (R)), or there is more than one. ). We will continue to observe that this is not necessarily the case. To this end, we need the following: Proposition 3.9. For all α ∈ [0, 1] and for all c ∈ C \ {0} the function w c,α : R × R + → C given by

w c,α (x, t) = c √ t exp iβ|c| 2 2 ln(t) + (iβ -α) x 2 4t
is a solution of (3.42). In addition,

i) If α ∈ [0, 1), then w c,α (•, t) does not converge in S (R) as t → 0 + . ii) If α ∈ (0, 1], then lim t→0 +
ˆR w c,α (x, t)ϕ(x) dx = 0, for all ϕ ∈ C 0 (R \ {0}).

(3.43)

Proof. A straightforward computation shows that w c,α satises (3.42). The proof that w c,α (•, t)

does not converge in S (R) as t → 0 + if c = 0 is the same as in [START_REF] Kenig | On the ill-posedness of some canonical dispersive equations[END_REF]. Indeed, for ϕ ∈ S(R), by Parseval's theorem, ˆR wc,α (x, t)ϕ(x) dx = 1 2π ˆR w c,α (ξ, t) ϕ(ξ) dξ = ce -iβ|c| 2 ln(t)/2 √ π α + iβ ˆR e -(α+iβ)ξ 2 t ϕ(ξ) dξ.

By the dominated convergence theorem, the last integral converges:

lim t→0 +
ˆR e -(α+iβ)ξ 2 t ϕ(ξ) dξ = ˆR ϕ(ξ) dξ = 2πϕ(0).

Since β = 0, e -iβ|c| 2 ln(t)/2 does not admit a limit at 0 in S (R). We conclude that w c,α (•, t) does not converge in S (R) as t → 0 + .

It remains to prove (3.43). Since now ϕ ∈ C 0 (R \ {0}), we cannot proceed as before. However, using the change of variables x = √ ty, we have lim t→0 + ˆR w c,α (x, t)ϕ(x) dx = ce iβ|c| 2 ln(t)/2 ˆR e (-α+iβ)y 2 /4 ϕ( √ ty) dy.

Therefore, since α > 0 and ϕ(0) = 0, the dominated convergence theorem implies that lim t→0 + ˆR e (-α+iβ)y 2 /4 ϕ( √ ty) dy = ϕ(0) ˆR e (-α+iβ)y 2 /4 dy = 0.

Since |e iβ|c| 2 ln(t)/2 | = 1, we obtain (3.43).

The results in Proposition 3.9 lead to the following remarks:

1. Observe that if α ∈ (0, 1), w c,α provides a solution to the dissipative equation (3.42).

Moreover, form part (ii) in Proposition 3.9, w c,α satises the condition (3.40). However, notice that w c,α cannot be extended to C 2,1 (R×[0, ∞)) due to the presence of a logarithmic oscillation. This is in contrast with the properties for solutions of the cubic heat equation Moreover, if (ii) holds, then u ∈ C ∞ (R N × R + ) and

(u(t) -u 0 )ϕ L 1 (R N ) → 0, as t → 0 + , (A.2)

for any ϕ ∈ S(R N ).

Proof. In view of Lemma A.2, we need to prove that the function g(u) = -2(β -iα) ū(∇u) In conclusion, we deduce from (A.3), (A.4) and (A.5) that g(u) ∈ L 1 uloc (R N × (0, T )) and then it follows from Lemma A.2 that (ii) implies (i). The other implication can be established as in [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF]Theorem 11.2]. Moreover, we deduce that the function W (x, t) := T (g(u))(x, t) = ˆt 0 S α (t -s)g(u) ds (u(t) -S α (t)u 0 )ϕ L 1 (R N ) → 0, as t → 0 + . for all p ∈ (1, ∞). In addition, if α > 0, (A.11) also holds for p = 1.

(iii) For t > 0 and x ∈ R, the derivative in space satises ∈ (0, 1), so that its arccos is well-dened.

Proof. The continuity was proved in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF]. To show the estimate (A.13), we use Theorem 1.3 in Since α ∈ (0, 1], we have for any c ∈ (0, 1],

π 4 + π α √ 2 1 + c 2 π 8 + c π(1 + α) 2 √ 2 + c 2 π 2 8α 2 ≤ 1 α 2 π 4 + π √ 2 1 + π 8 + √ π 2 + π 2 8 ≤ 8 α 2 .
We deduce that for all α, c ∈ (0, 1],

A + 2,c,α ≥ c π(1 + α) √ 2 - 8c 2 α 2 ≥ c √ π √ 2 - 8c 2 α 2 .
In particular A + 2,c,α ≥ 0 if c ≤ α 2 √ π/(8 The following lemma is a slightly renement of Theorem 1.4 in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF].

√ 2). Thus (A + 2,c,α ) 2 ≥ c 2 π 2 - 16c 3 √ π √ 2α 2 + 64c 4 α 4 ≥ c 2 π 2 - 16c 3 √ π α 2 ,
Lemma A.8 ([17]). Let c > 0, α ∈ [0, 1] and A + c,α be the unit vector given in Theorem A. where h : R + → R + is a strictly increasing function satisfying

lim s→∞ h(s) = ∞.
Proof. In view of [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF]Theorem 1.4], we only need to prove that the constant C(c) in the statement of the Theorem 1.4 (notice that c 0 in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF] corresponds to c in our notation) is polynomial in c with nonnegative coecients. Looking at the proof of [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF]Theorem 1.4], we see that the constant C(c) behaves like the constant in inequality (3.108) in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF]. In view of (3.17), the estimate (3.23) in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF] Then, it can be easily checked that the function h is a polynomial with nonnegative coecients.
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 2 61) from (2.59) and (2.60) we deduce that | m -ň| ≤ 2|u -v| and |m 3 -n 3 | ≤ 2|u -v|.
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 4314 Proof of Proposition 3.4. The estimates in (3.10) follow from (3.8) and (3.9). To prove (3.11), we use (2.58), (3.3), (3.10) and the fact that
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  r,x := 1 r ˆQr(x) |∂ y m c,α (y, t)| 2 dt dy = c
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 16 Performing the change of variables z = (αy 2 )/(2t), we see that ˆr2
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 232 Now by Proposition 3.4, for xed 0 < c ≤ c, we have the following estimates for m c,α [m c,α ] X ≤ 4c/α c,α (x, t) ≥ -1 so in particular m c,α satises (3.23). Thus the uniqueness of solution implies that m = m c,α , provided that c ≤ c. Dening the constants L 1 , L 2 and δ * by
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 2 Figure 2: The angle ϑ c,α as a function of c for α = 1.

  and the Hasimoto transformation of m c,α is

( 3 .

 3 42)Since α ∈ [0, 1], the above equation can be seen as an intermediate model between(3.39) and (3.41). Therefore one could expect that when α ∈ (0, 1], the solutions of (3.42) share similar properties to those established in Theorem 3.7 for the equation(3.39

( 3 .

 3 39) established in Theorem 3.7.2. In the case α = 0, equation (3.42) corresponds to (3.41) with p = 2, i.e. to the equation cubic NLS equation that is invariant under the Galilean transformation. The proof of the ill-posedness result given in Theorem 3.8 relies on this invariance and part (i) of Proposition 3.9 with α = 0. Although when α > 0, equation (3.42) is no longer invariant under ii) There exists u 0 ∈ S (R N ) such that u satises u(t) = S α (t)u 0 -2(β -iα) ˆt 0 S α (t -s) ū(∇u) 2 1 + |u| 2 ds.

  satises W (•, t) L 1 (B 1 (x 0 )) → 0, as t → 0 + , uniformly in x 0 ∈ R N . Let us take ϕ ∈ S(R N ) and a constant C ϕ > 0 such that |ϕ(x)| ≤ C ϕ (2 + |x|) -N -1 . Then ˆRN |ϕ(y)W (y, t)| dy ≤ k∈Z N ˆB1 (k) C ϕ (2 + |x|) N +1 |W (y, t)| dy ≤ sup x 0 ∈R N W (•, t) L 1 (B 1 (x 0 )) k∈Z N C ϕ (1 + |k|) N +1 , so that ϕW (•, t) L 1 (R N ) → 0 as t → 0 + , i.e.

(A. 6 )

 6 (ii) There exists a constant C(c, α, p), depending only on c, α and p such that for all t > 0m c,α (•, t) -A + c,α χ (0,∞) (•) -A - c,α χ (-∞,0) (•) L p (R) ≤ C(c, α, p)t

|∂ x m

  c,α (x, t)| = c Let α ∈ [0, 1]. Then A + c,α → (1, 0, 0) as c → 0 + . Lemma A.6. Let c > 0, α ∈ (0, 1], A + c,α , A - c,α be the unit vectors given in Theorem A.5 and ϑ c,α the angle between A + c,α andA - c,α . Then, for xed α ∈ (0, 1], ϑ c,α is a continuous function in c. Also, for 0 < c < α 2 √ π/32, ϑ c,α ≥ arccos 1 -c 2 π + 32c 3 √ π α 2 . (A.13) Remark A.7. If α ∈ (0, 1] and c ∈ (0, α 2 √ π/32), then 1 -c 2 π + 32c 3 √ π α 2

  so that cos(ϑ c,α ) = 1 -2((A + 2,c,α ) 2 + (A + 3,c,α ) 2 ) ≤ 1 -c 2 π + 32c 3 √ π α 2 ,which implies (A.13).

  1 ≥ 1 and C 2 ≥ 1 are the constants in Lemmas 2.4 and 2.5, respectively. ρ and ε are actually small. Since C 1 , C 2 ≥ 1, we have

	Remark 2.8. Using the notation introduced in (2.11), the hypothesis (2.27) means that (ρ, ε) ∈
	S(8C 1 C 2 2 ). Therefore, by (2.13),					
	ρ ≤	1 8C 1 C 2 2	, and ε ≤	1 32C 1 C 2 2	,	(2.29)

so

  .40) with the same initial condition u 0 . By the denitions of C and K, (2.6) and (2.40), the estimates

	in (2.29) and (2.30) hold. It follows that (2.36), (2.37) and (2.39) are satised. Then, using
	(2.28),

  using the invariance of the norms under rotations, we deduce from (3.27) that

  b j ,α ), ∀j ∈ {1, . . . , k}, ∀α ∈ [α k , 1],and thuscos(ϑ a j ,α ) < l < cos(ϑ b j ,α ), ∀j ∈ {1, . . . , k}, ∀α ∈ [α k , 1],Let us x α ∈ [α k , 1] and j ∈ {1, . . . , k}. By Lemma A.8, c → cos(ϑ c,α ) is a continuous function on c. Therefore (3.34) and the intermediate value theorem yield the existence of

					since h is a strictly increasing function), we
	get				
	cos(ϑ a j ,α ) ≤	-1 + l 2	and	1 + l 2	≤ cos(ϑ (3.34)
	since l ∈ (-1, 1).				

  2 1 + |u| 2 belongs to L 1 uloc (R N × (0, T )), for all T > 0. Indeed, by (2.3) we haveg(u) uloc,T ≤ |∇u| 2 uloc,T . ≤ sup x 0 ∈R N ˆQ1 (x 0 ) |∇u(y, t)| 2 dt dy ≤ u 2 X . ∈R N ˆQ1 (x 0 )|∇u(y, t)| 2 dt dy + sup x 0 ∈R N ˆT 1 ˆB1 (x 0 )

				(A.3)
	If T ≤ 1, then		
		|∇u| 2	uloc,T (A.4)
	If T ≥ 1, using that	
			|∇u| ≤	[u] X √ t	, for any t > 0,
	we get		
	|∇u| 2	T,uloc ≤ sup x 0 |∇u| 2 dy dt ≤ u 2 X + [u] 2 X |B 1 (0)| ˆT 1 1 t dt
		≤ u 2	

X (1 + |B 1 (0)| ln(T )).

  5. ThenA + c,α is a continuous function of α in [0, 1] and |A + c,α -A + c,1 | ≤ h(c) √ 1 -α, for all α ∈ [1/2, 1],

(A.14) 

  can be written as -αs 2 /4 + s 2 e -αs 2 /2 .

	|f (s)| ≤	√	2 and |f (s)| ≤	c 2	e -αs 2 /4 ,
	and then (3.18) can be recast as						
	|g| ≤	c 4	+	c 2 √ 8	2	s β	e
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the Galilean transformation, part (i) of Proposition 3.9 could be an indicator that that the Cauchy problem (3.42) with a delta as initial condition is still ill-posed. This question rests open for the moment and it seems that the use of (3.36) (or (3.42)) can be more dicult to formulate a Cauchy theory for (LLG α ) including self-similar solutions.

Appendix

The characterization of BM O -1 1 (R N ) as sum of derivatives of functions in BMO was proved by Koch and Tataru in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF]. A straightforward generalization of their proof leads to the following

In addition, if such a decomposing holds, then

The next results provide the equivalence between the weak solutions and the Duhamel formulation. We rst need to introduce for T > 0 the space L 1 uloc (R N × (0, T )) dened as the space of measurable functions on R N × (0, T ) such that the norm

is nite. We refer the reader to LemariéRieusset's book [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF] for more details about these kinds of spaces. In particular, we recall the following result corresponding to Lemma 11.3 in [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF] in the case α = 1. It is straightforward to check that the same proof still applies if α ∈ (0, 1).

Lemma A.2. Let α ∈ (0, 1], T ∈ (0, ∞) and w ∈ L 1 uloc (R N × (0, T )). Then the function

is well dened and belongs to L 1 uloc (R N × (0, T )). Moreover,

and the application

Following the ideas in [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF], we can establish now the equivalence between the notions of solutions as well as the regularity.

Theorem A.3. Let α ∈ (0, 1] and u ∈ X(R N × R + ; C). Then the following assertions are equivalent:

i) The function u satises

On the other hand, since u 0 ∈ L ∞ (R N ),

for any r > 0 (see e.g. [3, Corollary 2.4]). Given > 0, we x r > 0 such that

Using (A.7), we obtain lim t→0 + (S α (t)u 0 -u 0 )ϕ L 1 (Br (0)) = 0.

Then, passing to limit in the inequality

we obtain lim sup

Combining with (A.6), we conclude the proof of (A.2).

It remains to prove that u is smooth for t

) so the L p -regularity theory for parabolic equations implies that a function u satisfying (A.1) belongs to u ∈ H 2,1 loc (R N × R + ) (see [START_REF] Lieberman | Second order parabolic dierential equations[END_REF][START_REF] Ladyzhenskaya | Linear and quasi-linear equations of parabolic type[END_REF] and [START_REF] Quittner | Superlinear parabolic problems[END_REF]Remark 48.3] for notations and more details). Since the space H k ∩ L ∞ is stable under multiplication (see e.g. [START_REF] Hörmander | Lectures on nonlinear hyperbolic dierential equations[END_REF]Chapter 6]), we can use a bootstrap argument to conclude that

Remark A.4. Several authors have studied further properties of the solutions found by Koch and Tataru for the NavierStokes equations. For instance, analyticity, decay rates of the higherorder derivatives in space and time have been investigated by Miura and Sawada [START_REF] Miura | On the regularizing rate estimates of Koch-Tataru's solution to the Navier-Stokes equations[END_REF], Germain, Pavlovi¢ and Stalani [START_REF] Germain | Regularity of solutions to the Navier-Stokes equations evolving from small data in BMO -1[END_REF], among others. A similar analysis for the solution u of (DNLS) is beyond the scope of this paper, but it can probably be performed using the same arguments given in [START_REF] Miura | On the regularizing rate estimates of Koch-Tataru's solution to the Navier-Stokes equations[END_REF][START_REF] Germain | Regularity of solutions to the Navier-Stokes equations evolving from small data in BMO -1[END_REF].

We end this appendix with some properties of the self-similar found in [START_REF] Gutiérrez | Self-similar solutions of the one-dimensional LandauLifshitz Gilbert equation[END_REF].

Theorem A.5 ([17]). Let N = 1. For every α ∈ [0, 1] and c > 0, there exists a prole

is a smooth solution of (LLG α ) on R × R + . Moreover, (i) There exist unitary vectors A ± c,α = (A ± j,c,α ) 3 j=1 ∈ S 2 such that the following pointwise convergence holds when t goes to zero: