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We present a generic coordinate descent solver for the minimization of a nonsmooth convex objective with structure. The method can deal in particular with problems with linear constraints. The implementation makes use of efficient residual updates and automatically determines which dual variables should be duplicated. A list of basic functional atoms is pre-compiled for efficiency and a modelling language in Python allows the user to combine them at run time. So, the algorithm can be used to solve a large variety of problems including Lasso, sparse multinomial logistic regression, linear and quadratic programs.

Introduction

Coordinate descent methods decompose a large optimization problem into a sequence of onedimensional optimization problems. The algorithm was first described for the minimization of quadratic functions by Gauss and Seidel in [START_REF] Seidel | Ueber ein Verfahren, die Gleichungen, auf welche die Methode der kleinsten Quadrate führt, sowie lineäre Gleichungen überhaupt, durch successive Annäherung aufzulösen[END_REF]. Coordinate descent methods have become unavoidable in machine learning because they are very efficient for key problems, namely Lasso [START_REF] Friedman | Pathwise coordinate optimization[END_REF], logistic regression [START_REF] Yu | Dual coordinate descent methods for logistic regression and maximum entropy models[END_REF] and support vector machines [START_REF] John | Fast Training of Support Vector Machines using Sequential Minimal Optimization[END_REF][START_REF] Shalev | Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization[END_REF]. Moreover, the decomposition into small subproblems means that only a small part of the data is processed at each iteration and this makes coordinate descent easily scalable to high dimensions.

One of the main ingredients of an efficient coordinate descent solver is its ability to compute efficiently partial derivatives of the objective function [START_REF] Nesterov | Efficiency of coordinate descent methods on huge-scale optimization problems[END_REF]. In the case of least squares for instance, this involves the definition of a vector of residuals that will be updated during the run of the algorithm. As this operation needs to be performed at each iteration, and millions of iterations are usually needed, the residual update and directional derivative computation must be coded in a compiled programming language.

Many coordinate descent solvers have been written in order to solve a large variety of problems. However, most of the existing solvers can only solve problems of the type min

x∈R N J j=1 f (A j x -b j ) + I i=1 g(x (i) )
where x (i) ∈ R Ni is the ith block of x, I i=1 N i = N , A j ∈ R Mj×N is a matrix and b j ∈ R Mj is a vector, and where f is a convex differentiable function and g is a convex lower- semicontinuous function whose proximal operator is easy to compute (a.k.a. a proximal-friendly convex function). Each piece of code usually covers only one type of function [START_REF] Fan | Liblinear: A library for large linear classification[END_REF][START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF]. Moreover, even when the user has a choice of objective function, the same function is used for every block [START_REF] Blondel | Lightning: large-scale linear classification, regression and ranking in Python[END_REF].

In this work, we propose a generic coordinate descent method for the resolution of the convex optimization problem

min x∈R N 1 2 x ⊤ Qx + J j=1 c f j f j (A f j x -b f j ) + I i=1 c g i g i (D g i x (i) -b g i ) + L l=1 c h l h l (A h l x -b h l ) . (1) 
We shall call f j , g i and h l atom functions. Each of them may be different. We will assume that f j 's are differentiable and convex, g i 's and h l 's are proximal-friendly convex functions. As before A f j ∈ R M f j ×N and A h l ∈ R M h l ×N are matrices, D g i is a multiple of the identity matrix of size

N i , b f j ∈ R M f j , b g i ∈ R
Ni and b h l ∈ R M h l are vectors, c f j , c g i and c h l are positive real numbers, Q is a N × N positive semi-definite matrix.

The algorithm we implemented is described in [START_REF] Fercoq | A coordinate-descent primal-dual algorithm with large step size and possibly nonseparable functions[END_REF] and can be downloaded on https://bitbucket.org/ofercoq/cd_solver. The present paper focuses on important implementation details about residual updates and dual variable duplication. The novelty of our code is that it allows a generic treatment of these algorithmic steps and includes a modelling interface in Python for the definition of the optimization problem. Note that unlike most coordinate descent implementations, it can deal with nonseparable nonsmooth objectives and linear constraints.

Literature review on coordinate descent methods

A thorough review on coordinate descent is beyond the scope of this paper. We shall refer the interested reader to the review papers [START_REF] Stephen | Coordinate descent algorithms[END_REF] and [START_REF] Hao-Jun | A primer on coordinate descent algorithms[END_REF]. Instead, for selected papers dealing with smooth functions, separable non-smooth functions or non-separable non-smooth function, we list their main features. We also quickly review what has been done for non-convex functions. We sort papers in order of publication except when there are an explicit dependency between a paper and a follow-up.

Smooth functions

Smooth objectives are a natural starting point for algorithmic innovations. The optimization problem at stake writes

min x∈R N f (x)
where f is a convex differentiable function with Lipschitz-continuous partial derivatives.

In Table 1, we compare papers that introduced important improvements to coordinate descent methods. We shall in particular stress the seminal paper by Tseng and Yun [START_REF] Tseng | A coordinate gradient descent method for nonsmooth separable minimization[END_REF]. It features coordinate gradient steps instead of exact minimization. Indeed a coordinate gradient steps gives similar iteration complexity both in theory and in practice for a much cheaper iteration cost. Moreover, this opened the door for many innovations: blocks of coordinates and the use of proximal operators were developed in the same paper. Another crucial step was made in [START_REF] Nesterov | Efficiency of coordinate descent methods on huge-scale optimization problems[END_REF]: Nesterov showed how randomization can help finding finite-time complexity bounds and proposed an accelerated version of coordinate descent. He also proposed to use a non-uniform sampling of coordinates depending on the coordinate-wise Lipschitz constants. 

Separable non-smooth functions

A large literature has been devoted to composite optimization problems with separable nonsmooth functions:

min x∈R N f (x) + n i=1 g i (x (i) )
where f is a convex differentiable function with Lipschitz-continuous partial derivatives and for all i, g i is a convex function whose proximal operator is easy to compute. Indeed, regularized expected risk minimization problems often fit into this framework and this made the success of coordinate descent methods for machine learning applications. Some papers study min x∈R p f (x) + n i=1 g i ((Ax) (i) ), where f is strongly convex and apply coordinate descent to a dual problem written as

min y∈R N f * (-A ⊤ y) + n i=1 g * i (y (i) ) .
One of the challenges of these works is to show that even though we are solving the dual problem, one can still recover rates for a sequence minimizing the primal objective. We present our selection of papers devoted to this type of problems in Table 2.

Non-separable non-smooth functions

Non-separable non-smooth objective functions are much more challenging to coordinate descent methods. One wishes to solve where f is a convex differentiable function with Lipschitz-continuous partial derivatives, g and h are convex functions whose proximal operator are easy to compute and A is a linear operator. Indeed, the linear operator introduces a coupling between the coordinates and a naive approach leads to a method that does not converge to a minimizer [START_REF] Auslender | Optimisation: Méthodes Numériques[END_REF]. When h = ι {b} , the convex indicator function of the set {b}, we have equality constraints. We present our selection of papers devoted to this type of problems in Table 3.

min x∈R N f (x) + g(x) + h(Ax)

Non-convex functions

The goal here is to find a local minimum to the problem loc-min

x∈R N f (x) + n i=1 g i (x (i) )
without any assumption on the convexity of f nor g i . The function f should be continuously differentiable and the proximal operator of each function g i should be easily computable. Note that in the non-convex setting, the proximal operator may be set-valued.

Description of the Algorithm

General scheme

The algorithm we implemented is a coordinate descent primal-dual method developed in [START_REF] Fercoq | A coordinate-descent primal-dual algorithm with large step size and possibly nonseparable functions[END_REF]. Let introduce the notation

F (x) = 1 2 x ⊤ Qx + J j=1 c f j f j (A f j x -b f j ), G(x) = I i=1 c g i g i (D g i x (i) -b g i ), H(z) = L l=1 c h l h l (z (l) -b h l ), J (i) = {j : A h j,i = 0}, I(j) = {i : A h j,i = 0}, m j = |I(j)| and ρ(A) the spectral radius of matrix A. We shall also denote J f (i) = {j : A f j,i = 0},

Paper

Rate Const PD-CD Notable feature Platt '99 [START_REF] John | Fast Training of Support Vector Machines using Sequential Minimal Optimization[END_REF] × ✓ P for SVM Tseng & Yun '09 [START_REF] Tseng | Block-Coordinate Gradient Descent Method for Linearly Constrained Non Separable Optimization[END_REF] ✓ ✓ P adapts Gauss-Southwell rule Tao et al '12 [START_REF] Tao | Stochastic Coordinate Descent Methods for Regularized Smooth and Nonsmooth Losses[END_REF] ✓ × P uses averages of subgradients Necoara et al '12 [START_REF] Necoara | Efficiency of randomized coordinate descent methods on optimization problems with linearly coupled constraints[END_REF] ✓ ✓ P 2-coordinate descent Nesterov '12 [START_REF] Nesterov | Subgradient Methods for Huge-Scale Optimization Problems[END_REF] ✓ × P uses subgradients Necoara & Clipici '13 [START_REF] Necoara | Efficient parallel coordinate descent algorithm for convex optimization problems with separable constraints: application to distributed MPC[END_REF] ✓ ✓ P coupled constraints Combettes & Pesquet '14 [START_REF] Patrick | Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations with Random Sweeping[END_REF] × ✓ ✓ 1st PD-CD, short step sizes Bianchi et al '14 [START_REF] Bianchi | A stochastic coordinate descent primaldual algorithm and applications[END_REF] × ✓ ✓ distributed optimization Hong et al '14 [START_REF] Hong | A block successive upper bound minimization method of multipliers for linearly constrained convex optimization[END_REF] × ✓ × updates all dual variables Fercoq & Richtárik '17 [START_REF] Fercoq | Smooth minimization of nonsmooth functions with parallel coordinate descent methods[END_REF] ✓ × P uses smoothing Alacaoglu et al '17 [START_REF] Alacaoglu | Smooth primaldual coordinate descent algorithms for nonsmooth convex optimization[END_REF] ✓ ✓ ✓ 1st PD-CD w rate for constraints Xu & Zhang '18 [START_REF] Xu | Accelerated primal-dual proximal block coordinate updating methods for constrained convex optimization[END_REF] ✓ ✓ × better rate than [21] Chambolle et al '18 [START_REF] Chambolle | Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications[END_REF] ✓ ✓ × updates all primal variables Fercoq & Bianchi '19 [START_REF] Fercoq | A coordinate-descent primal-dual algorithm with large step size and possibly nonseparable functions[END_REF] ✓ ✓ ✓ 1st PD-CD w long step sizes Gao et al '19 [START_REF] Gao | Randomized primal-dual proximal block coordinate updates[END_REF] ✓ ✓ × 1st primal-dual w rate for constraints Latafat et al '19 [START_REF] Latafat | A new randomized blockcoordinate primal-dual proximal algorithm for distributed optimization[END_REF] ✓ ✓ ✓ linear conv w growth condition Table 3. Selected papers for the minimization of non-smooth non-separable functions. Rate: does the paper prove rates? Const: can the method solve problems with linear equality constraints? PD-CD: the method is purely primal (P), the method updates some primal variables but all the Lagrange multipliers or some dual variables but all the primal variables (×), the method updates some primal and some dual variables at each iteration (✓). 

Paper

J Q (i) = {j : Q j,i = 0}, A f ∈ R j M f j ×N
the matrix which stacks the matrices (A f j ) 1≤j≤J and A h the matrix which stacks the matrices (A h l ) 1≤l≤L . The algorithm writes then as Algorithm 1.

Algorithm 1 Coordinate-descent primal-dual algorithm with duplicated variables (PD-CD)

Input: Differentiable function F : R N → R, matrix A h ∈ R M h ×N
, functions G and H whose proximal operators are available.

Initialization: Choose x 0 ∈ R N , y 0 ∈ R nnz(A h ) . Denote J (i) = {j : A h j,i = 0}, I(j) = {i : A h j,i = 0}, m j = |I(j)| and ρ(A) the spectral radius of matrix A. Choose step sizes τ ∈ R I + and σ ∈ R L + such that ∀i ∈ {1, . . . I}, τ i < 1 
β i + ρ j∈J (i) m j σ j (A h ) ⊤ j,i A h j,i . (2) 
For all i ∈ {1, . . . , I}, set w

(i) 0 = j∈J (i) (A h ) ⊤ j,i y (j)
0 (i). For all j ∈ {1, . . . , J}, set z

(j) 0 = 1 mj i∈I(j) y (j) 0 (i).
Iteration k: Define:

y k+1 = prox σ,H ⋆ z k + D(σ)A h x k x k+1 = prox τ,G x k -D(τ ) ∇F (x k ) + 2(A h ) ⊤ y k+1 -w k .
For i = i k+1 ∼ U ({1, . . . , I}) and for each j ∈ J (i k+1 ), update:

x (i) k+1 = x (i) k+1 y (j) k+1 (i) = y (j) k+1 w (i) k+1 = w (i) k + j∈J(i) (A h ) ⊤ j,i (y (j) k+1 (i) -y (j) k (i)) z (j) k+1 = z (j) k + 1 m j (y (j) k+1 (i) -y (j) k (i)) .
Otherwise, set x

(i ′ ) k+1 = x (i ′ ) k , w (i ′ ) k+1 = w (i ′ ) k , z (j ′ ) k+1 = z (j ′ ) k
and y

(j ′ ) k+1 (i ′ ) = y (j ′ ) k (i ′ ).
We will denote U 1 , . . . , U I the columns of the identity matrix corresponding to the blocks of x = (x (1) , . . . , x (I) ), so that U i x (i) ∈ R N and V 1 , . . . , V J the columns of the identity matrix corresponding to the blocks of

A f x -b f = (A f 1 x -b f 1 , . . . , A f J x -b f J ).

Computation of partial derivatives

For simplicity of implementation, we are assuming that G is separable and the blocks of variable will follow the block structure of G. This implies in particular that at each iteration, only ∇ i F (x k ) needs to be computed. This partial derivative needs to be calculated efficiently because it needs to be performed at each iteration of the algorithm. We now describe the efficient residual update method, which is classically used in coordinate descent implementations [START_REF] Nesterov | Efficiency of coordinate descent methods on huge-scale optimization problems[END_REF].

Denote r f,x k = A f x k -b f and r Q,x k = Qx k .
By the chain rule, we have

∇ i F (x k ) = J j=1 c f j (A f ) ⊤ j,i ∇f j (A f j x k -b f j ) + Qx k = j∈J f (i) c f j (A f ) ⊤ j,i ∇f j ((r f,x k ) j ) + j∈J Q (i) U i r Q,x k If r f,x k and r Q,x k are pre-computed, only O(|J f (i)| + |J Q (i)|
) operations are needed. For an efficient implementation, we will update the residuals r f,x k as follows, using the fact that only the coordinate block i k+1 is updated:

r f,x k+1 = A f x k+1 -b f = A f x k + U ik+1 (x (ik+1) k+1 -x (ik+1) k ) -b f = r f,x k + A f U ik+1 (x (ik+1) k+1 -x (ik+1) k ) = r f,x k + j∈J f (ik+1) V j A f j,ik+1 (x (ik+1) k+1 -x (ik+1) k ) Hence, updating r f,x k+1 also requires only O(|J f (i k+1 )|) iterations. Similarly, updating the residuals r Q,x k , r h,x k = A h x k -b h , w k and z k can be done in O(|J Q (i k+1 )|) and O(|J (i k+1 )|) operations.
Although this technique is well known, it is not trivial how to write it in a generic fashion, since residual updates are needed at each iteration and should be written in a compiled language. We coded the residual update using abstract atom functions in order to achieve this goal.

Computation of proximal operators using atom functions

Another major step in the method is the computation of the i th coordinate of prox τ,G (x) for a given x ∈ R N .

As D g is assumed to be diagonal, G is separable. Hence, by the change of variable z = D g i x-b g i , (prox τ,G (x)) i = arg min

x∈R N i c g i g i (D g i x -b g i ) + 1 2τ i x -x (i) 2 = (D g i ) -1 b g i + arg min z∈R N i c g i g i (z) + 1 2τ i (D g i ) -1 (b g i + z) -x (i) 2 = (D g i ) -1 b g i + arg min z∈R N i g i (z) + 1 2c g i (D g i ) 2 τ i z -(D g i x (i) -b g i ) 2 = (D g i ) -1 b g i + prox c g i (D g i ) 2 τigi (D g i x (i) -b g i )
where we used the abuse of notation that D g i is either the scaled identity matrix or any of its diagonal elements. This derivation shows that to compute (prox τ,G (x)) i we only need linear algebra and the proximal operator of the atom function g i .

We can similarly compute prox H. To compute prox σ,H ⋆ , we use Moreau's formula:

prox σ,H ⋆ (z) = z -D(σ) prox σ -1 ,H (D(σ) -1 z)

Duplication of dual variables

Algorithm 1 maintains duplicated dual variables y k ∈ R nnz(A h ) as well as averaged dual variables

z k ∈ R M h where M h = L l=1 M h l and A h l,i is of size M h l × N i .
The sets J (i) for all i are given by the sparse column format representation of A h . Yet, for all i, we need to construct the set of indices of y k+1 that need to be updated. This is the table dual vars to update in the code. Moreover, as H is not separable in general, in order to compute ȳj k+1 , for j ∈ J (i k+1 ), we need to determine the set of dual indices j ′ that belong to the same block as j with respect to the block decomposition of H. This is the purpose of the tables inv blocks h and blocks h.

The procedure allows us to only compute the entries of ȳk+1 that are required for the update of y k . The code is organized in nine files. The main file is cd solver.pyx. It contains the Python callable and the data structure for the problem definition. The other files are atoms.pyx/pxd, algorithm.pyx/pxd, helpers.pyx/pxd and screening.pyx/pxd. They contain the definition of the atom functions, the algorithms and the functions for computing the objective value. In Figure 1, we show for each subfunction, in which function it is used. The user needs to call the Python class Problem and the Python function coordinate descent. Atom functions can be added by the user without modifying the main algorithm.

Code structure

All tables are defined using Numpy's array constructor in the coordinate descent function. The main loop of coordinate descent and the atom functions are pre-compiled for efficiency.

Atom functions

The code allows us to define atom functions independently of the coordinate descent algorithm. As an example, we provide in Figure 2 As inputs, it gets x (an array of numbers which is the point where the operation takes place), buff (the buffer for vectorial outputs), nb coord (is the size of x), mode, prox param and prox param2 (numbers which are needed when computing the proximal operator). The input mode can be:

• GRAD in order to compute the gradient.

• PROX to compute the proximal operator.

• PROX CONJ uses Moreau's formula to compute the proximal operator of the conjugate function.

• LIPSCHITZ to return the Lipschitz constant of the gradient.

• VAL CONJ to return the value of the conjugate function. As this mode is used only by compute smoothed gap for printing purposes, its implementation is optional and can be approximated using the helper function val conj not implemented. Indeed, for a small

ǫ > 0, h * (y) = sup z z, y -h(z) ≈ sup z z, y -h(z) -ǫ 2 z 2 = p, y -h(p) -ǫ 2 p 2
, where p = prox h/ǫ (y/ǫ).

• VAL to return the value of the function. Some functions naturally require multi-dimensional inputs, like • 2 or the log-sum-exp function. For consistency, we define all the atoms with multi-dimensional inputs: for an atom function f 0 : R → R, we extend it to an atom function f : R Ni → R by f (x) = Ni l=1 f 0 (x l ). For efficiency purposes, we are bypassing the square atom function when computing a gradient and implemented it directly in the algorithm.

Modelling language

In order to use the code in all its generality, we defined a modelling language that can be used to define the optimization problem we want to solve [START_REF] Alacaoglu | Smooth primaldual coordinate descent algorithms for nonsmooth convex optimization[END_REF].

The user defines a problem using the class Problem. Its arguments can be:

• N the number of variables, blocks the blocks of coordinates coded in the same fashion as the indptr index of sparse matrices (default [0, 1, . . . , N]), x init the initial primal point (default 0) and y init the initial duplicated dual variable (default 0) • Lists of strings f, g and h that code for the atom functions used. The function string to func is responsible for linking the atom function that corresponds to the string. Our convention is that the string code is exactly the name of the function in atoms.pyx.

The size of the input of each atom function is defined in blocks f, blocks and blocks h. The function strings f, g or h may be absent, which means that the function does not appear in the problem to solve. • Arrays and matrices cf, Af, bf, cg, Dg, bg, ch, Ah, bh, Q. The class initiator transforms matrices into the sparse column format and checks whether Dg is diagonal.

For instance, in order to solve the Lasso problem, min x 1 2 Ax -b 2 2 + λ x 1 , one can type pb lasso = cd solver.Problem(N=A.shape [START_REF] Alacaoglu | Smooth primaldual coordinate descent algorithms for nonsmooth convex optimization[END_REF], f=["square"]*A.shape[0], Af=A, bf=b, cf=[0.5]*A.shape[0], g=["abs"]*A.shape [START_REF] Alacaoglu | Smooth primaldual coordinate descent algorithms for nonsmooth convex optimization[END_REF], cg=[lambda]*A.shape [START_REF] Alacaoglu | Smooth primaldual coordinate descent algorithms for nonsmooth convex optimization[END_REF]) cd solver.coordinate descent(pb lasso)

Extensions

Non-uniform probabilities

We added the following feature for an improved efficiency. Under the argument sampling='kink half', the algorithms periodically detects the set of blocks I kink such that i ∈ I kink if x (i) is at a kink of g i . Then, block i is selected with probability law

P(i k+1 = i) =      1 n if |I kink | = n 1 2n if |I kink | < n and i ∈ I kink 1 2n + 1 2(n-|Ikink|) if |I kink | < n and i ∈ I kink
The rationale for this probability law is that blocks at kinks are likely to incur no move when we try to update them. We thus put more computational power for non-kinks. On the other hand, we still keep an update probability weight of at least 1 2n for each block, so even in unfavourable cases, we should not observe too much degradation in the performance as compared to the uniform law.

Acceleration

We also coded accelerated coordinate descent [START_REF] Fercoq | Accelerated, parallel and proximal coordinate descent[END_REF], as well as its restarted [START_REF] Fercoq | Restarting the accelerated coordinate descent method with a rough strong convexity estimate[END_REF] and primaldual [START_REF] Alacaoglu | Smooth primaldual coordinate descent algorithms for nonsmooth convex optimization[END_REF] variants. The algorithm is given in Algorithm 2. As before, ȳk+1 and xk+1 should not be computed: only the relevant coordinates should be computed.

The accelerated algorithms improve the worst case guarantee as explained in Table 5: However, accelerated algorithms do not take profit of regularity properties of the objective like strong convexity. Hence, they are not guaranteed to be faster, even though restart may help.

Algorithm 2 Smooth, accelerate, randomize the Coordinate Descent (APPROX/SMART-CD)

Input: Differentiable function F : R N → R, matrix A h ∈ R M h ×N
, functions G and H whose proximal operators are available.

Initialization: Choose x 0 ∈ R N , ẏ0 ∈ R M h . Choose γ 1 > 0 and denote B i 0 = β i + ρ((A h :,i ) ⊤ A h :,i ) γ1 . Set s = 0, θ 0 = 1 n , c 0 = 1, x0 = 0 ∈ R N and x0 = x 0 . Iteration k: Define: y k+1 = prox γ -1 k+1 ,H ⋆ ẏs + D(γ k+1 ) -1 (c k A h xk + A h xk ) x k+1 = prox θ 0 θ k B -1 k ,G xk - θ 0 θ k D(B k ) -1 ∇F (c k xk + xk ) + (A h ) ⊤ y k+1 .
For i = i k+1 ∼ U ({1, . . . , I}), update:

x(i) k+1 = x (i) k+1 x(i) k+1 = x(i) k - 1 -θ k /θ 0 c k (x (i) k+1 - x(i) k ) Otherwise, set x (i ′ ) k+1 = x (i ′ )
k . Compute θ k+1 ∈ (0, 1) as the unique positive root of 

θ 3 + θ 2 + θ 2 k θ -θ 2 k = 0 if h = 0 θ 2 + θ 2 k θ -θ 2 k = 0 if h = 0 Update γ k+2 = γk+1 1+θk+1 , c k+1 = (1 -θ k+1 )c k and B i k+1 = β i + ρ((A h :,i ) ⊤ A h :,i ) γk+2 for all i. If Restart(k) is true: Set x k+1 = xk+1 + c k xk+1 . Set ẏs+1 = y k+1 and s ← s + 1. Reset xk+1 ← 0, xk+1 ← x k+1 , c k+1 ← 1, θ k+1 ← θ 0 , β k+1 ← β 1 . h = 0 h = 0 PD-CD Alg. 1 O(1/k) O(1/ √ k) APPROX / SMART-CD Alg. 2 O(1/k 2 ) O(1/k)

Variable screening

The code includes the Gap Safe screening method presented in [START_REF] Ndiaye | Safe Optimization Algorithms for Variable Selection and Hyperparameter Tuning[END_REF]. Note that the method has been studied only for the case where h = 0. Given a non-differentiability point x(i) of the function g i where the subdifferential ∂g i (x (i) ) has a non-empty interior, a test is derived to check whether x(i) is the i th variable of an optimal solution. If this is the case, one can set x (i) = x(i) and stop updating this variable. This may lead to a huge speed up in some cases. As the test relies on the computation of the duality gap, which has a nonnegligible cost, it is only performed from time to time.

In order to state Gap Safe screening in a general setting, we need the concept of polar of a support function. Let C be a convex set. The support function of C is σ C defined by

σ C (x) = sup y∈C y, x . The polar to σ C is σ • C (x) = sup x:σC (x)≤1
x, x .

In particular, if x ∈ C, then σ • C (x) ≤ 1. Denote f (z) = J j=1 c f j f j (z (j) -b f j ), so that (∇f (A f x)) j = c f j ∇f j (A f j x -b f j ), G i (x) = c g i g i (D g i x (i) -b g i ),
x ⋆ a solution to the optimization problem (1) and suppose we have a set R such that (∇f

(A f x ⋆ -b f ), Qx ⋆ ) ∈ R. Gap Safe screening states that max (ζ,ω)∈R σ • ∂Gi(x (i) ) ((A f ) ⊤ i ζ + ω (i) ) < 1 ⇒ x (i) ⋆ = x(i) .
Denote z = ∇f (A f x) and w = Qx1 . We choose R as a sphere centered at

( ζ, ω) = (z, w) max(1, max 1≤i≤I σ • dom G * i ((A f i ) ⊤ z + w (i) ) )
and with radius

r = 2Gap(x, ζ, ω) L f,Q
where

L f,Q = max( max 1≤j≤J L(∇f j ), max 1≤i≤I ρ(Q i,i )) and Gap(x, ζ, ω) = 1 2 x ⊤ Qx + f (A f x) + G(x) + G * (-(A f ) ⊤ ζ -ω) + 1 2 ω⊤ Q † ω + f * ( ζ) .
Note that as ω is a rescaled version of w = Qx, we do not need to know Q † in order to compute ω⊤ Q † ω. It is proved in [START_REF] Ndiaye | Safe Optimization Algorithms for Variable Selection and Hyperparameter Tuning[END_REF] that this set R contains (∇f (A f x ⋆ -b f ), Qx ⋆ ) for any optimal solutions x ⋆ to the primal problem. In the case where G i is a norm and x (i) = 0, these expressions simplify since the σ

• ∂Gi(0) = σ • dom G *
i is nothing else than the dual norm associated to G i .

For the estimation of max

(ζ,ω)∈R σ • ∂Gi(x (i) ) ((A f ) ⊤ i ζ + ω (i)
), we use the fact that the polar of a support function is sublinear and positively homogeneous. Indeed, we have

σ • ∂Gi(x (i) ) ((A f ) ⊤ i ζ + ω (i) ) = sup x : σ ∂G i (x (i) ) (x)≤1 (A f ) ⊤ i ζ + ω (i) , x = sup x : σ c g i D g i ∂g i (D g i x(i) -b g i )≤1 (A f ) ⊤ i ζ + ω (i) , x = 1 c g i D g i σ • ∂gi(D g i x(i) -b g i ) ((A f ) ⊤ i ζ + ω (i) ) = 1 c g i D g i σ • ∂gi(xg i ) ((A f ) ⊤ i ζ + ω (i) ) ≤ 1 c g i D g i σ • ∂gi(xg i ) ((A f ) ⊤ i ζ + ω(i) ) + r sup (u,v): (u,v) =1 1 c g i D g i σ • ∂gi(xg i ) ((A f ) ⊤ i u + v (i) ) .
Here xgi = D g i x(i) -b g i is a point where ∂g i (x gi ) has a nonempty interior. Some care should be taken when ∂G i (x (i) ) is unbounded, so that we first check whether (A f

) ⊤ i ζ + ω (i) ∈ dom σ • ∂gi(xg i )
for all (ζ, ω) ∈ R.

Here also, the novelty lies in the genericity of the implementation.

Numerical validation

Performance

In order to evaluate the performance of the implementation, we compare our implementation with a pure Python coordinate descent solver and code written for specific problems: Scikit learn's Lasso solver and Liblinear's SVM solver. We run the code on an Intel Xeon CPU at 3.07GHz. We can see on Table 6 that our code is hundreds of times faster than the pure Python code. This is due to the compiled nature of our code, that does not suffer from the huge number of iterations required by coordinate descent. On the other hand, our code is about 4 times slower than state-of-the-art coordinate descent implementations designed for a specific problem. We can see it in both examples we chose. This overhead is the price of genericity.

Lasso

We believe that, except for critical applications like Lasso or SVM, a 4 times speed-up does not justify writing a new code from scratch, since a separate piece of code for each problem makes it difficult to maintain and to improve with future algorithmic advances.

Genericity

We tested our algorithm on the following problems:

• Lasso problem min x∈R n 1 2 Ax -b 2 2 + λ x 1 • Binomial logistic regression min x∈R n m i=1 log(1 + exp(b i (Ax) i )) + λ 2 x 2 2
where b i ∈ {-1, 1} for all i. • Sparse binomial logistic regression min

x∈R n m i=1 log(1 + exp(b i (Ax) i )) + λ x 1 • Dual SVM without intercept min x∈R n 1 2α A ⊤ D(b)x 2 2 -e ⊤ x + ι [0,1] n (x)
where ι [0,1] n is the convex indicator function of the set [0, 1] n and encodes the constraint

x ∈ [0, 1] n . • Dual SVM with intercept min x∈R n 1 2α A ⊤ D(b)x 2 2 -e ⊤ x + ι [0,1] (x) + ι {0} (b ⊤ x) • Linearly constrained quadratic program min x∈R n 1 2 (A f ) ⊤ x -b f 2 2 + ι {0} (A h x -b h ) • Linear program min x∈R n c ⊤ x + ι R n + (x) + ι R m -(Ax -b) • TV+ℓ 1 -regularized regression min x∈R n 1 n 2 n 3 1 2 Ax -b 2 2 + α 1 Dx 2,1 + α 2 x 1
where D is the discrete gradient operator and y 2,1 = i,j,k

3 l=1 y 2 i,j,k,l . • Sparse multinomial logistic regression min x∈R n×q m i=1 log q j=1 exp n l=1 A i,l x l,j + n i=1 q j=1 x i,j b i,j + n l=1 q j=1 x 2 l,j
where b i,j ∈ {0, 1} for all i, j. This list demonstrates that the method is able to deal with differentiable functions, separable or nonseparable nondifferentiable functions, as well as use several types of atom function in a single problem.

Benchmarking

In Table 7, we compare the performance of Algorithm 1 with and without screening, Algorithm 2 with and without screening as well as 2 alternative solvers for 3 problems exhibiting various situations:

• Lasso: the nonsmooth function in the Lasso problem is separable;

• the TV-regularized regression problem has a nonsmooth, nonseparable regularizer whose matrix A h is sparse; • the dual SVM with intercept has a single linear nonseparable constraint.

For Algorithm 2, we set the restart with a variable sequence as in [START_REF] Fercoq | Restarting the accelerated coordinate descent method with a rough strong convexity estimate[END_REF]. We did not tune the algorithmic parameters for each instance. We evaluate the precision of a primal-dual pair (x, y) as follows. We define the smoothed gap [START_REF] Tran-Dinh | A smooth primal-dual optimization framework for nonsmooth composite convex minimization[END_REF] as

G β,γ (x, y, ζ, ω) = 1 2 x ⊤ Qx + f (A f x) + G(x) + max y ′ A h x, y ′ -H * (y ′ ) - β 2 y -y ′ 2 +H * (y) + 1 2 ω ⊤ Q † ω + f * (ζ) + max x ′ -(A h ) ⊤ y -(A f ) ⊤ ζ -ω, x ′ -G(x ′ ) - γ 2 x -x ′ 2
and we choose the positive parameters β and γ as

β = dist(A h x, dom H) γ = dist(-(A h ) ⊤ y -(A f ) ⊤ ζ -ω, dom G * ) .
It is shown in [START_REF] Tran-Dinh | A smooth primal-dual optimization framework for nonsmooth composite convex minimization[END_REF] that when G β,γ (x, y, ζ, ω), β and γ are small then the objective value and feasibility gaps are small. For the Lasso problems, we compare our implementations of the coordinate descent method with scikit-learn's coordinate descent [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF] and CVXPY's augmented Lagrangian method [START_REF] Diamond | CVXPY: A Python-embedded modeling language for convex optimization[END_REF] called OSQP. As in Table 6, we have a factor 4 between Alg. 1 without screening and scikitlearn. Acceleration and screening allows us to reduce this gap without sacrificing generality. OSQP is efficient on small problems but is not competitive on larger instances.

For the TV-regularized regression problems, we compare ourself with FISTA where the proximal operator of the total variation is computed inexactly and with LBFGS where the total variation is smoothed with a decreasing smoothing parameter. Those two methods have been implemented for [START_REF] Dohmatob | Benchmarking solvers for TV-l1 least-squares and logistic regression in brain imaging[END_REF]. They manage to solve the problem to an acceptable accuracy in a few hours. As the problem is rather large, we did not run OSQP on it. For our methods, as h is nonzero, we cannot use variable screening with the current theory. Alg. 1 quickly reduces the objective value but fails to get a high precision in a reasonable amount of time. On the other hand, Alg. 2 is the quickest among the four solvers tested here.

The third problem we tried is dual support vector machine with intercept. A very famous solver is libsvm [START_REF] Chang | LIBSVM: A library for support vector machines[END_REF], which implements SMO [START_REF] John | Fast Training of Support Vector Machines using Sequential Minimal Optimization[END_REF], a 2-coordinate descent method that ensures the feasibility of the constraints at each iteration. The conclusions are similar to what we have seen above. The specialized solver remains a natural choice. OSQP can only solve small instances. Alg. 1 has trouble finding high accuracy solutions. Alg. 2 is competitive with respect to the specialized solver. Table 7. Time to reach precision ǫ. scr = with gap safe screening. For SVM, we scale the data so that in each column of the data matrix A, A i,j ∈ [-1, 1].

Conclusion

This paper introduces a generic coordinate descent solver. The technical challenge behind the implementation is the fundamental need for a compiled language in the low-level operations that are partial derivative and proximal operator computations. We solved it using pre-defined atom functions that are combined at run time using a python interface. We show how genericity allows us to decouple algorithm development from a particular application problem. As an example, our software can solve at least 12 types of optimization problems on large instances using primal-dual coordinate descent, momentum acceleration, restart and variable screening.

As future works, apart from keeping the algorithm up to date with the state of the art, we plan to bind our solver with CVXPY in order to simplify further the user experience.

Figure 1 .

 1 Figure 1. Code structure when using no screening and no inertial acceleration

Figure 2 .

 2 Figure 2. Code for the square function atom

Table 1 .

 1 Selected papers for the minimization of smooth functions. Rate: we check whether the paper proves convergence

	Paper	Rate Rand Grad Blck Par Acc	Notable feature
	Seidel '74 [49] Warga '63 [62] Luo & Tseng '92 [34] Leventhal & Lewis '08 [28] Tseng & Yun '09 [60] Nesterov '12 [39] Beck & Tetruashvili '13 [4] Lin & Xiao '13 [33] Lee & Sidford '13 [27] Liu et al '13 [31] Glasmachers & Dogan '13 [22] × × × asymp N N N ✓ Y asymp N ✓ Y ✓ N ✓ Y ✓ Y ✓ Y Y Richtárik & Takáč '16 [46] ✓ Y Allen-Zhu et al '16 [2] ✓ Y Sun et al '17 [55] ✓ Y	× × × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	× × × × ✓ × ✓ ✓ × × × × ✓ ✓	× × × × × × not eff 1st acc & 1st non-uniform quadratic × strictly convex × rate for weakly convex × quadratic f × line search, proximal operator × × not eff finite time analysis cyclic CD improvements on [39, 47] × not eff ✓ 1st efficient accelerated × ✓ 1st asynchronous × × heuristic sampling × ✓ 1st arbitrary sampling × ✓ non-uniform sampling × ✓ × better asynchrony than [31]
					Blck: the paper considers 1D
	coordinates (×) or blocks of coordinates (✓). Par: Algorithm designed for parallel computing (✓). Acc: no momentum
	(×), accelerated but not efficient in practice (not eff), accelerated algorithm (✓)

(×), an asymptotic rate (asymp) or a finite time iteration complexity (✓). Rand: deterministic (N) or randomized (Y) selection of coordinates. Grad: exact minimization (×) or use of partial derivatives (✓).

Table 2 .

 2 An overview of selected papers proposing and analyzing the iteration complexity of coordinate descent methods for separable non-smooth objectives. Prx: uses a proximal operator to deal with the non-smooth part of the objective. Par: updates several blocks of coordinates in parallel. Acc: uses momentum to obtain an improved rate of convergence. Dual: solves a dual problem but still proves rates in the primal (only relevant for weakly convex duals).

	Paper	Prx Par Acc Dual	Notable feature
	Tseng & Yun '09 [60] S-Shwartz & Tewari '09 [50] Bradley et al '11 [7] Richtárik & Takáč '14 [47] S-Shwartz & Zhang '13 [51] Richtárik & Takáč '15 [48] Takáč et al '13 [56] S-Shwartz & Zhang '14 [53] Yun '14 [68] Fercoq & Richtárik '15 [18] Lin, Lu & Xiao '14 [30] Richtárik & Takáč '16 [45] Fercoq et al '14 [17] Lu & Xiao '15 [33] Li & Lin '18 [29] Fercoq & Qu '18 [16]	✓ ℓ 1 ℓ 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	× × ✓ × × ✓ ✓ × × ✓ × ✓ ✓ × × ×	× × × × × × × ✓ × ✓ ✓ × ✓ × ✓ ✓	× × × × ✓ × ✓ ✓ × × × × × × ✓ ×	1st prox, line search, deterministic 1st ℓ 1 -regularized w finite time bound ℓ 1 -regularized parallel 1st proximal with finite time bound 1st dual 1st general parallel 1st dual & parallel acceleration in the primal analysis of cyclic CD 1st proximal and accelerated prox & accelerated on strong conv. 1st distributed distributed computation improved complexity over [47, 39] acceleration in the dual restart for obj with error bound

Table 4 .

 4 Selected papers for the local minimization of nonconvex problems. Conv: study only limit points (×) or convergence of the sequence proved (✓). Smth: can deal with non-convex smooth functions. Nsmth: can deal with non-convex and non-smooth functions.

  the code for the square function atom.

	cdef DOUBLE square(DOUBLE[:] x, DOUBLE[:] buff, int nb_coord, MODE mode,
	DOUBLE prox_param, DOUBLE prox_param2) nogil:
	# Function x -> x**2
	cdef int i
	cdef DOUBLE val = 0.
	if mode == GRAD:
	for i in range(nb_coord):
	buff[i] = 2. * x[i]
	return buff[0]
	elif mode == PROX:
	for i in range(nb_coord):
	buff[i] = x[i] / (1. + 2. * prox_param)
	return buff[0]
	elif mode == PROX_CONJ:
	return prox_conj(square, x, buff, nb_coord, prox_param, prox_param2)
	elif mode == LIPSCHITZ:
	buff[0] = 2.
	return buff[0]
	elif mode == VAL_CONJ:
	return val_conj_not_implemented(square, x, buff, nb_coord)
	else: # mode == VAL
	for i in range(nb_coord):
	val += x[i] * x[i]
	return val

Table 5 .

 5 Convergence speed of the algorithms implemented

Table 6 .

 6 Comparison of our code with a pure Python code and reference implementations for performing 100N coordinate descent iterations for the Lasso problem on the Leukemia dataset with regularization parameter λ = 0.1 (A f ) ⊤ b f ∞, and for 10N coordinate descent iterations for the dual SVM problem on the RCV1 dataset with penalty parameter C = 10.

  >2,000s 267.3s; scr: 114.4s 169.8s; scr: 130.7s TV-regularized regression fMRI[START_REF] Sabrina | The neural basis of loss aversion in decision-making under risk[END_REF][START_REF] Dohmatob | Benchmarking solvers for TV-l1 least-squares and logistic regression in brain imaging[END_REF] (α 1 = α 2 = 5.10 -3 )

	Problem	Dataset	Alternative solver 1	Alternative solver 2	Algorithm 1	Algorithm 2
	Lasso (λ = 0.1 X ⊤ y ∞ )	triazines (J=186, I=60)	Scikit-learn: 0.005s	OSQP: 0.033s 0.107s; scr: 0.101s 0.066s; scr: 0.079s
	ǫ = 10 -6	scm1d (J=9,803, I=280)	Scikit-learn: 24.40s	OSQP: 33.21s	91.97s; scr: 8.73s	24.13; scr: 3.21s
		news20.binary (J=19,996, I=1,355,191)	Scikit-learn: 64.6s OSQP: inexact FISTA: 24,341s LBFGS+homotopy: 6,893s	>25,000s	2,734s
	ǫ = 1	(J=768, I=65,280, L=195,840)				
	Dual SVM with intercept ionosphere (J=14, I=351)	libsvm: 0.04s	OSQP: 0.12s	3.23s	0.42s
	ǫ = 10 -3	leukemia (J=7,129, I=72)	libsvm: 0.1s	OSQP: 3.2s	25.5s	0.8s
		madelon (J=500, I=2,600)	libsvm: 50s	OSQP: 37s	3842s	170s
		gisette (J=5,000, I=6,000)	libsvm: 70s	OSQP: 936s	170s	901s
		rcv1 (J=47,236, I=20,242)	libsvm: 195s	OSQP: Memory error	>5000s	63s

We reuse the notation w and z here for the purpose of this section.