A generic coordinate descent solver for nonsmooth convex optimization - Archive ouverte HAL
Article Dans Une Revue Optimization Methods and Software Année : 2019

A generic coordinate descent solver for nonsmooth convex optimization

Résumé

We present a generic coordinate descent solver for the minimization of a nonsmooth convex objective with structure. The method can deal in particular with problems with linear constraints. The implementation makes use of efficient residual updates and automatically determines which dual variables should be duplicated. A list of basic functional atoms is pre-compiled for efficiency and a modelling language in Python allows the user to combine them at run time. So, the algorithm can be used to solve a large variety of problems including Lasso, sparse multinomial logistic regression, linear and quadratic programs.
Fichier principal
Vignette du fichier
cd_solver_paper.pdf (351.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01941152 , version 1 (30-11-2018)
hal-01941152 , version 2 (26-09-2019)

Identifiants

Citer

Olivier Fercoq. A generic coordinate descent solver for nonsmooth convex optimization. Optimization Methods and Software, 2019, pp.1-21. ⟨10.1080/10556788.2019.1658758⟩. ⟨hal-01941152v2⟩
100 Consultations
760 Téléchargements

Altmetric

Partager

More