Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropic systems - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Sciences Année : 2020

Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropic systems

Modèles d'acoustique non linéaires vus comme une approximation des sytèmes d'Euler et de Navier-Stokes compressibles et isentropiques

Résumé

The derivation of different models of non linear acoustic in thermo-ellastic media as the Kuznetsov equation, the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and the Nonlinear Progressive wave Equation (NPE) from an isentropic Navier-Stokes/Euler system is systematized using the Hilbert type expansion in the corresponding perturbative and (for the KZK and NPE equations) paraxial \textit{ansatz}. The use of small, to compare to the constant state perturbations, correctors allows to obtain the approximation results for the solutions of these models and to estimate the time during which they keep closed in the L² norm. In the aim to compare the solutions of the exact and approximated systems in found approximation domains a global well-posedness result for the Navier-Stokes system in a half-space with time periodic initial and boundary data was obtained.
Fichier principal
Vignette du fichier
preprint.pdf (611.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01935515 , version 1 (26-11-2018)
hal-01935515 , version 2 (06-05-2019)
hal-01935515 , version 3 (27-05-2020)

Identifiants

Citer

Adrien Dekkers, Anna Rozanova-Pierrat. Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropic systems. Communications in Mathematical Sciences, 2020, Communications in Mathematical Sciences, 18 (8), ⟨10.4310/CMS.2020.V18.N8.A1⟩. ⟨hal-01935515v3⟩
264 Consultations
124 Téléchargements

Altmetric

Partager

More