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Introduction

There is a renewed interest in the study of nonlinear wave propagation, in particular because of recent applications to ultrasound imaging ( e.g. HIFU) or technical and medical applications such as lithotripsy or thermotherapy. Such new techniques rely heavily on the ability to model accurately the nonlinear propagation of a finite-amplitude sound pulse in thermo-viscous elastic media. The most known nonlinear acoustic models, which we consider in this paper, are 1. the Kuznetsov equation (see Eq. [START_REF] Dekkers | Models of nonlinear acoustics viewed as approximations of the Kuznetsov equation[END_REF] and Eq. ( 21)), which is actually a quasi-linear (damped) wave equation, initially introduced by Kuznetsov [START_REF] Kuznetsov | Equations of nonlinear acoustics[END_REF] for the velocity potential, see also Refs. [START_REF] Hamilton | Nonlinear Acoustics[END_REF][START_REF] Jordan | An analytical study of Kuznetsov's equation: diffusive solitons, shock formation, and solution bifurcation[END_REF][START_REF] Lesser | The structure of a weak shock wave undergoing reflexion from a wall[END_REF][START_REF] Kaltenbacher | Fundamental Models in Nonlinear Acoustics -Part I[END_REF] for other different methods of its derivation;

2. the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation (see Eq. ( 61)), which can be written for the perturbations of the density or of the pressure (see the systematic physical studies in book [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF]);

3. the Nonlinear Progressive wave Equation (NPE) (see Eq. (96) and Eq. ( 97)) originally derived in Ref. [START_REF] Mcdonald | Time-domain solution of the parabolic equation including nonlinearity[END_REF].

All these models were derived from a compressible nonlinear isentropic Navier-Stokes (for viscous media) and Euler (for the inviscid case) systems up to some small negligible terms. But all cited physical derivations of these models don't allow to say that their solutions approximate the solution of the Navier-Stokes or Euler system. The first work explaining it for the KZK equation is Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF]. Starting in Section 2 to present the initial context of the isentropic Navier-Stokes system (actually, it is also an approximation of the compressible Navier-Stokes system (3)-( 6)), which describes the acoustic wave motion in an homogeneous thermo-elastic medium [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF][START_REF] Hamilton | Nonlinear Acoustics[END_REF][START_REF] Makarov | Nonlinear and thermoviscous phenomena in acoustics, part ii[END_REF], we systematize in this article the derivation of all these models using the ideas of Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF], consisting to use correctors in the Hilbert type expansions of corresponding physical ansatzs.

More precisely, we show that all these models are approximations of the isentropic Navier-Stokes or Euler system up to third order terms of a small dimensionless parameter ε > 0 measuring the size of the perturbations of the pressure, the density and the velocity to compare to their constant state (p 0 , ρ 0 , 0) .

The Kuznetsov equation comes from the Navier-Stokes or Euler system only by small perturbations, but to obtain the KZK and the NPE equations we also need to perform in addition to the small perturbations a paraxial change of variables. We can notice that the Kuznetsov equation ( 21) is a non-linear wave equation containing the terms of different order on ε . But the KZK-and NPE-paraxial approximations allow to have the approximate equations with all terms of the same order, i.e. the KZK and NPE equations [START_REF] Dekkers | Models of nonlinear acoustics viewed as approximations of the Kuznetsov equation[END_REF]. The well-posedness results for boundary value problems for the Kuznetsov equation are given in Refs. [START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF][START_REF]An analysis of nonhomogeneous Kuznetsov's equation: local and global wellposedness; exponential decay[END_REF][START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF] and for the Cauchy problem in Ref. [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF].

The NPE equation is usually used to describe short-time pulses and a long-range propagation, for instance, in an ocean wave-guide, where the refraction phenomena are important [START_REF] Caine | A tutorial on the non-linear progressive wave equation (NPE). Part 2. Derivation of the three-dimensional cartesian version without use of perturbation expansions[END_REF][START_REF] Mcdonald | A tutorial on the nonlinear progressive wave equation (NPE)-Part 1[END_REF], while the KZK equation typically models the ultrasonic propagation with strong diffraction phenomena, combining with finite amplitude effects (see Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] and the references therein). Although the physical context and the physical using of the KZK and the NPE equations are different (see also Sections 4.1 and 5.1 respectively), there is a bijection (see Eq. ( 98)) between the variables of these two models and they can be presented by the same type differential operator with constant positive coefficients:

Lu = 0, L = ∂ 2 tx -c 1 ∂ x (∂ x •) 2 -c 2 ∂ 3 x ± c 3 ∆ y , for t ∈ R + , x ∈ R, y ∈ R n-1 .
Therefore, the results on the solutions of the KZK equation from Ref. [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF] are valid for the NPE equation. See also Ref. [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF] for the exponential decay of the solutions of these models in the viscous case. The main hypothesis for the derivation of all these models are the following

• the motion is potential;

• the constant state of the medium given by (p 0 , ρ 0 , 0) ( 0 for the velocity) is perturbed proportionally to an dimensionless parameter ε > 0 (for instance, equal to 10 -5 in water with an initial power of the order of 0.3 W/cm 2 );

• all viscosities are small (of order ε ).

Let us make attention that ansatz (64)-(65), proposed initially in Ref. [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF] and used in Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] to obtain the KZK equation from the Navier-Stokes or Euler systems, is different to ansatz (62)-(63) in Subsection 4.1: this time it is the composition of the Kuznetsov perturbative ansatz with the KZK paraxial change of variables [START_REF] Kuznetsov | Equations of nonlinear acoustics[END_REF] (see Fig. 1). Moreover, this new approximation of the Navier-Stokes and the Euler systems is an improvement to compare to the derivation developed in Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] (see Subsection 4.1 for more details), as in Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] the Navier-Stokes/Euler system could be only approximated up to O(ε 5 2 ) -terms (instead of O(ε 3 ) in our case).

The main result of the paper is the validation of the approximations of the compressible isentropic Navier-Stokes system by the different models: by the Kuznetsov (Section 3), the KZK (Section 4) and the NPE equations (Section 5). In Section 6 we do the same for the Euler system in the inviscid case.

The main difference between the viscous and the inviscid cases is the time existence and regularity of the solutions. Typically in the inviscid case, the solutions of the models and also of the Euler system itself (actually strong solutions), due to the non-linearity, can provide shock front formations at a finite time [START_REF] Alinhac | Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux[END_REF][START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF][START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF][START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF][START_REF] Yin | The lifespan for 3 -D spherically symmetric compressible Euler equations[END_REF]. Thus, they are only locally well-posed, while in the viscous media all approximative models are globally well-posed for small enough initial data [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF][START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF]. These existence properties of solutions for the viscous and the inviscid cases may also imply the difference in the definition of the domain where the approximations hold: for example [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF], for the approximation between the KZK equation and the Navier-Stokes system the approximation domain is a halfspace, but for the analogous inviscid case of the KZK and the Euler system it is a cone (see also the concluding Table 1).

To keep a physical sense of the approximation problems, we consider especially the two or three dimensional cases, i.e. R n with n = 2 or 3 , and in the following we use the notation x = (x 1 , x ′ ) ∈ R n with one (a propagative) axis x 1 ∈ R and the traversal variable x ′ ∈ R n- 1 . In what follows we denote by U ε a solution of the "exact" Navier-Stokes/Euler system Exact(U ε ) = 0 (see Eq. ( 29))

and by U ε an approximate solution, constructed by the derivation ansatz from a regular solution of one of the approximate models (typically of the Kuznetsov, the KZK or the NPE equations), i.e. a function which solves the Navier-Stokes/Euler system up to ε 3 terms, denoted by ε 3 R :

Approx(U ε ) = Exact(U ε ) -ε 3 R = 0 (see Eq. ( 30 
)).

To have the remainder term R ∈ C([0, T ], L 2 (Ω)) we ensure that

Exact(U ε ) ∈ C([0, T ], L 2 (Ω)),
i.e. we need a sufficiently regular solution U ε . The minimal regularity of the initial data to have a such U ε is given in Table 1.

Choosing for the exact system the same initial-boundary data found by the ansatz for U ε (the regular case) or the initial data taken in their small L 2 -neighborhood, i.e.

U ε (0) -U ε (0) L 2 (Ω) ≤ δ ≤ ε, (1) 
with U ε (0) not necessarily smooth, but ensuring the existence of an admissible weak solution of a bounded energy (see Definition 1), we prove the existence of constants C > 0 and K > 0 independent of ε , δ and the time t such that for all

0 ≤ t ≤ C ε (U ε -U ε )(t) 2 L 2 (Ω) ≤ K(ε 3 t + δ 2 )e Kεt ≤ 9ε 2 (2) 
with Ω a domain where the both solutions U ε and U ε exist (see Theorems 3,6 and 10).

As we have mentioned, in the viscous case all approximative models have a global unique classical solution for small enough initial data in their corresponding approximative domains ( Ω varies for different models, see Table 1: it is equal to R n , T x 1 × R n-1 and R + × R n-1 for the Kuznetsov equation, the NPE equation and the KZK equation respectively). If we take regular initial data U ε (0) = U ε (0) , the same thing is true for the Navier-Stokes system with the same regularity for the solutions [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF]. But in the case of the half-space for the approximation between the Navier-Stokes system and the KZK equation, firstly considered in Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF], when, due to the periodic in time boundary conditions, coming from the initial conditions for the KZK equation, we prove the wellposedness for all finite time. To obtain it we use Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] Theorem 5.5. We updated it in the framework of the new ansatz (62)-(63) and corrected several misleading in its proof (see Subsection 4.3 Theorem 5), what allows us in Theorem 6 of Subsection 4.4 to establish the approximation result between the KZK equation and the Navier-Stokes system following Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] Theorem 5.7 just updating the stability approximation estimate.

For the inviscid case, given in Section 6, we verify that the existence time of (strong) solutions of all models is not less than O( 1 ε ) and estimate (2) still holds. But to obtain estimate (2) we don't need the regularity of the classical solution of the Navier-Stokes (or Euler) system, it can be a weak solution (in the sense of Hoff [START_REF] Hoff | Strong Convergence to Global Solutions for Multidimensional Flows of Compressible, Viscous Fluids with Polytropic Equations of State and Discontinuous Initial Data[END_REF] for the Navier-Stokes system or one of solutions in the sense of Luo and al. [START_REF] Luo | Non-uniqueness of admissible weak solutions to compressible Euler systems with source terms[END_REF] for the Euler system) satisfying the admissible conditions given in Definition 1 (see also Ref. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften[END_REF] p.52 and Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] Definition 5.9).

Isentropic Navier-Stokes system for a subsonic potential motion

To describe the acoustic wave motion in an homogeneous thermo-elastic medium, we start from the Navier-Stokes system in R n

∂ t ρ + div(ρv) = 0, (3) 
ρ[∂ t v + (v.∇)v] = -∇p + η∆v + ζ + η 3 ∇. div(v), (4) 
ρT

[∂ t S + (v.∇)S] = κ∆T + ζ(div v) 2 + η 2 ∂ x k v i + ∂ x i v k - 2 3 δ ik ∂ x i v i 2 , (5) 
p = p(ρ, S), (6) 
where the pressure p is given by the state law p = p(ρ, S) . The density ρ , the velocity v , the temperature T and the entropy S are unknown functions in system (3)-( 6). The coefficients β, κ and η are constant viscosity coefficients. The wave motion is supposed to be potential and the viscosity coefficients are supposed to be small in terms of a dimensionless small parameter ε > 0 :

η∆v + ζ + η 3 ∇. div(v) = ζ + 4 3 η ∆v := β∆v with β = ε β.
Any constant state (ρ 0 , v 0 , S 0 , T 0 ) is a stationary solution of system (3)-( 6). Further we always take v 0 = 0 using a Galilean transformation. Perturbation near this constant state (ρ 0 , 0, S 0 , T 0 ) introduces small increments in terms of the same dimensionless small parameter ε > 0 :

T (x, t) = T 0 + ε T (x, t) and S(x, t) = S 0 + ε 2 S(x, t), ρ ε (x, t) = ρ 0 + ερ ε (x, t) and v ε (x, t) = εṽ ε (x, t),
where the perturbation of the entropy is of order O(ε 2 ) , since it is the smallest size on ε of right hand terms in Eq [START_REF]Nonlinear theory of sound beams[END_REF], due to the smallness of the viscosities (see Eq. ( 7)). Actually, ε is the Mach number, which is supposed to be small [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF] ( ǫ = 10 -5 for the propagation in water with an initial power of the order of 0.3 W/cm 2 ):

ρ -ρ 0 ρ 0 ∼ T -T 0 T 0 ∼ |v| c 0 ∼ ǫ,
where c 0 = p ′ (ρ 0 ) is the speed of sound in the unperturbed media.

Using the transport heat equation ( 5) up to the terms of the order of ε 3

ε 2 ρ 0 T 0 ∂ t S = ε 2 κ∆ T + O(ε 3 ), (7) 
the approximate state equation

p = p 0 + c 2 ερ ε + 1 2 (∂ 2 ρ p) S ε 2 ρ2 ε + (∂ S p) ρ ε 2 S + O(ε 3 )
(where the notation (.) S means that the expression in brackets is constant in S ), can be replaced [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF][START_REF] Makarov | Nonlinear and thermoviscous phenomena in acoustics, part ii[END_REF][START_REF] Hamilton | Nonlinear Acoustics[END_REF] by

p = p 0 + c 2 ερ ε + (γ -1)c 2 2ρ 0 ε 2 ρ2 ε -εκ 1 C V - 1 C p ∇.v ε + O(ε 3 ),
using T = p ρR from the theory of ideal gaze and taking

p(ρ, S) = Rρ γ e S -S 0 C V .
Here γ = C p /C V denotes the ratio of the heat capacities at constant pressure and at constant volume respectively. Hence, system (3)-( 6) becomes an isentropic Navier-Stokes system

∂ t ρ ε + div(ρ ε v ε ) = 0 , (8) 
ρ ε [∂ t v ε + (v ε • ∇) v ε ] = -∇p(ρ ε ) + εν∆v ε , (9) 
with the approximate state equation p(ρ, S) = p(ρ ε ) + O(ε 3 ) :

p(ρ ε ) = p 0 + c 2 (ρ ε -ρ 0 ) + (γ -1)c 2 2ρ 0 (ρ ε -ρ 0 ) 2 , (10) 
and with a small enough and positive viscosity coefficient:

εν = β + κ 1 C V - 1 C p .
3 Navier-Stokes system and the Kuznetsov equation

We consider system (8)- [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] as the exact model. The state law [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] is a Taylor expansion of the pressure up to the terms of the third order on ε . Therefore an approximation of system ( 8)- [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] for v ε and ρ ε up to terms O(ε 3 ) would be optimal. In the framework of the nonlinear acoustic between the known approximative models derived from system (8)- [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] are the Kuznetsov, the KZK and the NPE equations. In this section we focus on the first of these models, i.e. on the Kuznetsov equation. Initially the Kuznetsov equation was derived by Kuznetsov [START_REF] Kuznetsov | Equations of nonlinear acoustics[END_REF] from the isentropic Navier-Stokes system (8)-( 10) for the small velocity potential

v ε (x, t) = -∇ũ(x, t), x ∈ R n , t ∈ R + : ∂ 2 t ũ -c 2 △ũ = ∂ t (∇ũ) 2 + γ -1 2c 2 (∂ t ũ) 2 + εν ρ 0 ∆ũ . ( 11 
)
The derivation was latter discussed by a lot of authors [START_REF] Hamilton | Nonlinear Acoustics[END_REF][START_REF] Jordan | An analytical study of Kuznetsov's equation: diffusive solitons, shock formation, and solution bifurcation[END_REF][START_REF] Lesser | The structure of a weak shock wave undergoing reflexion from a wall[END_REF].

Unlike in these physical derivations we introduce a Hilbert expansion type construction with a corrector ε 2 ρ 2 (x, t) for the density perturbation, considering the following ansatz

ρ ε (x, t) = ρ 0 + ερ 1 (x, t) + ε 2 ρ 2 (x, t), (12) 
v ε (x, t) = -ε∇u(x, t). ( 13 
)
The use of the second order corrector in [START_REF] Gustafsson | Incompletely parabolic problems in fluid dynamics[END_REF] allows to ensure the approximation of ( 9) up to terms of order ε 3 (see Subsection 3.1) and to open the question about the approximation between the exact solution of the isentropic Navier-Stokes system (8)-( 10) and its approximation given by the solution of the Kuznetsov equation, as it was done for the KZK equation [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF].

3.1 Derivation of the Kuznetsov equation from an isentropic Navier-Stokes system.

Putting expressions for the density and velocity ( 12)-( 13) into the isentropic Navier-Stokes system ( 8)- [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF], we obtain for the momentum conservation ( 9)

ρ ε [∂ t v ε + (v ε • ∇) v ε ] + ∇p(ρ ε ) -εν∆v ε = ε∇(-ρ 0 ∂ t u + c 2 ρ 1 ) + ε 2 -ρ 1 ∇(∂ t u) + ρ 0 2 ∇((∇u) 2 ) + c 2 ∇ρ 2 + (γ -1)c 2 2ρ 0 ∇(ρ 2 1 ) + ν∇∆u + O(ε 3 ). ( 14 
)
In order to have an approximation up to the terms O(ε 3 ) we put the terms of order one and two in ε equal to 0 , what allows us to find the expressions for the density correctors:

ρ 1 (x, t) = ρ 0 c 2 ∂ t u(x, t), (15) 
ρ 2 (x, t) = - ρ 0 (γ -2) 2c 4 (∂ t u) 2 - ρ 0 2c 2 (∇u) 2 - ν c 2 ∆u. (16) 
Indeed, we start by making ε∇(-ρ 0 ∂ t u + c 2 ρ 1 ) = 0 and find the first order perturbation of the density ρ 1 given by Eq. [START_REF] Hoff | Discontinuous Solutions of the Navier-Stokes Equations for Multidimensional Flows of Heat-Conducting Fluids[END_REF]. Consequently, if ρ 1 satisfies (15), then Eq. ( 14) becomes

ρ ε [∂ t v ε + (v ε • ∇) v ε ] + ∇p(ρ ε ) -εν∆v ε = ε∇(-ρ 0 ∂ t u + c 2 ρ 1 ) ε 2 ∇ - ρ 0 2c 2 (∂ t u) 2 + ρ 0 2 (∇u) 2 + c 2 ρ 2 + (γ -1)ρ 0 2c 2 (∂ t u) 2 + ν∆u + O(ε 3 ). ( 17 
)
Thus, taking the corrector ρ 2 by formula ( 16), we ensure that

ρ ε [∂ t v ε + (v ε • ∇) v ε ] + ∇p(ρ ε ) -εν∆v ε = O(ε 3 ). ( 18 
)
Now we put these expressions of ρ 1 from (15) and ρ 2 from ( 16) with ansatz (12)-( 13) in Eq. ( 8) of the mass conservation to obtain

∂ t ρ ε + div(ρ ε v ε ) = ε ρ 0 c 2 ∂ 2 t u -c 2 ∆u- ε∂ t (∇u) 2 + γ -2 2c 2 (∂ t u) 2 + ν ρ 0 ∆u -εu t ∆u + O(ε 3 ). ( 19 
)
Then we notice that the right hand term of the order ε in Eq. ( 19) is actually the linear wave equation up to smaller on ε terms:

∂ 2 t u -c 2 ∆u = O(ε).
Hence, we express

εu t ∆u = ε 1 c 2 u t u tt + O(ε 2 ) = ε 1 2c 2 ∂ t ((u t ) 2 ) + O(ε 2 )
and, putting it in Eq. ( 19), we finally have

∂ t ρ ε + div(ρ ε v ε ) = ε ρ 0 c 2 ∂ 2 t u -c 2 ∆u- ε∂ t (∇u) 2 + γ -1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u + O(ε 3 ). ( 20 
)
The right hand side of Eq. [START_REF] Kaltenbacher | Fundamental Models in Nonlinear Acoustics -Part I[END_REF] gives us the Kuznetsov equation

∂ 2 t u -c 2 ∆u = ε∂ t (∇u) 2 + γ -1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u , (21) 
which is the first order approximation of the isentropic Navier-Stokes system up to the terms O(ε 3 ) . Moreover, if u is a solution of the Kuznetsov equation, then with the relations for the density perturbations ( 15) and ( 16) and with ansatz (12)-( 13) we have

∂ t ρ ε + div(ρ ε v ε ) = O(ε 3 ) , (22) 
ρ ε [∂ t v ε + (v ε • ∇) v ε ] + ∇p(ρ ε ) -εν∆v ε = O(ε 3 ). (23) 
Hence, it is clear that the standard physical perturbative approach without the corrector ρ 2 (it is sufficient to take ρ 2 = 0 in our calculus) can't ensure ( 22)- [START_REF] Kuznetsov | Equations of nonlinear acoustics[END_REF].

Let us also notice, as it was originally mentioned by Kuznetsov, that the Kuznetsov equation ( 21) contains terms of different orders, and hence, it is a wave equation with small size non-linear perturbations ∂ t (∇u) 2 , ∂ t (∂ t u) 2 and the viscosity term ∂ t ∆u .

Approximation of the solutions of the isentropic Navier-Stokes

system by the solutions of the Kuznetsov equation.

Let us calculate the remainder terms in ( 22)- [START_REF] Kuznetsov | Equations of nonlinear acoustics[END_REF], which are denoted respectively by

ε 3 R N S-Kuz 1 and ε 3 R N S-Kuz 2 : ε 3 R N S-Kuz 1 =ε 3 1 c 2 ∂ t u ρ 0 (γ -2) 2c 4 ∂ t [(∂ t u) 2 ] + ρ 0 c 2 ∂ t [(∇u) 2 ] + ν c 2 ∂ t ∆u - ρ 0 c 2 ∂ t u ∆u -∇ρ 2 .∇u -ρ 2 ∆u + ε 4 1 c 2 ∂ t u (∇ρ 2 .∇u + ρ 2 ∆u) , (24) 
ε 3 R N S-Kuz 2 = ε 3 ρ 1 2 ∇[(∇u) 2 ] -ρ 2 ∇∂ t u + ε 4 ρ 2 2 ∇ (∇u) 2 . ( 25 
)
If u is a sufficiently regular solution of the Cauchy problem for the Kuznetsov equation in

R n ∂ 2 t u -c 2 ∆u = ε∂ t (∇u) 2 + γ-1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u , u(0) = u 0 , u t (0) = u 1 , (26) 
then, taking ρ 1 and ρ 2 according to formulas (15)-( 16), we define ρ ε and v ε by Eqs. ( 12)-( 13) and obtain a solution of the following approximate system

∂ t ρ ε + div(ρ ε v ε ) = ε 3 R N S-Kuz 1 , (27) 
ρ ε [∂ t v ε + (v ε .∇)v ε ] + ∇p(ρ ε ) -εν∆v ε = ε 3 R N S-Kuz 2 (28) 
with p(ρ ε ) from the state law [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF]. With notations

U ε = (ρ ε , ρ ε v ε ) t and U ε = (ρ ε , ρ ε v ε ) t ,
the exact ( 8)-( 9) and the approximated ( 27)-( 28) Navier-Stokes systems can be respectively rewritten in the following forms [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF]:

∂ t U ε + n i=1 ∂ x i G i (U ε ) -εν 0 ∆v ε = 0, (29) 
∂ t U ε + n i=1 ∂ x i G i (U ε ) -εν 0 ∆v ε = ε 3 R N S-Kuz (30) 
with 24)- [START_REF] Lannes | Weakly transverse Boussinesq systems and the KP approximation[END_REF] and

R N S-Kuz = R N S-Kuz 1 R N S-Kuz 2 from (
G i (U ε ) = ρ ε v i ρ ε v i v ε + p(ρ ε )e i , ∂ x i G i (U ε ) = DG i (U ε )∂ x i U ε . (31) 
The well-posedness results for the Cauchy problems ( 8)-( 10) [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] and [START_REF] Lesser | The structure of a weak shock wave undergoing reflexion from a wall[END_REF] [10] allow us to establish the global existence and the unicity of the classical solutions U ε and U ε , considered in the Kuznetsov approximation framework:

Theorem 1 There exists a constant k > 0 such that if the initial data u 0 ∈ H 5 (R 3 ) and u 1 ∈ H 4 (R 3 ) for the Cauchy problem for the Kuznetsov equation ( 26) are sufficiently small u 0 H 5 (R 3 ) + u 1 H 4 (R 3 ) < k, then there exist global in time solutions U ε = (ρ ε , ρ ε v ε ) t of the approximate Navier-Stokes system [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] and U ε = (ρ ε , ρ ε v ε ) t of the exact Navier-Stokes system (29) respectively, with the same regularity corresponding to

ρ ε -ρ 0 , ρ ε -ρ 0 ∈ C([0, +∞[; H 3 (R 3 )) ∩ C 1 ([0, +∞[; H 2 (R 3 )) (32) 
and v ε , v ε ∈ C([0, +∞[; H 3 (R 3 )) ∩ C 1 ([0, +∞[; H 1 (R 3 )), (33) 
both considered with the state law [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] and with the same initial data

(ρ ε -ρ ε )| t=0 = 0, (v ε -v ε )| t=0 = 0, (34) 
where ρε | t=0 and vε | t=0 are constructed as the functions of the initial data for the Kuznetsov equation u 0 and u 1 according to formulas (12)-( 13) and ( 15)-( 16):

ρε | t=0 = ρ 0 + ε ρ 0 c 2 u 1 -ε 2 ρ 0 (γ -2) 2c 4 u 2 1 + ρ 0 2c 2 (∇u 0 ) 2 + ν c 2 ∆u 0 , (35) 
vε

| t=0 = -ε∇u 0 . (36) 
Proof : On one hand, Theorem 1.2 in Ref. [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] applied for n = 3 with m = 4 ensures that for u 0 ∈ H 5 (R 3 ) and u 1 ∈ H 4 (R 3 ) there exists a constant k 2 > 0 such that if

u 0 H 5 (R 3 ) + u 1 H 4 (R 3 ) < k 2 , (37) 
then the Cauchy problem for the Kuznetsov equation ( 26) has a unique global in time solution

u ∈ C([0, +∞[, H 5 (R 3 )) ∩ C 1 ([0, +∞[, H 4 (R 3 )) ∩ C 2 ([0, +∞[, H 2 (R 3 )). (38) 
On the other hand, the Cauchy problem for the Navier-Stokes system is also globally well-posed in R 3 for sufficiency small initial data (see Ref. [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] Theorem 7.1, p. 100): there exists a constant k 1 > 0 such that if the initial data

ρ ε (0) -ρ 0 ∈ H 3 (R 3 ), v ε (0) ∈ H 3 (R 3 ) (39) satisfy ρ ε (0) -ρ 0 H 3 (R 3 ) + v ε (0) H 3 (R 3 ) < k 1 ,
then the Cauchy problem ( 8)- [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] with the initial data (39) has a unique solution (ρ ε , v ε ) globally in time satisfying [START_REF] Mcdonald | Time-domain solution of the parabolic equation including nonlinearity[END_REF] and [START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF]. Thus, for the initial solutions of the Kuznetsov equation we need to impose u 0 ∈ H 5 (R 3 ) to have ∆u 0 ∈ H 3 (R 3 ) to be able to ensure that ρ ε -ρ 0 | t=0 ∈ H 3 (R 3 ) . The regularity u 1 ∈ H 4 (R 3 ) comes from the well-posedness of the Kuznetsov problem and obviously ensures

v ε | t=0 ∈ H 3 (R 3 )
, what is necessary [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] to have a global solution of the exact Navier-Stokes system [START_REF] Matsumura | Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids[END_REF].

As ρ ε and v ε are defined by ansatz (12)-( 13) with ρ 1 and ρ 2 given in ( 15) and ( 16) respectively, the regularity of u ensures for ρ ε -ρ 0 and v ε at least the same regularity as given in [START_REF] Mcdonald | Time-domain solution of the parabolic equation including nonlinearity[END_REF] and [START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF]. To find it we use the following Sobolev embedding for the multiplication (see for example Ref. [START_REF] Bers | Partial differential equations[END_REF] or [START_REF] Kato | The Cauchy problem for quasi-linear symmetric hyperbolic systems[END_REF]):

H s (R n ) × H s (R n ) ֒→ H s (R n ) for s > n 2 , ( 40 
) (u, v) → uv.
Moreover, considering formulas ( 24)-( 25) with u as defined in [START_REF]The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit[END_REF], all terms in R N S-Kuz 1 and R N S-Kuz 2 are in H 2 (R 3 ) . Therefore, as 2 > 3 2 , we use embedding [START_REF]Delayed singularity formation in 2 D compressible flow[END_REF] to find that

R N S-Kuz 1 ∈ C([0, +∞[, H 2 (R 3 )) and R N S-Kuz 2 ∈ C([0, +∞[, H 2 (R 3 )).
Hence, the L 2 (R 3 ) and L ∞ (R 3 ) norms of the remainder terms R N S-Kuz

1 (t) and R N S-Kuz 2 (t) are bounded for t ∈ [0, +∞[ . Finally, it is important to notice that, as U ε (0) = U ε (0) , ρ ε (0) -ρ 0 H 3 (R 3 ) + v ε (0) H 3 (R 3 ) = ρ ε (0) -ρ 0 H 3 (R 3 ) + v ε (0) H 3 (R 3 ) ≤C( u 0 H 5 (R 3 ) + u 1 H 4 (R 3 ) ).
Thus, there exists k > 0 (necessarily k ≤ k 2 ) such that u 0 H 5 + u 1 H 4 < k implies the global existences of U ε and U ε .

The stability estimate which we obtain between the exact solution of the Navier-Stokes system U ε and the solution of the Kuznetsov equation presented by U ε does not require for U ε to have the regularity of a classical solution and allows to approximate less regular solutions of the Navier-Stokes system with initial data in a small L 2 neighborhood of U ε (0) . To define the minimal regularity property of U ε for which stability estimate (2) holds, we introduce admissible weak solutions of a bounded energy using the entropy of the Euler system (system [START_REF] Matsumura | Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids[END_REF] 

with ν = 0 ) η(U ε ) = ρ ε h(ρ ε ) + ρ ε v 2 ε 2 = H(ρ ε ) + 1 ρ ε m 2 2 , (41) 
which is convex [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften[END_REF] with h ′ (ρ ε ) = p(ρε) ρ 2 ε and v ε = m ρε . Thus, the first and second derivatives of η are [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] 

η ′ (U ε ) = H ′ (ρ ε ) -1 ρ 2 ε m 2 2 m ρε t = H ′ (ρ ε ) -v 2 ε 2 v ε t , (42) 
η ′′ (U ε ) = H ′′ (ρ ε ) + m 2 ρ 3 ε -m ρ 2 ε -m ρ 2 ε 1 ρε = H ′′ (ρ ε ) + v 2 ε ρε -vε ρε -vε ρε 1 ρε , (43) 
knowing that η ′′ (U ε ) is strictly positive defined. 

Definition 1 The function U ε = (ρ ε , ρ ε v ε ) is called
∂ t η(U ε ) + ∇.q(U ε ) -ενv ε △v ε ≤ 0, where q(U ε ) = v ε (η(U ε ) + p(ρ ε )), (44) 
or equivalently, for any positive test function

ψ in D(R n × [0, ∞[) the function U ε satisfies T 0 R n ∂ t ψη(U ε ) + ∇ψ.q(U ε ) + εν|∇.v ε | 2 ψ + ενv ε .[∇.v ε ∇ψ] dxdt + R n ψ(x, 0)η(U ε (0))dx ≥ 0.
3. The function U ε satisfies the equality (with the notation

v ε = (v 1 , . . . , v n ) ) - R n U 2 ǫ (t) 2 dx + t 0 R n n i=1 G i (U ε )∂ x i U ǫ -ǫν∇(ρ ε v i ).∇v i dxds + R n U 2 ǫ (0) 2 dx = 0.
Let us notice that any classical solution of (29), for instance the solution defined in Theorem 1, satisfies the entropy condition (44) by the equality and obviously it is sufficient regular to perform the integration by parts resulting in the relation of point 3. For existence results of global weak solutions of the Cauchy problem for the Navier-Stokes system [START_REF] Matsumura | Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids[END_REF] with sufficiently small initial data around the constant state (ρ 0 , 0) (actually, ρ 0 -ρ(0) is small in L ∞ , v(0) is small in L 2 and bounded in L 2 n ) and with the pressure p(ρ) = Kρ γ with γ ≥ 1 , we refer to results of D. Hoff [START_REF] Hoff | Strong Convergence to Global Solutions for Multidimensional Flows of Compressible, Viscous Fluids with Polytropic Equations of State and Discontinuous Initial Data[END_REF][START_REF] Hoff | Discontinuous Solutions of the Navier-Stokes Equations for Multidimensional Flows of Heat-Conducting Fluids[END_REF]. For fixing the idea of the regularity of a global weak solution we summarize the results of Hoff in the following theorem:

Theorem 2 [START_REF] Hoff | Strong Convergence to Global Solutions for Multidimensional Flows of Compressible, Viscous Fluids with Polytropic Equations of State and Discontinuous Initial Data[END_REF] Let for n = 3 β = 0 and for n = 2 β be arbitrary small, N be a given arbitrary large constant. There exists a constant C 0 > 0 such that if the initial data of (29) with p(ρ) = Kρ γ ( γ ≥ 1 ) satisfy the following smallness condition

ρ 0 -ρ(0) 2 L ∞ (R n ) + R n (ρ 0 -ρ(0)) 2 + |v(0)| 2 (1 + |x| 2 ) β dx ≤ C 0 , v(0) L 2 n (R n ) ≤ N,
then there exists a global weak solution (ρ, v) (in the distributional sense) such that

1. ρ -ρ 0 ∈ L ∞ (R n × [0, ∞[) , 2. v ∈ H 1 (R n ) for all t > 0 , 3. for all t ≥ τ > 0 v(•, t) ∈ L ∞ (R n ) , 4. for all τ > 0 v ∈ C α, α 2α+2 (R n × [τ, ∞[) for all α ∈]0, 1[ when n = 2 and v ∈ C 1 2 , 1 8 (R n × [τ, ∞[) when n = 3 , 5. εν div v + p(ρ) -p(ρ 0 ) ∈ H 1 (R n ) ∩ C α (R n ) for almost all t > 0 with α = 1
2 for n = 2 and α = 1 10 when n = 3 . In addition, (ρ, v) → (ρ 0 , 0) as t → +∞ in the sense that for all q ∈]2, +∞[ lim

T →∞ ρ -ρ 0 L ∞ (R n ×[T,∞[) + v(•, T ) L q (R n ) = 0.
Therefore, from Theorem 2 it follows that a weak solution of the isentropic compressible Navier-Stokes system ( 8)-( 10) is also an admissible weak solution of a bounded energy in the sense of Definition 1. But in the following we only consider the question of the validity of the stability estimate (2) for initial data closed to U ε (0) in L 2 norm (thus for initial data not necessarily satisfying Theorem 2) and we don't consider the existence question of an admissible weak solution of a bounded energy of the Cauchy problem for the Navier-Stokes system. Thanks to Theorem 1 for classical solutions of two models and to Definition 1 containing the minimal conditions on U ε necessary for saying that it is in a small L 2 -neighborhood of the regular solution of the Kuznetsov equation, we validate the approximation of U ε by U ε following the ideas of Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF].

Theorem 3 Let ν > 0 and ε > 0 be fixed and all assumptions of Theorem 1 hold. Then there exist constants C > 0 and K > 0 , independent of ε and the time t , such that

1. for all t ≤ C ε (U ε -U ε )(t) 2 L 2 (R 3 ) ≤ Kε 3 te Kεt ≤ 4ε 2 ; 2. for all b ∈]0, 1[ during all time t ≤ C ε ln( 1 ε ) it holds (U ε -U ε )(t) L 2 (R 3 ) ≤ 2ε b .
Moreover, if the initial conditions for the Kuznetsov equation are such that

u 0 ∈ H s+2 (R n ), u 1 ∈ H s+1 (R n ) for s > n 2 , n ≥ 2
and sufficiently small (in the sense of Ref. [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] Theorem 1.2), then there exists the unique global in time solution of the Cauchy problem for the Kuznetsov equation

ρ ε -ρ 0 ∈ C([0, +∞[; H s (R n )) ∩ C 1 ([0, +∞[; H s-1 (R n )), (45) 
v ε ∈ C([0, +∞[; H s+1 (R n )) ∩ C 1 ([0, +∞[; H s (R n )) (46) 
and the remainder terms (R N S-Kuz

1 , R N S-Kuz 2 
) , defined in Eqs. ( 24)-( 25), belong to

C([0, +∞[, H s-1 (R n )) .
If in addition there exists an admissible weak solution of a bounded energy of the Cauchy problem for the Navier-Stokes system (29) (for instance if U ε (0) satisfies conditions of Theorem 2 there is a global such weak solution) on a time interval [0,

T N S [ for the initial data U ε (0) -U ε (0) L 2 (R n ) ≤ δ ≤ ε,
then it holds for all t < min{ C ε , T N S } the stability estimate (2):

(U ε -U ε )(t) 2 L 2 (R n ) ≤ K(ε 3 t + δ 2 )e Kεt ≤ 9ε 2 .

Proof :

In terms of entropy, system [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF], having by the assumption the unique classical solution U ε , can be rewritten as follows

∂ t η(U ε ) + ∇.q(U ε ) -ενv ε .∆v ε = ε 3 η(U ε ) + p(ρ ε ) ρ ε R N S-Kuz 1 + v ε .R N S-Kuz 2 (47) with R N S-Kuz = (R N S-Kuz 1 , R N S-Kuz 2 )
defined in Eq. ( 24)- [START_REF] Lannes | Weakly transverse Boussinesq systems and the KP approximation[END_REF]. To abbreviate the notations, we denote the remainder term of the entropy equation in system (47) by

R N S-Kuz = η(U ε ) + p(ρ ε ) ρ ε R N S-Kuz 1 + v ε .R N S-Kuz 2 .
In the same time, it is assumed that for U ε it holds (44) in the sense of distributions. Let us estimate in the sense of distributions

∂ ∂t η(U ε ) -η(U ε ) -η ′ (U ε )(U ε -U ε ) . (48) 
First we find from systems (44) and (47) that in the sense of distributions

∂ ∂t (η(U ε ) -η(U ε )) ≤ -∇.(q(U ε ) -q(U ε )) + εν(v ε .∆v ε -v ε .∆v ε ) -ε 3 R N S-Kuz = -∇.(q(U ε ) -q(U ε )) + εν n i=1 ∂ x i (v ε ∂ x i v ε -v ε ∂ x i v ε ) -εν n i=1 (∂ x i v ε ∂ x i v ε -∂ x i v ε ∂ x i v ε ) -ε 3 R N S-Kuz .
Then we notice that

- ∂ ∂t (η ′ (U ε )(U ε -U ε )) = -∂ t U t ε η ′′ (U ε )(U ε -U ε ) -η ′ (U ε )(∂ t U ε -∂ t U ε ),
where in the sense of distributions

-∂ t U t ε η ′′ (U ε )(U ε -U ε ) = -- n i=1 DG i (U ε )∂ x i U ε t η ′′ (U ε )(U ε -U ε ) - 0 εν∆v ε + ε 3 R N S-Kuz t η ′′ (U ε )(U ε -U ε ),
and

-η ′ (U ε )(∂ t U ε -∂ t U ε ) = -η ′ (U ε )(- n i=1 ∂ x i (G i (U ε ) -G i (U ε ))) -η ′ (U ε )εν 0 ∆v ε -∆v ε + ε 3 η ′ (U ε )R N S-Kuz = n i=1 ∂ x i (η ′ (U ε )(G i (U ε ) -G i (U ε )) - n i=1 ∂ x i U t η ′′ (U ε )(G i (U ε ) -G i (U ε )) -η ′ (U ε )εν 0 ∆v ε -∆v ε + ε 3 η ′ (U ε )R N S-Kuz .
Thanks to the convex property of the entropy we have

η ′′ (U)DG i (U) = (DG i (U)) t η ′′ (U),
and consequently

(DG i (U ε )∂ x i U ε ) t η ′′ (U ε )(U ε -U ε ) =∂ x i U t ε (DG i (U ε )) t η ′′ (U ε )(U ε -U ε ) =∂ x i U t ε η ′′ (U ε )DG i (U ε )(U ε -U ε ).
Moreover, we compute in the sense of distributions

- 0 εν∆v ε t η ′′ (U ε )(U ε -U ε ) = -εν∆v ε (v ε -v ε ) -εν∆v ε ρ ε -ρ ε ρ ε (v ε -v ε ) = -εν n i=1 ∂ x i (∂ x i v ε (v ε -v ε )) + εν n i=1 ∂ x i v ε ∂ x i (v ε -v ε ) -εν∆v ε ρ ε -ρ ε ρ ε (v ε -v ε ),
and

-η ′ (U ε )εν 0 ∆v ε -∆v ε = -ενv ε .(∆v ε -∆v ε ) = -εν n i=1 ∂ x i (v ε ∂ x i (v ε -v ε )) + εν n i=1 ∂ x i v ε ∂ x i (v ε -v ε ).
We integrate expression (48) over R n and notice that the integrals of the terms in divergence form in the development of (48) are equal to zero. For the regular case in the framework of Theorem 1 it is due to the regularity given by ( 32) and ( 33) and the following Sobolev embedding [1]

H s (R n ) ֒→ C 0 (R n ) := {f ∈ C(R n )| |f (x)| → 0 as x → +∞} for s > n 2 , (49) 
which allows us to use the fact that

∀f ∈ C 0 (R n ), R n ∇.f (x) dx = 0.
In the case of a weak admissible solution U ε it follows from its bounded energy property (see Definition 1 point 3) which implies that ρ ε -ρ 0 and v ε tend to 0 for |x| → +∞ and also implies the existence of the integrals over R n . Therefore, we obtain the following estimate in which each term is well-defined in the sense of distributions on

[0, +∞[∩[0, T N S ] d dt R 3 η(U ε ) -η(U ε ) -η ′ (U ε )(U ε -U ε )dx ≤ - 3 i=1 R 3 ∂ x i U t η ′′ (U ε )(G i (U ε ) -G i (U ε ) -DG i (U ε )(U ε -U ε ))dx -εν R 3 3 i=1 (∂ x i v ε ∂ x i v ε -∂ x i v ε ∂ x i v ε )dx (50) + 2εν R 3 3 i=1 ∂ x i v ε ∂ x i (v ε -v ε )dx + εν R 3 ∆v ε ρ ε -ρ ε ρ ε (v ε -v ε )dx -ε 3 R 3 (R N S-Kuz -η ′ (U ε )R N S-Kuz )dx -ε 3 R 3 [R N S-Kuz ] t η ′′ (U ε )(U ε -U ε )dx.
Now we study lower bounds of the left hand side and upper bounds of the right hand side of (50) in order to obtain a suitable estimate. For the right hand side of Eq. ( 50) we notice that

-εν R 3 3 i=1 (∂ x i v ε ∂ x i v ε -∂ x i v ε ∂ x i v ε )dx + 2εν R 3 3 i=1 ∂ x i v ε ∂ x i (v ε -v ε )dx = -εν R 3 3 i=1 (∂ x i (v ε -v ε )) 2 dx ≤ 0,
hence this term can be passed in the left hand side of Eq.( 50) and omitted in the estimation. As the entropy is convex it holds

∃δ 0 > 0 : η(U ε ) -η(U ε ) -η ′ (U ε )(U ε -U ε ) ≥ δ 0 |U ε -U ε | 2 .
Then using also its continuity, we find

δ 0 R 3 |U ε -U ε | 2 (t)dx ≤ t 0 d ds R 3 η(U ε ) -η(U ε ) -η ′ (U ε )(U ε -U ε )dx ds +C 0 R 3 |U ε -U ε | 2 (0)dx.
On the right hand side of (50), by the Taylor expansion we also have

G i (U ε ) -G i (U ε ) -DG i (U ε )(U ε -U ε ) ≤ C|U ε -U ε | 2 .
With the boundness on [0; +∞[ of R 1 (t) and R 2 (t) in the L 2 and L ∞ norms, and thanks to the regularity of U ε defined in (45) and (46) (see also [START_REF] Mcdonald | Time-domain solution of the parabolic equation including nonlinearity[END_REF] and [START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF] for the case U ε (0) = U ε (0) ) and the energy boundedness of U ε , we estimate the other terms in Eq. (50) in the following way εν

R 3 ∆v ε ρ ε -ρ ε ρ ε (v ε -v ε )dx ≤ Kε U ε -U ε 2 L 2 (R 3 ) , -ε 3 R 3 (R N S-Kuz -η ′ (U ε )R N S-Kuz )dx ≤ Kε 3 , -ε 3 R 3 [R N S-Kuz ] t η ′′ (U ε )(U ε -U ε )dx ≤ ε 3 η ′′ (U ε ) L ∞ (R 3 ) R N S-Kuz L 2 (R 3 ) U ε -U ε L 2 (R 3 ) ≤ Kε 3 U ε -U ε L 2 (R 3 ) .
Now, by integrating on [0, t] , we obtain from (50) the following inequality

R 3 |U ε -U ε | 2 (t)dx ≤ t 0 (C ∇U ε L ∞ + Kε) U ε -U ε 2 L 2 (R 3 ) + Kε 3 + Kε 3 U ε -U ε L 2 (R 3 ) ds + C 1 R 3 |U ε -U ε | 2 (0)dx.
Here K , C and C 1 are generic constants of order O(ε 0 ) which do not depend on time. Using once more the regularity properties [START_REF] Mcdonald | Time-domain solution of the parabolic equation including nonlinearity[END_REF] and [START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF], we have the boundness of ∇U ε L ∞ . But knowing that ρ ε and v ε are defined by ansatz (12)-( 13), we deduce that ∇U ε L ∞ ≤ Cε. Therefore,

U ε -U ε 2 L 2 ≤ t 0 K ε U ε -U ε 2 L 2 (R 3 ) + ε 3 + ε 3 U ε -U ε L 2 (R 3 ) ds + C 1 R 3 |U ε -U ε | 2 (0)dx.
Then applying the Gronwall Lemma we have directly

(U ε -U ε )(t) 2 L 2 (R 3 ) ≤ K(ε 3 t + δ 2 )e
Kεt , since Kεt is a non-decreasing in time function and ε 3 √ v < Kεv for all v ∈ R + . In addition, to find the estimate of Point 2 for the regular case

U ε (0) = U ε (0) , we notice that U ε -U ε L 2 (R 3 ) ≤ v,
where v is the solution of the following Cauchy problem

(v 2 ) ′ = K(ε 3 + ε 3 v + εv 2 ), v(0) = 0.
The study of this problem gives us

1 Kε ln 1 + v(t) + 1 ε 2 v(t) 2 - 1 K 2 √ 4 -ε 2 arctan 2 √ 4ε 2 -ε 4 v(t) + ε 2 2 -arctan ε √ 4 -ε 2 = t.
The boundness of the function arctan x implies

1 + v(t) + 1 ε 2 v(t) 2 ≤e 2ε √ 4-ε 2 e arctan 2 √ 4ε 2 -ε 4 v(t)+ ε 2 2 -arctan ε √ 4-ε 2 e Kεt ≤e 2ε √ 4-ε 2 e π 2 e Kεt ≤ c 2 0 e Kεt with c 2 0 = e 2 √
3 e π 2 which for instance is less than 3.5 . Therefore, the estimate

U ε -U ε L 2 (R 3 ) ≤ c 0 εe Kεt
gives the result as soon as c 0 εe εKt ≤ 2ε b , with b ≤ 1 , i.e. for t ≤ C ε when b = 1, and for t ≤ C ε ln( 1 ε ) in the case b < 1 . We finish the proof with the remark on the minimal regularity of the initial data for the Kuznetsov equation such that the approximation is possible, i.e. the remainder terms R N S-Kuz

1 and R N S-Kuz 2 keep bounded for a finite time interval. Indeed, if u 0 ∈ H s+2 (R n ) and u 1 ∈ H s+1 (R n ) with s > n 2 then u ∈ C([0, +∞[; H s+2 (R n )) and u t ∈ C([0, +∞[; H s+1 (R n )), u tt ∈ C([0, +∞[; H s-1 (R n )).
Since ρ ε is defined by ( 12) with ( 15) and ( 16) and v ε by ( 13) respectively, we exactly find regularity (45) and (46). Thus by the regularity of the left-hand side part for the approximated Navier-Stokes system ( 27)-( 28) we obtain the desired regularity for the right-hand side.

4 Navier-Stokes system and the KZK equation In the present section we focus on the derivation from the isentropic Navier-Stokes system of the Khoklov-Zabolotskaya-Kuznetsov equation (KZK) in non-linear media using the following acoustical properties of beam's propagation:

1. the beams are concentrated near the x 1 -axis ;

2. the beams propagate along the x 1 -direction;

3. the beams are generated either by an initial condition or by a forcing term on the boundary x 1 = 0 .

The different type of derivations of the KZK equation are discussed in Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF]. This time we perform it in two steps:

1. We introduce small perturbations around a constant state of the compressible isentropic Navier-Stokes system according to the Kuznetsov ansatz (12)-( 13):

∂ t ρ ε + ∇.(ρ ε v ε ) =ε[∂ t ρ 1 -ρ 0 ∆u] + ε 2 [∂ t ρ 2 -∇ρ 1 ∇u -ρ 1 ∆u] + O(ε 3 ), (51) 
and we have again [START_REF] Hoff | Strong Convergence to Global Solutions for Multidimensional Flows of Compressible, Viscous Fluids with Polytropic Equations of State and Discontinuous Initial Data[END_REF] for the conservation of momentum.

2. We perform the paraxial change of variable [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] (see Fig. 1):

τ = t - x 1 c , z = εx 1 , y = √ εx ′ . ( 52 
)
Since the gradient ∇ in the coordinates (τ, z, y) becomes depending on ε

∇ = ε∂ z - 1 c ∂ τ , √ ε∇ y t , if we denote u(x, t) = Φ(t -x 1 /c, ǫx 1 , √ ǫx ′ ) = Φ(τ, z, y), (53) 
we need to take attention to have the paraxial correctors of the order O(1) : 

ρ 1 (x, t) = I(τ, z, y), ρ 2 (x, t) = H(τ, z, y) = J(τ, z, y) + O(ε), PSfrag x 1 x ′ t Navier-Stokes/ Euler (x 1 , x ′ , t) z = ǫx 1 y = √ ǫx ′ τ = t -x 1 c KZK (τ, z, y)
U(t -x 1 /c, ǫx 1 , √ ǫx ′ ) .
where actually H(τ, z, y) is the profile function obtained from ρ 2 (see Appendix A Eq. ( 123)) containing not only the terms of the order O(1) but also terms up to ε 2 . Hence, we denote by J all terms of H of order 0 on ε , which are significant in order to have an approximation up to the terms O(ε 3 ) .

In new variables (τ, z, y) Eq. ( 14) becomes

ρ ε [∂ t v ε + (v ε .∇)v ε ] + ∇p(ρ ε ) -εν∆v ε = ε ∇[-ρ 0 ∂ τ Φ + c 2 I] (54) 
+ ε 2 -I ∇(∂ τ Φ) + ρ 0 2 ∇ 1 c 2 (∂ τ Φ) 2 +c 2 ∇J + γ -1 2ρ 0 c 2 ∇(I 2 ) + ν ∇ 1 c 2 ∂ 2 τ Φ + O(ε 3 ).
Consequently, we find the correctors of the density as functions of Φ :

I(τ, z, y) = ρ 0 c 2 ∂ τ Φ(τ, z, y), (55) 
J(τ, z, y) = - ρ 0 (γ -1) 2c 4 (∂ τ Φ) 2 - ν c 4 ∂ 2 τ Φ. (56) 
Indeed, we start by making

ε ∇[-ρ 0 ∂ τ Φ + c 2 I] = 0
and find the first order perturbation of the density I given by Eq. (55). Moreover, if ρ 1 satisfies (55), then Eq. (54) becomes

ρ ε [∂ t v ε + (v ε • ∇) v ε ] + ∇p(ρ ε ) -εν∆v ε = ε ∇[-ρ 0 ∂ τ Φ + c 2 I] ε 2 ∇ - ρ 0 2c 2 (∂ τ Φ) 2 + ρ 0 2c 2 (∂ τ Φ) 2 + c 2 J + (γ -1)ρ 0 2c 2 (∂ τ Φ) 2 + ν c 2 ∂ 2 τ Φ + O(ε 3 ). (57)
Thus, taking the corrector J in the expansion of ρ ε

ρ ε (x, t) = ρ 0 + εI(τ, z, y) + ε 2 J(τ, z, y), (58) 
by formula (56), we ensure that

ρ ε [∂ t v ε + (v ε • ∇) v ε ] + ∇p(ρ ε ) -εν∆v ε = O(ε 3 ). ( 59 
)
Now we put these expressions of I from (55) and J from (56) with the paraxial approximation in Eq. ( 51) of the mass conservation to obtain

∂ t ρ ε + ∇.(ρ ε v ε ) =ε 2 ρ 0 c 2 (2c∂ 2 zτ Φ -c 2 ∆ y Φ) - ρ 0 2c 4 (γ + 1)∂ τ [(∂ τ Φ) 2 ] - ν c 4 ∂ 3 τ Φ + O(ε 3 ). ( 60 
)
All terms of the second order on ε in relation (60) give us the equation on Φ , which is the KZK equation. If we use relation (55), we obtain the usual form of the KZK equation often written [START_REF]Nonlinear theory of sound beams[END_REF][START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] for the first perturbation I of the density ρ ǫ :

c∂ 2 τ z I - (γ + 1) 4ρ 0 ∂ 2 τ I 2 - ν 2c 2 ρ 0 ∂ 3 τ I - c 2 2 ∆ y I = 0. ( 61 
)
We notice that, as the Kuznetsov equation, this model still contains terms describing the wave propagation ∂ 2 τ z I , the non-linearity ∂ 2 τ I 2 and the viscosity effects ∂ 3 τ I of the medium but also adds a diffraction effects by the traversal Laplacian ∆ y I . This corresponds to the description of the quasi-one-dimensional propagation of a signal in a homogeneous nonlinear isentropic medium. By our derivation (see also Eqs. ( 83)-( 84)) we obtain that the KZK equation is the second order approximation of the isentropic Navier-Stokes system up to term of O(ε 3 ) . In this sense, since the entropy and the pressure in Section 2 are approximated up to terms of the order of ε 3 , ansatz (58)-(66) (for the KZK equation) is optimal, as the equations of the Navier-Stokes system are approximated up to O(ε 3 ) -terms.

Let us compare our ansatz

u(x 1 , x ′ , t) = Φ(t -x 1 /c, ǫx 1 , √ ǫx ′ ), (62) 
ρ ε (x 1 , x ′ , t) = ρ 0 + εI(t -x 1 /c, ǫx 1 , √ ǫx ′ ) + ε 2 J(t -x 1 /c, ǫx 1 , √ ǫx ′ ) (63) 
to the ansatz introduced in Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] by defining a corrector ǫ 2 v 2 for the velocity perturbation along the propagation axis in the initial ansatz, proposed by Khokhlov and Zabolotskaya [START_REF]Nonlinear theory of sound beams[END_REF]:

ρ ǫ (x 1 , x ′ , t) = ρ 0 + ǫI(t - x 1 c , ǫx 1 , √ ǫx ′ ) , (64) 
v ǫ (x 1 , x ′ , t) = ǫ(v 1 + ǫv 2 ; √ ǫw)(t - x 1 c , ǫx 1 , √ ǫx ′ ). ( 65 
)
This time, the assumption to work directly with the velocity potential (62) immediately implies the following velocity expansion

v ε (x, t) = -ε - 1 c ∂ τ Φ + ε∂ z Φ; √ ε∇ y Φ (τ, z, y), (66) 
where we recognize the velocity ansatz of Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] with

v 1 = 1 c ∂ τ Φ = c ρ 0 I, w = ∇ y Φ = c 2 ρ 0 ∂ -1 τ ∇ y I,
but for the corrector v 2 this time

v 2 = -∂ z Φ = - c 2 ρ 0 ∂ -1 τ ∂ z I
instead of (see Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] and formula (69) for definition of the operator

∂ -1 τ ) v Rozanova 2 = - c 2 ρ 0 ∂ -1 τ ∂ z I + (γ -1) 2ρ 2 0 cI 2 + ν cρ 2 0 ∂ τ I.
If we add the second order correctors v 2 for the velocity to J for the density, we obtain exactly all terms of the corrector v Rozanova
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. But the ansatz (64)-( 65) is not optimal since the equation of momentum in transverse direction keeps the non-zero terms [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] of the order of ǫ 

Well posedness of the KZK equation.

We use Ref. [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF] to give results on the well posedness of the Cauchy problem:

c∂ 2 τ z I -(γ+1) 4ρ 0 ∂ 2 τ I 2 -ν 2c 2 ρ 0 ∂ 3 τ I -c 2 2 ∆ y I = 0 on T τ × R + × R n-1 , I(τ, 0, y) = I 0 (τ, y) on T τ × R n-1 (67)
in the class of L-periodic functions with respect to the variable τ and with mean value zero

L 0 I(τ, z, y)dτ = 0. (68) 
The introduction of the operator ∂ -1 τ , defined by formula 

∂ -1 τ I(τ,
allows us to consider instead of Eq. (61) the following equivalent equation

c∂ z I - (γ + 1) 4ρ 0 ∂ τ I 2 - ν 2c 2 ρ 0 ∂ 2 τ I - c 2 2 ∂ -1 τ ∆ y I = 0 on T τ × R + × R n-1 , (70) 
for which in the viscous case ν > 0 it holds a global in z well-posedness result [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF] for sufficiently small by H s norm ( s > n 2 + 1 ) initial data. As it was mentioned in [START_REF] Lannes | Consistency of the KP approximation[END_REF][START_REF] Lannes | Weakly transverse Boussinesq systems and the KP approximation[END_REF][START_REF] Molinet | Remarks on the mass constraint for KP type equations[END_REF] for the KP type equations in R 2 , the introduced operator ∂ -1 τ is singular in the sense that its Fourier transform gives a division [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF] by a discrete variable m :

F (∂ -1 τ ∆ y I) = Lξ 2 i2πm F (I)(m, ξ) m ∈ Z, ξ ∈ R.
If we suppose that I has the mean value zero in τ , it implies that F (I)(0, ξ) = 0 for all ξ , which makes disappear the singularity for m = 0 . For the same reason this requires [35, Lemma 5.2] the additional constraint for the initial data ∂ -1 τ △ y I 0 = φ 0 ∈ H s-2 to be able to ensure that the solution

I ∈ C([0, T [, H s (T τ × R n-1 )) can be also considered in C 1 ([0, T [, H s-2 (T τ × R n-1
)) (see also a similar situation for the KP type equations explained in [START_REF] Molinet | Remarks on the mass constraint for KP type equations[END_REF]). In the same time as it is discussed in [START_REF] Lannes | Consistency of the KP approximation[END_REF][START_REF] Lannes | Weakly transverse Boussinesq systems and the KP approximation[END_REF][START_REF] Molinet | Remarks on the mass constraint for KP type equations[END_REF] in the non-periodic case this regularity constraint is not physical. However, if we work in the class of periodic functions with the mean value zero this condition can be omitted. Indeed, by definition (69) of the operator ∂ -1 τ , it preserves the property of a periodic function to have the mean value zero. Thus, if I 0 is a periodic function with the mean value zero on τ , the solution I belongs also in this class, where we find the equivalence between the Cauchy problem (67) and the analogous problem considered for Eq. (70). Formula (69), as it is noticed in [35, p.796], allows to establish an analogue of the Poincaré inequality (which is false in the non periodic case of R n ):

I H s (]0,L[×R n-1 y ) ≤ C ∂ τ I H s (]0,L[×R n-1 y
) , coming from the following relation

I = ∂ -1 τ ∂ τ I = τ 0 ∂ τ I(s, y)ds + L 0 s L ∂ τ I(s, y)ds.
As, by (69), ∂ -1 τ I is L -periodic in τ and of mean value zero, this also gives us the following estimate

∂ -1 τ I H s (Ω 1 ) ≤ C ∂ τ ∂ -1 τ I H s (Ω 1 ) = C I H s (Ω 1 ) . (71) 
This means that in the class of periodic and of mean value zero functions as soon as

I 0 ∈ H s (Ω 1 ) , it implies that ∂ -1 τ I 0 is also in H s (Ω 1
) and in the same class. Hence the condition ∂ -1 τ ∆ y I 0 ∈ H s-2 (Ω 1 ) required in [35, Thm. 1.2, Point 4] is automatically verified for I 0 from H s which are periodic and of mean value zero in t ( τ = t for z = 0 ).

To be able to ensure the boundness of the remainder terms in the KZK-type approximations we need to have very regular solutions of (67) corresponding to the propagation variable z , which exist according to the following theorem [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF]:

Theorem 4 [35] Let ν ≥ 0 , s > n 2 + 1 , the operator ∂ -1 τ
defined by formula (69) and I 0 ∈ H s (T τ × R n-1 ) be such that L 0 I 0 (ℓ, y)dℓ = 0 . Then the following results hold true for the Cauchy problem for the KZK equation

c∂ z I -(γ+1) 4ρ 0 ∂ τ I 2 -ν 2c 2 ρ 0 ∂ 2 τ I -c 2 2 ∂ -1 τ ∆ y I = 0 on T τ × R + × R n-1 , I(τ, 0, y) = I 0 (τ, y) on T τ × R n-1 .
(72)

(Local existence)

There exists a constant C(s, L) such that for any (previously defined) initial data I 0 on an interval [0, T [ with

T ≥ 1 C(s, L) I 0 H s (Tτ ×R n-1 )
problem (72) has a unique solution I such that

I ∈ C([0, T [, H s (T τ × R n-1 )) ∩ C 1 ([0, T [, H s-2 (T τ × R n-1 )),
which satisfies the zero mean value condition (68). 

I 0 H s (Tτ ×R n-1 ) ≤ C 1 ⇒ T * = +∞.
4. (Exponential decay) [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF][START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF] If ν > 0 , s ∈ N and s ≥ n+1
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, then there exists a constant C 2 > 0 such that I 0 H s (Tτ ×R n-1 ) ≤ C 2 implies for all z ≥ 0

I(z) H s (Tτ ×R n-1 ) ≤ C I 0 H s (Tτ ×R n-1 ) e -ĉz ,
where C > 0 and ĉ ∈]0, 1[ are constants.

Remark 1 [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF] We note that when ν = 0 , all the corresponding statements of Theorem 4 remain valid for 0 > t > -C with a suitable C .

Remark 2 In the study of the well-posedness of the KZK equation we inverse the usual role of the time with the main space variable along the propagation axis z : for ν > 0 the solution

I(τ, z, y) = I(t -x 1 c , εx 1 , √ εx ′ ) is defined for x 1 > 0 , as it is global on z ∈ R + .
Hence if we want to compare the KZK equation to other models such as the Kuznetsov equation or the Navier-Stokes system we need the well posedness results for these models on the half space

{x 1 > 0, t > 0, x ′ ∈ R n-1 }, (73) 
taking into account the fact that the boundary conditions for the exact system come from the initial condition I 0 of the Cauchy problem (72) associated to the KZK equation.

4.3

Well posedness of the isentropic Navier-Stokes system on the half space with inflow-outflow periodic boundary conditions.

We follow now Section 5.2 in Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] updating it for the new ansatz and correct the proof of Theorem 5.5. See Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] for more details. We consider the Cauchy problem for the KZK equation (72) for the initial data

I(t, 0, y) = I 0 (t, y) (τ = t for x 1 = 0),
which are L -periodic in time and of mean value zero. For s > [ n 2 ] + 1 , Theorem 4 ensures that for all initial data I 0 , defined in T t × R n-1 with small enough H s norm (with respect to ν ), there exists a unique solution I of the KZK equation (61), which as a function of (τ, z, y) is global on z ∈ R + , periodic in τ of period L and mean value zero, and decays for z → ∞ [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF].

Therefore, see Remark 2, we consider our approximation problem between the isentropic Navier-Stokes system (8)-( 9) and the KZK equation in the half space (73). By I 0 we find I and thus also Φ and J , using Eqs. ( 55)-( 56). This allows us to construct the density and velocities ρ ε and v ε in accordance with ansatz (58) and (66). Thus, by I we construct the function

0 x 1 > 0 x ′ v 1 | x 1 =0 < 0 v 1 | x 1 =0 < 0 v 1 | x 1 =0 > 0 v 1 | x 1 =0 > 0 (v -v)| x 1 =0 = 0 (v -v)| x 1 =0 = 0 (ρ -ρ)| x 1 =0 = 0 t
U ε = (ρ ε , ρ ε v ε ) t .
In particular, for t = 0 we have functions defined for x 1 > 0 because I is well-defined for any z > 0

ρ ε (0, x 1 , x ′ ) = ρ 0 + εI(- x 1 c , εx 1 , √ εx ′ ) + ε 2 J(- x 1 c , εx 1 , √ εx ′ ), v ε (0, x 1 , x ′ ) = (v 1 , v ′ ε )(- x 1 c , εx 1 , √ εx ′ ),
where

v 1 = ε c ρ 0 I + ε 2 c 2 ρ 0 ∂ z ∂ -1 τ I, v ′ ε = √ ε c 2 ρ 0 ∇ y ∂ -1 τ I
and for x 1 = 0 we have L -periodic functions with mean value zero

ρ ε (t, 0, x ′ ) = ρ 0 + εI(t, 0, √ εx ′ ) + ε 2 J(t, 0, √ εx ′ ), (74) 
v ε (t, 0, x ′ ) = (v 1 , v ′ ε )(t, 0, √ εx ′ ). (75) 
It is important to notice [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF] that the solution v ε in system ( 8)-( 9) is small on the boundary:

v ε | x 1 =0 = εṽ ε | x 1 =0 . Therefore, we have |v ε | x 1 =0 | < c ,
which corresponds to the "subsonic" boundary case. More precisely, when the first velocity component is positive v 1 | x 1 =0 > 0 , we have a subsonic inflow boundary condition, and when it is negative v 1 | x 1 =0 < 0 , we have a subsonic outflow boundary condition, see Fig. 2.

We also notice that, due to Eq. (66), the first component of the velocity v 1 on the boundary has the following form

v 1 | x 1 =0 = ε c ρ 0 I + ε 2 G(I) (t, 0, √ εx ′ ) = ε c ρ 0 I + ε 2 G(I) z=0 = ε c ρ 0 I 0 (t, y) + ε 2 G(I 0 )(t, y),
where

G(I) = c 2 ρ 0 ∂ z ∂ -1 τ I = c 2 ρ 0 ∂ -1 τ (γ + 1) 4cρ 0 ∂ τ I 2 + ν 2c 3 ρ 0 ∂ 2 τ I + c 2 ∂ -1 τ ∆ y I . (76) 
Therefore, the boundary conditions for v 1 are defined by the initial conditions for KZK equation and are L -periodic in t and have mean value zero. In addition, the sign of

v 1 | x 1 =0
is the same as the sign of I 0 (because the term G(I 0 ) is of a higher order of smallness on ε ). In addition, as the viscosity term ενv ε , where ε is a fixed small enough parameter, ν is a constant, and in our case v ε is of the order of ε , the boundary layer phenomenon is excluded.

Theorem 5 Let n ≤ 3 . Suppose that the initial data of the KZK Cauchy problem I 0 (t, y) = I 0 (t, √ ǫx ′ ) is such that 1. I 0 is L -periodic in t and with mean value zero, 2. for fixed t , I 0 has the same sign for all y ∈ R n-1 , and for t ∈]0, L[ the sign changes, i.e. I 0 = 0 , only for a finite number of times,

3. I 0 (t, y) ∈ H s (T t × R n-1
) for s ≥ 10 , 4. I 0 is sufficiently small in the sense of Theorem 4 such that [35, p.20]

I 0 H s < ν 2c 2 ρ 0 C 1 (L) C 2 (s)
.

Consequently, there exists a unique global solution in time I(τ, z, y) of (72) for z = ǫx 1 > 0 , moreover, the functions ρǫ , v ε = (v 1 , v ′ ε ) , defined by ansatz (58)-(66) and Eqs. (55)-(56) in the half space (73) are smooth with

Ω = T t × R n-1 y : ρǫ ∈ C [0, ∞[, H s-4 (Ω) ∩ C 1 [0, ∞[; H s-6 (Ω) , ( 77 
) vǫ ∈ C [0, ∞[; H s-4 (Ω) ∩ C 1 [0, ∞[; H s-6 (Ω) . (78) 
The Navier-Stokes system (8)-( 9) in the half space with initial data (34) and following boundary conditions

(v ǫ -v ǫ )| x 1 =0 = 0,
with positive first component of the velocity v 1 | x 1 =0 > 0 (i.e. at points where the fluid enters the domain) has the additional boundary condition

(ρ ǫ -ρ ǫ )| x 1 =0 = 0. When v 1 | x 1 =0
≤ 0 there is no any boundary condition for ρ ǫ .

Then, for all finite times T > 0 there exists a unique solution U ǫ = (ρ ǫ , ρ ε u ǫ ) of the Navier-Stokes system (8)-( 9) with the following smoothness on [0, T ]

ρ ε ∈ C [0, T ] , H 3 {x 1 > 0} × R n-1 ∩ C 1 [0, T ] , H 2 {x 1 > 0} × R n-1 , (79) 
u ε ∈ C [0, T ] , H 3 {x 1 > 0} × R n-1 ∩ C 1 [0, T ] , H 1 {x 1 > 0} × R n-1 . ( 80 
)
Remark 3 [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] The restriction to have the same sign for I 0 for all fixed times avoids a change in the type of the boundary condition applied to the tangential variables for the Navier-Stokes system. Moreover, Zabolotskaya [START_REF]Nonlinear theory of sound beams[END_REF] takes as the initial conditions for the KZK equation (which correspond to the boundary condition for v 1 ) the expression I(τ, 0, y) = -F (y) sin τ with an amplitude distribution F (y) ≥ 0 . Especially, for a Gaussian beam [START_REF]Nonlinear theory of sound beams[END_REF] F (y) = e -y 2 , while for a beam with a polynomial amplitude [5]

F (y) = (1 -y 2 ) 2 , y ≤ 1, 0, y > 1.
Proof : As previously, we use the fact that the entropy for the isentropic Euler system η(U ε ) , defined by Eq. ( 41) is a convex function [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften[END_REF]. Let us multiply the Navier-Stokes system (29), from the left, by

2U T ε η ′′ (U ε ) 2U T ε η ′′ (U ε )∂ t U ε + n i=1 2U T ε η ′′ (U ε )DG i (U ε )∂ x i U ε -εν2U T ε η ′′ (U ε ) 0 △v ε = 0.
We notice that

U T ε η ′′ (U ε ) 0 △v ε = 0,
and, therefore, we have

2U T ε η ′′ (U ε )∂ t U ε = ∂ t [U T ε η ′′ (U ε )U ε ] -U T ε ∂ t η ′′ (U ε )U ε . Moreover, by virtue of η ′′ (U)DG i (U) = (DG i (U)) T η ′′ (U) we find 2U T ε η ′′ (U ε )DG i (U ε )∂ x i U ε = ∂ x i [U T ε η ′′ (U ε )DG i (U ε )U ε ] -U T ε ∂ x i [η ′′ (U ε )DG i (U ε )]U ε . Integrating over [0, t] × {x 1 > 0} ( x ′ ∈ R n-1 ), we obtain t 0 x 1 >0 ∂ t [U T ε η ′′ (U ε )U ε ]dxds + t 0 x 1 >0 n i=1 ∂ x i [U T ε η ′′ (U ε )DG i (U ε )U ε ]dxds - t 0 x 1 >0 U T ε ∂ t η ′′ (U ε )U ε dxds - t 0 x 1 >0 n i=1 U T ε ∂ x i [η ′′ (U ε )DG i (U ε )]U ε dxds = 0.
Integrating by parts we result in

x 1 >0 U T ε η ′′ (U ε )U ε dx - x 1 >0 U T ε η ′′ (U ε )U ε | t=0 dx - t 0 x 1 >0 U T ε ∂ t η ′′ (U ε ) + n i=1 ∂ x i [η ′′ (U ε )DG i (U ε )] U ε dxds - t 0 R n-1 U T ε η ′′ (U ε )DG 1 (U ε )U ε | x 1 =0 dx ′ ds = 0.
We recall that η ′′ (U ε ) is positive definite, consequently for some C > 0 and δ 0 > 0

C|U ε | 2 ≥ U T ε η ′′ (U ε )U ε ≥ δ 0 |U ε | 2 .
Therefore, we obtain for the initial data

U 0 = ρ 0 + εI + ε 2 J ε (ρ 0 + εI + ε 2 J) c ρ 0 I + εG(I), √ ε w - x 1 c , εx 1 , √ εx ′ (81)
and the relation δ 0

x 1 >0 U 2 ε dx -C x 1 >0 U 2 0 dx- t 0 R n-1 U T ε η ′′ (U ε )DG 1 (U ε )U ε | x 1 =0 dx ′ ds ≤C 1 t 0 x 1 >0 U 2 ε dx ds.
As in Ref. [START_REF] Gustafsson | Incompletely parabolic problems in fluid dynamics[END_REF], C 1 is an upper bound for the eigenvalues of the symmetric matrix

∂ t η ′′ (U ε ) + n i=1 ∂ x i [η ′′ (U ε )DG i (U ε )].
Let us now consider the integral on the boundary. With notation

v ε = (v 1 , v ′ ε ) t for the velocity and H ′′ (ρ) = p ′ (ρ)
ρ , we see with DG 1 (U ε ) coming from Eq. ( 31) that

U T ε η ′′ (U ε )DG 1 (U ε )U ε = (ρ ε , ρ ε v ε ) T    H ′′ (ρ ε ) + v 2 ε ρε -vε ρε -vε ρε 1 ρε Id n      0 1 0 -v 2 1 + p ′ (ρ ε ) 2v 1 0 -v 1 v ′ ε v ′ ε v 1 Id n-1   ρ ε ρ ε v ε = (ρ ε , ρ ε v 1 , ρ ε v ′ ε ) T     v 1 v 2 ε ρε -p ′ (ρε) ρε -v 2 1 ρε + p ′ (ρε) ρε -v 1 v ′ ε ρε -v 2 1 ρε + p ′ (ρε) ρε v 1 ρε 0 -v 1 v ′ ε ρε 0 v 1 ρε Id n-1       ρ ε ρ ε v 1 ρ ε v ′ ε   = ρ ε p ′ (ρ ε )v 1 .
Let us consider the initial condition I 0 (t, y) for the KZK equation of the type described in Remark 3. We suppose (without loss of generality) that I 0 = 0 for t ∈]0, L[ only once. More precisely, we suppose that the sign of v 1 is changing in the following way:

• v 1 ≤ 0 for t ∈ [0 + (k -1)L, L 2 + (k -1)L] ( k = 1, 2, 3, ... ), • v 1 > 0 for t ∈] L 2 + (k -1)L, kL[ ( k = 1, 2, 3, ... ). If t ∈ [0, L 2 
] (for k = 1 ), the first component of the velocity v 1 | x 1 =0 < 0 is negative, and thus we have

ρ ε p ′ (ρ ε )v 1 < 0. If t ∈] L 2 , L[ , the first component of velocity is positive v 1 | x 1 =0
> 0, then we also impose ρ ε | x 1 =0 = ρ 0 + εI 0 (t, y) + ε 2 J , where I 0 (t, y) is the initial condition for the KZK equation and J coming from Eq. (56). For the term

ρ ε p ′ (ρ ε )v 1 > 0
we see that on the boundary it has the form

ρ ε p ′ (ρ ε )v 1 =ε c ρ 0 I 0 + c 2 ρ 0 ∂ z ∂ -1 τ I 0 (ρ 0 + εI 0 (t, y) + ε 2 J)p ′ (ρ 0 + εI 0 (t, y) + ε 2 J) ≤C 0 εI 0 for some constant C 0 > 0 independent of ε . Consequently, for k ≥ 1 kL 0 R n-1 ρ ε p ′ (ρ ε )v 1 | x 1 =0 dx ′ ds ≤ k j=1 ] L 2 +(j-1)L,jL[ R n-1 ρ ε p ′ (ρ ε )v 1 | x 1 =0 dx ′ ds ≤ k j=1 ] L 2 +(j-1)L,jL[ R n-1 C 0 εI 0 ≤ Kkε I 0 H s , where K = O(1) is a positive constant independent of k . However, for t > 0 and k ≥ 1 such that t ∈ [(k -1)L, kL[ , it implies on one hand that if t ∈ (k -1)L, (k -1)L + L 2 t 0 R n-1 ρ ε p ′ (ρ ε )v 1 | x 1 =0 dx ′ ds ≤ (k-1)L 0 R n-1 ρ ε p ′ (ρ ε )v 1 | x 1 =0 dx ′ ds,
and on the other hand, that if t ∈ (k -1)L + L 2 , kL

t 0 R n-1 ρ ε p ′ (ρ ε )v 1 | x 1 =0 dx ′ ds ≤ kL 0 R n-1 ρ ε p ′ (ρ ε )v 1 | x 1 =0 dx ′ ds.
As a consequence, we obtain for all t > 0

t 0 R n-1 ρ ε p ′ (ρ ε )v 1 | x 1 =0 dx ′ ds ≤ K t L + 1 ε I 0 H s .
Therefore, we deduce the following estimate, as δ 0 > 0

x 1 >0 U 2 ε dx ≤ C δ 0 x 1 >0 U 2 0 dx + ε K δ 0 t L + 1 I 0 H s + C 1 δ 0 t 0 x 1 >0 U 2 ε dx ds.
By the Gronwall lemma we find

U ε 2 L 2 (t) ≤ C δ 0 U 0 2 L 2 + ε K C t L + 1 I 0 H s e C 1 δ 0 t ,
remaining bounded for all finite times.

Thus, for all T < +∞ we obtain that

U ε ∈ L ∞ [0, T ], L 2 {x 1 > 0} × R n-1 .
If I 0 = 0 for t ∈]0, L[ a finite number of times m , we obtain the same result. Hence, by [START_REF] Gustafsson | Incompletely parabolic problems in fluid dynamics[END_REF] we have proved that the chosen boundary conditions ensure the local well-posedness for the Navier-Stokes system in the half space, which can be viewed as a symetrisable incompletely parabolic system. We apply now the theory of incompletely parabolic problems [12, p. 352] with the result of global well-posedness of the Navier-Stokes system in the half space with the Dirichlet boundary conditions [START_REF] Matsumura | Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids[END_REF] for the velocity and with the initial data ρ ε (0

)-ρ 0 ∈ H 3 ({x 1 > 0}×R n-1 )) and v ε (0) ∈ H 3 ({x 1 > 0}×R n-1 )
small enough. Hence, for sufficient regular initial data U 0 ∈ H 3 ({x 1 > 0}×R n-1 ) ( n ≤ 3 ) for all finite time T < ∞ , we obtain by the energy method that

U ε ∈ L ∞ ([0, T ], H 3 ({x 1 > 0} × R n-1 )) .
To ensure that U 0 defined in Eq. ( 81) belongs to

H 3 ({x 1 > 0} × R n-1 ) , we need to take I 0 ∈ H s (T t × R n-1 ) such that ρ ε ∈ C([0, +∞[; H 3 ({x 1 > 0} × R n-1 ), v ε ∈ C([0, +∞[; H 3 ({x 1 > 0} × R n-1 ). By Theorem 4, I 0 ∈ H s (T t × R n-1 ) implies while s -2ℓ ≥ 0 that I(τ, z, y) ∈ C ℓ ({x 1 > 0}; H s-2ℓ (T τ × R n-1 )),
but we can also say, thanks to Point 4 of Theorem 4, that

∂ ℓ z I(τ, z, y) ∈ L 2 ({x 1 > 0}; H s-2ℓ (T τ × R n-1 )). Considering the expressions of ρ ε and v ε ρ ε = ρ 0 + εI - ε 2 ρ 0 γ -1 2 I 2 - ν c 2 ∂ τ I , v ε = c 2 ρ 0 ε c I -ε 2 ∂ -1 τ ∂ z I; ε 3 2 ∂ -1 τ ∇ y I , ( 82 
)
the least regular term is ∂ -1 τ ∂ z I . Thus we need to ensure

∂ z I ∈ C([0, +∞[; H 3 ({x 1 > 0} × R n-1 ),
which leads us to take s ≥ 10 in order to have

∂ ℓ z I(τ, z, y) ∈ L 2 ({x 1 > 0}; H s-2ℓ (T τ × R n-1
)) for ℓ ≤ 4 with s -2ℓ ≥ 2 as we want to have the continuity on time. This choice of the regularity for I 0 allows us to control the boundary terms appearing from the integration by parts in the energy method. Indeed, we can perform analogous computations as in Ref. [9, p. 103] to control the spatial derivative of U ε of the order less or equal to 3 and directly verify that all boundary terms are controlled by I 0 H s , what is actually is a consequence of the well-posedness [START_REF] Matsumura | Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids[END_REF] in H 3 .

Thus, for all finite times we obtain the existence of the unique solution of the Navier-Stokes system in the sense of ( 79) and (80).

Approximation of the solutions of the isentropic Navier-Stokes

system with the solutions of the KZK equation.

Knowing from Subsection 4.1 that the KZK equation can be derived from the compressible isentropic Navier-Stokes system ( 8)-( 9) using ansatz (62)-( 63) with I and J given by ( 55) and ( 56) respectively, we obtain the following expansion of the Navier-Stokes equations

∂ t ρ ε + ∇.(ρ ε v ε ) =ε 2 [ ρ 0 c 2 (2c∂ 2 zτ Φ -c 2 ∆ y Φ) - ρ 0 2c 4 (γ + 1)∂ τ [(∂ τ Φ) 2 ] - ν c 4 ∂ 3 τ Φ] + ε 3 R N S-KZK 1 (83) and ρ ε [∂ t v ε + (v ε .∇)v ε ] + ∇p(ρ ε ) -εν∆v ε = ε ∇[-ρ 0 ∂ τ Φ + c 2 I] + ε 2 ∇ c 2 J + (γ -1)ρ 0 2c 2 (∂ τ Φ) 2 + ν c 2 ∂ 2 τ Φ + ε 3 R N S-KZK 2 , ( 84 
)
where R N S-KZK 1 and R N S-KZK 2 are the remainder terms given in Appendix A. So, as it was previously explained for the approximation of the Navier-Stokes by the Kuznetsov equation in Subsection 3.2, if we consider a solution of the KZK equation I and define by it the functions Φ and J , then we define according to ansatz (62)-( 63) ρ ε and v ε (see Eq. ( 66)), which solve the approximate system ( 27)-( 28) with the remainder terms R N S-KZK 1 and R N S-KZK 2 and, as previously, with p(ρ ε ) from the state law [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF]:

∂ t ρ ε + div(ρ ε v ε ) = ε 3 R N S-KZK 1 , (85) 
ρ ε [∂ t v ε + (v ε .∇)v ε ] + ∇p(ρ ε ) -εν∆v ε = ε 3 R N S-KZK 2 . ( 86 
)
As usual, we denote by U ε = (ρ ε , ρ ε v ε ) t the solution of the exact Navier-Stokes system and by U ε = (ρ ε , ρ ε v ε ) t the solution of (85)-(86).

We work on R + × R n-1 ( n = 2 or 3) due to the domain of the well-posedness for the KZK equation. In this case the Navier-Stokes system is globally well-posed with non homogeneous boundary conditions of U ε , as they are directly determined by the initial condition I 0 of the KZK equation (72) according to Theorem 5. Knowing the existence results for two problems, we validate the approximation of U ε by U ε following Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] and Subsection 3.2:

Theorem 6 [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] Let n = 2 or 3 , s ≥ 10 and Theorem 5 hold. Then there exist constants C > 0 and K > 0 such that if

(ρ ε -ρ ε )| t=0 = 0 and (v ε -v ε )| t=0 = 0,
we have the following stability estimate

0 ≤ t ≤ C ε U ε -U ε 2 L 2 (R + ×R n-1 ) (t) ≤ Kε 3 te Kεt ≤ 9ε 2 .
Moreover, if the initial conditions for the KZK equation are such that

I 0 ∈ H s (T t × R n-1 ) for s ≥ 8,
and sufficiently small (in the sense of Theorem 4), then there exists the unique global in time solution of the Cauchy problem for the KZK equation

ρ ε -ρ 0 ∈ C([0, +∞[; H 2 ({x 1 > 0} × R n-1 )) ∩ C 1 ([0, +∞[; H 1 ({x 1 > 0} × R n-1 )), v ε ∈ C([0, +∞[; H 2 ({x 1 > 0} × R n-1 )) ∩ C 1 ([0, +∞[; H 1 ({x 1 > 0} × R n-1 ))
and the remainder terms (R N S-KZK

1 , R N S-ZKZ 2 ) , see Appendix A, belongs to C([0, +∞[; L 2 (R + × R n-1 )) .
If in addition there exists an admissible weak solution of a bounded energy of the Cauchy problem for the Navier-Stokes system (29) on a time interval [0, T N S [ for the initial data

U ε (0) -U ε (0) L 2 (R n ) ≤ δ ≤ ε,
then it holds for all t < min{ C ε , T N S } the stability estimate ( 2):

(U ε -U ε )(t) 2 L 2 (R n ) ≤ K(ε 3 t + δ 2 )e Kεt ≤ 9ε 2 .
Proof : We validate the approximation of U ε by U ε following Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] and Subsection 3.2. For the regularity of the approximated solution, if

I 0 ∈ H s (T t × R n-1 ) with s > max{8, n 2 } then for 0 ≤ ℓ ≤ 4 I(τ, z, y) ∈ C ℓ ({z > 0}; H s-2ℓ (T τ × R n-1 )).
Let us denote Ω = T τ × R n-1 . Given the equations for ρ ε by ( 58) with ( 55) and ( 56) and for v ε by (66) respectively, we have for 0 ≤ ℓ ≤ 2

∂ ℓ z ρ ε (τ, z, y) ∈ C({z > 0}; H s-1-2ℓ (Ω)), ∂ ℓ z v ε (τ, z, y) ∈ C({z > 0}; H s-2-2ℓ (Ω)),
but we can also say thanks to Point 4 of Theorem 4 that

∂ ℓ z ρ ε (τ, z, y) ∈ L 2 ({z > 0}; H s-1-2ℓ (Ω)), ∂ ℓ z v ε (τ, z, y) ∈ L 2 ({z > 0}; H s-2-2ℓ (Ω)).
This implies for 0 ≤ ℓ ≤ 2 (as s ≥ 8 ) that s -2 -2ℓ > 2 and

∂ ℓ z ρ ε (τ, z, y) ∈C(T τ ; L 2 ({z > 0}; H s-1-2ℓ (R n-1 ))), ∂ ℓ z v ε (τ, z, y) ∈C(T τ ; L 2 ({z > 0}; H s-2-2ℓ (R n-1 ))).
Hence we find

ρ ε (t, x 1 , x ′ ) and v ε (t, x 1 , x ′ ) ∈C([0, +∞[; H 2 ({x 1 > 0} × R n-1 ).
As in addition for 0 ≤ ℓ ≤ 1 , considering ρ ε and v ε as functions of (τ, z, y) ,

∂ ℓ z ∂ τ ρ ε ∈ C({z > 0}; H s-2-2ℓ (Ω)), ∂ ℓ z ∂ τ v ε ∈ C({z > 0}; H s-3-2ℓ (Ω)),
we deduce in the same way that

∂ t ρ ε (t, x 1 , x ′ ) and ∂ t v ε (t, x 1 , x ′ ) ∈C([0, +∞[; H 1 ({x 1 > 0} × R n-1 )).
These regularities of ρ ε and v ε , viewed as functions of (t, x 1 , x ′ ) , allow to have all left-hand terms in the approximated Navier-Stokes system (85)-( 86) of the regularity

C([0, T ]; L 2 ({x 1 > 0} × R n-1
)) and the remainder terms in the right-hand side inherit it. The regularity of I 0 ∈ H s (T t × R n-1 ) with s ≥ 8 (see Table 1), is minimal to ensure that R N S-KZK 1 and R N S-KZK 2 (see Appendix A for their expressions), belongs to

C([0, +∞[; L 2 (R + × R n-1 )).
It is due to the fact that the least regular term in R N S-KZK

1 and R N S-KZK 2 is of the form ∂ 3 z Φ ∈ L 2 ({z > 0}; H s-6 (Ω)) ∩ C({z > 0}; H s-6 (Ω)).
5 Navier-Stokes system and the NPE equation The NPE equation (Nonlinear Progressive wave Equation), initially derived by McDonald and Kuperman [START_REF] Mcdonald | Time-domain solution of the parabolic equation including nonlinearity[END_REF], is an example of a paraxial approximation aiming to describe shorttime pulses and a long-range propagation, for instance, in an ocean wave-guide, where the refraction phenomena are important. To compare to the KZK equation we use the following paraxial change of variables For the velocity we have

u(t, x 1 , x ′ ) = Ψ(εt, x 1 -ct, √ εx ′ ) = Ψ(τ, z, y), (87) 
with τ = εt, z = x 1 -ct, y = √ εx ′ . ( 88 
) x 1 x ′ t Navier-Stokes/ Euler (x 1 , x ′ , t) z = x 1 -ct y = √ ǫx ′ τ = ǫt NPE (τ, z, y)
v ε (t, x 1 , x ′ ) = -ε∇u(t, x 1 , x ′ ) = -ε(∂ z Ψ, √ ε∇ y Ψ)(τ, z, y). (89) 
If we compare the NPE equation to the isentropic Navier-Stokes system this method of approximation does not allow to keep the Kuznetsov ansatz of perturbations ( 12)-( 13) imposing ( 15)-( 16), just by introducing the new paraxial profiles Ψ for u , ξ for ρ 1 and χ for ρ 2 and taking the term of order 0 in ε as it was done in the case of the KZKapproximation. This time the paraxial change of variables (88) for ρ 1 and ρ 2 , defined in Eqs. ( 15)-( 16), gives

ρ 1 = - ρ 0 c ∂ z Ψ + ε ρ 0 c 2 ∂ τ Ψ, ρ 2 = - ρ 0 (γ -2) 2c 2 (∂ z Ψ) 2 - ρ 0 2c 2 (∂ z Ψ) 2 - ν ρ 0 ∂ 2 z Ψ + ε ρ 0 (γ -2) 2c 3 ∂ z Ψ∂ τ Ψ - ρ 0 2c 2 (∇ y Ψ) 2 - ν c 2 ∆ y Ψ + ε 2 - ρ 0 (γ -2) 2c 4 (∂ τ Ψ) 2 .
Thus, one of the terms in the ρ 1 -extension takes part of the second order corrector of ρ ε :

ρ ε (t, x 1 , x ′ ) = ρ 0 + εξ(τ, z, y) + ε 2 χ(τ, z, y), (90) with ξ(τ, z, y) 
= - ρ 0 c ∂ z Ψ, (91) χ(τ, z, y) 
= ρ 0 c 2 ∂ τ Ψ - ρ 0 (γ -1) 2c 2 (∂ z Ψ) 2 - ν c 2 ∂ 2 z Ψ. (92) 
The obtained ansatz (89)-( 90), applied to the Navier-Stokes system, gives

∂ t ρ ε + div(ρ ε v ε ) =ε 2 (- 2ρ 0 c ) ∂ 2 τ z Ψ - (γ + 1) 4 ∂ z (∂ z Ψ) 2 - ν 2ρ 0 ∂ 3 z Ψ + c 2 ∆ y Ψ + ε 3 R N S-N P E 1 , and 
ρ ε [∂ t v ε + (v ε .∇)v ε ] + ∇p(ρ ε ) -εν∆v ε = ε∇ ξ + ρ 0 c ∂ z Ψ + c 2 ε 2 ∇ χ - ρ 0 c 2 ∂ τ Ψ + ρ 0 (γ -1) 2c 2 (∂ z Ψ) 2 + ν c 2 ∂ 2 z Ψ + ε 3 R N S-N P E 2 .
The remainder term in the conservation of mass is given by

ε 3 R N S-N P E 1 =ε 3 ∂ τ χ -∇ y ξ ∇ y Ψ -ξ ∆ y Ψ -∂ z χ ∂ z Ψ -χ ∂ 2 z Ψ) + ε 4 (-∇ y χ ∇ y Ψ -χ ∆ y Ψ), (93) 
while in the conservation of momentum along the x 1 axis it is given by

ε 3 R N S-N P E 2 . -→ e 1 = ε 3 - ρ 0 c ∂ z Ψ ∂ 2 τ z Ψ + ρ 0 2 ∂ z (∇ y Ψ) 2 + ν∂ z ∆ y Ψ + ξ 2 ∂ z (∂ z Ψ) 2 + cχ∂ 2 z Ψ + ε 4 ξ 2 ∂ z (∇ y Ψ) 2 -χ∂ 2 τ z Ψ + χ 2 ∂ z (∂ z Ψ) 2 + ε 5 χ 2 ∂ z (∇ y Ψ) 2 , (94) 
and along all transversal direction x j to the propagation x 1 -axis

ε 3 R N S-N P E 2 . -→ e j = ε 7 2 - ρ 0 c ∂ z Ψ ∂ 2 τ y j Ψ + ρ 0 2 ∂ y j (∇ y Ψ) 2 + ν∂ y j ∆ y Ψ + ξ 2 ∂ y j (∂ z Ψ) 2 + cχ∂ 2 zy j Ψ + ε 9 2 ξ 2 ∂ y j (∇ y Ψ) 2 -χ∂ 2 τ y j Ψ + χ 2 ∂ y j (∂ z Ψ) 2 + ε 11 2 χ 2 ∂ y j (∇ y Ψ) 2 . ( 95 
)
As all previous models, for this ansatz, the NPE equation

∂ 2 τ z Ψ - (γ + 1) 4 ∂ z (∂ z Ψ) 2 - ν 2ρ 0 ∂ 3 z Ψ + c 2 ∆ y Ψ = 0 (96) 
appears as the second order approximation of the isentropic Navier-Stokes system up to the terms of the order of O(ε 3 ) . In the sequel we work with the NPE equation satisfied by ξ (see Eq. ( 91) for the definition)

∂ 2 τ z ξ + (γ + 1)c 4ρ 0 ∂ 2 z [(ξ) 2 ] - ν 2ρ 0 ∂ 3 z ξ + c 2 ∆ y ξ = 0. (97) 
Looking at Figs 1 and 3 together with Eqs. ( 61) and (96), we see that there is a bijection between the variables of the KZK and NPE equations defined by the relations

z N P E = -cτ KZK and τ N P E = ετ KZK + z KZK c , (98) 
which implies for the derivatives

∂ τ NP E = c∂ z KZK and ∂ z NP E = - 1 c ∂ τ KZK .
Thus, as it was mentioned in Introduction, the known mathematical results for the KZK equation can be directly applied for the NPE equation.

Well posedness of the NPE equation.

We consider the Cauchy problem:

∂ 2 τ z ξ + (γ+1)c 4ρ 0 ∂ 2 z [(ξ) 2 ] -ν 2ρ 0 ∂ 3 z ξ + c 2 ∆ y ξ = 0 on R + × T z × R n-1 , ξ(0, z, y) = ξ 0 (z, y) on T z × R n-1 , (99) 
in the class of L-periodic functions with respect to the variable z and with mean value zero along z . The use of the operator ∂ -1 z , identically defined as ∂ -1 τ in Eq. ( 69), allows us to consider instead of Eq. (97) the following equivalent equation

∂ τ ξ + (γ + 1)c 4ρ 0 ∂ z [(ξ) 2 ] - ν 2ρ 0 ∂ 2 z ξ + c 2 ∂ -1 z ∆ y ξ = 0 on R + × T z × R n-1 .
As a consequence we can use the results of Subsection 4.2 if we replace τ by z . In the same time for the viscous case it holds the following theorem:

Theorem 7 Let n ≥ 2 , ν > 0 , s > max 4, n 2 + 1 and ξ 0 ∈ H s (T z × R n-1
) with zero mean value along z . Then there exists a constant k 2 > 0 such that if

ξ 0 H s (Tz ×R 2 ) < k 2 , (100) 
then the Cauchy problem for the NPE equation (99) has a unique global in time solution

ξ ∈ 2 ℓ=0 C ℓ ([0, +∞[, H s-2ℓ (T z × R 2 )), (101) 
satisfying the zero mean value condition along z . Moreover, for Ψ according with Eq. ( 91) we have

Ψ := - c ρ 0 ∂ -1 z ξ ∈ 2 ℓ=0 C ℓ ([0, +∞[, H s-2ℓ (T z × R 2 )),
also satisfying the zero mean value condition along z , i.e.

L 0 Ψ(τ, z, y)dz = 0. Proof : For ξ 0 ∈ H s (T z × R n-1 ) small enough the existence of a global in time solution

ξ ∈ 1 ℓ=0 C ℓ ([0, +∞[, H s-2ℓ (T z × R n-1 ))
of the Cauchy problem for the NPE equation (99) comes from Theorem 4. We also have the desired regularity by a simple bootstrap argument. Moreover, the formula for ∂ -1 z (see the equivalent definition of ∂ -1 τ in Eq. ( 69)) implies for s ≥ 1 the Poincaré inequality

∂ -1 z ξ H s (Tz×R n-1 ) ≤ C ∂ z ∂ -1 z ξ H s (Tz ×R n-1 ) ≤ C ξ H s (Tz×R n-1 ) ,
which gives us the same regularity for Ψ .

5.3 Approximation of the solutions of the isentropic Navier-Stokes system by the solutions of the NPE equation.

By Subsections 4.2 and 5.2, this time the approximation domain is

T x 1 × R n-1 .
Let ξ be a sufficiently regular solution of the Cauchy problem (99) for the NPE equation in

T z × R n-1 .
Then, taking ξ and χ according to formulas (91)-( 92), with Ψ defined using the operator ∂ -1 z equivalent to ∂ -1 τ (see Eq. ( 69)), we define ρ ε and v ε by formulas (89)-(90). For ρ ε and v ε we obtain a solution of the approximate system ( 27)-( 28) defined on R + × T x 1 × R n-1 with p(ρ ε ) from the state law [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF], but with the remainder terms R N S-N P E In what follows we consider the three dimensional case, knowing, thanks to the energy method used in Ref. [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] on R 3 , that the Cauchy problem for the Navier-Stokes system is globally well-posed in T x 1 ×R 2 for sufficiency small initial data (see Ref. [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] Theorem 7.1, p. 100 or Ref. [

8]):

Theorem 8 There exists a constant k 1 > 0 such that if the initial data

ρ ε (0) -ρ 0 ∈ H 3 (T x 1 × R 2 ), v ε (0) ∈ H 3 (T x 1 × R 2 ) (102) satisfy ρ ε (0) -ρ 0 H 3 (Tx 1 ×R 2 ) + v ε (0) H 3 (Tx 1 ×R 2 ) < k 1 ,
and ρ ε (0) -ρ 0 and v ε (0) have the zero mean value among x 1 then the Cauchy problem ( 8)-( 10) on T x 1 × R 2 with the initial data (102) has a unique global in time solution

(ρ ε , v ε ) such that ρ ε -ρ 0 ∈ C([0, +∞[; H 3 (T x 1 × R 2 )) ∩ C 1 ([0, +∞[; H 2 (T x 1 × R 2 )), (103) 
which implies

ρ ε -ρ 0 and v ε ∈ C([0, +∞[; H 3 (T x 1 × R 2 )) ∩ C 1 ([0, +∞[; H 1 (T x 1 × R 2 )). ( 104 
)
Moreover for all times for ρ ε -ρ 0 and v ε have the mean value zero along x 1 .

The existence results for the Cauchy problems of the Navier-Stokes system ( 8)-( 10) and the NPE equation (99) allow us to establish the global existence of U ε and U ε , considered in the NPE approximation framework:

Theorem 9 Let n = 3 . There exists a constant k > 0 such that if the initial datum ξ 0 ∈ H 5 (T z × R 2 )
for the Cauchy problem for the NPE equation (99) (necessarily k ≤ k 2 , see Theorem 7) is sufficiently small ξ 0 H 5 (Tz×R n-1 ) < k, has the mean value zero, then there exist global in time solutions U ε = (ρ ε , ρ ε v ε ) t of the approximate Navier-Stokes system [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] and U ε = (ρ ε , ρ ε v ε ) t of the exact Navier-Stokes system (29) respectively, with the same regularity corresponding to (104) and with the mean value zero in the x 1 -direction, both considered with the state law [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] and with the same initial data

(ρ ε -ρ ε )| t=0 = 0, (v ε -v ε )| t=0 = 0. (105) 
Here ρε | t=0 and vε | t=0 are constructed as the functions of the initial datum for NPE equation ξ 0 according to formulas (89)-(92).

Proof : The proof is essentially the same as for Theorem 1. According to Theorem 7 with s = 5 , the datum ξ 0 is regular enough so that

ρ ε -ρ 0 | t=0 ∈ H 3 (T x 1 × R 2 ) and v ε | t=0 ∈ [H 3 (T x 1 × R 2 )] 3
constructed with the help of formulas (89)-(92) in order to apply Theorem 8. These formulas together with Theorem 7 imply that ρ ε and v ε have the desired regularity.

Thanks to Theorem 9 we validate the approximation of the solution of the Navier-Stokes system U ε by the solution of the NPE equation U ε following Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF]:

Theorem 10 Let ν > 0 and ε > 0 be fixed and all assumptions of Theorem 9 hold. Then estimates of Theorem 3 hold in L 2 (T x 1 × R 2 ) . Moreover, if ξ 0 ∈ H s (T x 1 × R 2 ) with s ≥ 4 , then we have the stability estimate (2) with

ρ ε (t, x 1 , x ′ ) -ρ 0 ∈ C([0, +∞[; H 2 (T x 1 × R 2 )) ∩ C 1 ([0, +∞[; L 2 (T x 1 × R 2 )), (106) 
v ε (t, x 1 , x ′ ) ∈ C([0, +∞[; H 3 (T x 1 × R 2 )) ∩ C 1 ([0, +∞[; H 1 (T x 1 × R 2 )) (107) 
and

R N S-N P E 1 and R N S-N P E 2 ∈ C([0, +∞[; L 2 (T x 1 × R 2 )). (108) 
Proof : The proof being the same as in Theorem 3 is omitted. In fact it is due to the same Eqs. ( 29) and [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] with just different remainders terms of the same order on ε . It is also easy to see using the previous arguments that the minimum regularity of the initial data (see Table 1) to have the remainder terms in C([0, +∞[;

L 2 (T x 1 × R 2 )) (see (108)) corresponds to ξ 0 ∈ H s (T x 1 × R 2 ) for s ≥ 3 . Indeed, if s ≥ 3 , then for 0 ≤ ℓ ≤ 1 ξ(τ, z, y) ∈ C ℓ ([0, +∞[; H s-2ℓ (T z × R 2 )).
As in addition the least regular term in the remainders is ∂ 2 τ Ψ coming from ∂ τ χ, this finally implies with formulas (89)-(92) the desired regularities of ρ ε and v ε given in Eqs. ( 106) and (107) respectively.

Approximations of the Euler system

Let us consider the following isentropic Euler system:

∂ t ρ ε + div(ρ ε v ε ) = 0, (109) 
ρ ε [∂ t v ε + (v ε .∇)v ε ] + ∇p(ρ ε ) = 0 (110) 
with p(ρ ε ) given in Eq. [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF]. We use all notations of previous sections just taking ν = 0 . Let us consider two and three dimensional cases. The entropy η of the isentropic Euler system, defined in Eq. [START_REF] Yin | The lifespan for 3 -D spherically symmetric compressible Euler equations[END_REF], is of class C 3 and in addition η ′′ (U ε ) is positive definite for ρ ε > 0 . Moreover, from [START_REF] Matsumura | Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids[END_REF] we see that G i ∈ C ∞ with respect to U ε for ρ ε > 0 . Then we can apply Theorem 5.1.1 p. 98 in Ref. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften[END_REF], which gives us the local well-posedness of the Euler system: Theorem 11 [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften[END_REF] In R n for n = 2 or 3 , suppose the initial data U ε (0) be continuously differentiable on R n , take value in some compact set with ρ ε (0) > 0 , and

for i = 1, ..., n, ∂ x i U ε (0) ∈ [H s (R n )] n+1 with s > n/2.
Then there exists 0 < T ∞ ≤ +∞, and a unique continuously differentiable function U ε on R 3 × [0, T ∞ [ taking value with ρ ε > 0 , which is a classical solution of the Cauchy problem associated to [START_REF] Matsumura | Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids[END_REF] with ν = 0 . Furthermore for i = 1, ..., n

∂ x i U ε (t) ∈ s k=0 C k ([0, T ∞ [; [H s-k (R n )] n+1 ). The interval [0, T ∞ [ is maximal in that if T ∞ < +∞ then T∞ 0 sup i=1,...,n ∂ x i U ε [L ∞ (R n )] n+1 dt = +∞,
and/or the range of U ε (t) escapes from every compact subsets of R * + × R n as t → T ∞ .

Remark 4 A sufficient condition for the initial data to apply Theorem 11 is to have

ρ ε (0) -ρ 0 ∈ H 3 (R n ) and v ε (0) ∈ (H 3 (R n )) n with ρ ε (0) > 0 .
To approximate the solutions of the Euler system and the Kuznetsov, the NPE or the KZK equations, we need to know for which time (how long) they exist. In the difference to the viscous case, the inviscid models can provide blow-up phenomena as indicated in Theorem 11 for the Euler system, in Theorem 15 for the Kuznetsov equation and for the KZK and the NPE equations see Theorem 1.3 in Ref. [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF]. Let us start by summarize what is known on the blow-up time for the Euler system [START_REF] Alinhac | Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux[END_REF][START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF][START_REF]The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit[END_REF][START_REF]The lifespan of 3 D compressible flow[END_REF][START_REF]Delayed singularity formation in 2 D compressible flow[END_REF][START_REF] Yin | The lifespan for 3 -D spherically symmetric compressible Euler equations[END_REF].

Due to our framework of the non-linear acoustic, it is important for us to have a potential motion (the irrotational case) and to consider the compressible isentropic Euler system (109)-( 110) with initial data defining a perturbation of order ε around the constant state (ρ 0 , 0) . The following theorem estimates the existence time of its solutions:

Theorem 12
1. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften[END_REF] In R n for n = 2 or 3 , suppose the initial data

U ε (0) = (ρ ε,0 , ρ ε,0 v ε,0 ) t
be a perturbation of order ε around the constant state (ρ 0 , 0) (see Eq. ( 111)) and take value such that for i = 1, ..., n

∂ x i U ε (0) ∈ [H s (R n )] n+1
with s > n/2 . Then according to Theorem 11 there exists a unique classical solution of the Cauchy problem associated to [START_REF] Matsumura | Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids[END_REF] with ν = 0 with a regularity given in Theorem 11. Moreover considering a generic constant C > 0 independent of ε , the existence time T ε is estimated by T ε ≥ C ε . 2. [START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF][START_REF]The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit[END_REF][START_REF]The lifespan of 3 D compressible flow[END_REF][START_REF]Delayed singularity formation in 2 D compressible flow[END_REF] If ∇ × v ε,0 = 0 and if

ρ ε,0 ρ 0 γ-1 2 
-1 and v ε,0 belong to the energy space X m a dense subspace of H m (R n ) with m ≥ 4 (for instance X m ⊂ D(R n ) , see p.7-8 in Ref. [START_REF]The lifespan of 3 D compressible flow[END_REF] for the exact definition of X m ), then

T ε ≥ C ε 2 for n = 2, and T ε ≥ exp C ε -1 for n = 3.
The regularity is given by energy estimates on X m which implies at least the same regularity as in Theorem 11 if for i = 1, ..., n

∂ x i U ε (0) ∈ [H m-1 (R n )] n+1 .
Proof : The first point is a direct consequence of the proof of Theorem 5.1.1 p. 98 in Ref. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften[END_REF]. For the second point we refer to Refs. [START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF][START_REF]The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit[END_REF][START_REF]The lifespan of 3 D compressible flow[END_REF][START_REF]Delayed singularity formation in 2 D compressible flow[END_REF] in order to have estimations of T ε with the help of energy estimates in the considered energy spaces which are dense subspaces of the usual Sobolev spaces.

Let us pay attention to the optimality of the lifespan in the previous results for two [START_REF] Alinhac | Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux[END_REF] and three dimensional cases [START_REF] Yin | The lifespan for 3 -D spherically symmetric compressible Euler equations[END_REF]. The following theorem tells us that the lower bound for the lifespan of the compressible Euler system in the irrotational case found in Theorem 12 is optimal thanks to the estimation of the blow-up time:

Theorem 13

1. [START_REF] Alinhac | Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux[END_REF] In R 2 , we consider the initial data given by

ρ ε (0) = ρ 0 + ερ ε,0 and v ε (0) = εv ε,0 , (111) 
with ρ ε,0 and v ε,0 of regularity C ∞ with a compact support. Moreover

v ε,0 (x) = v r |x| 2 -→ e r + v θ |x| 2 -→ e θ , with ρ ε,0 , v r , v θ ∈ D(R 2 ) depending only on r = |x| 2 = x 2 1 + x 2 2 for x = (x 1 , x 2 ) t .
Then the Euler system (109)-( 110) with initial data (111) admits a

C ∞ solution for t ∈ [0, T ε [ with lim ε→0 ε 2 T ε = C > 0.
2. [START_REF] Yin | The lifespan for 3 -D spherically symmetric compressible Euler equations[END_REF] In R 3 , we consider the initial data given by (111) with ρ ε,0 and v ε,0 of regularity C ∞ with a compact support. Moreover 

= γ-1 c 2 ∂ 2 t u -c 2 ∆u = ε∂ t (∇u) 2 + α 2 (∂ t u) 2 , u(0) = u 0 , u t (0) = u 1 . (112) 
Thanks to Theorem 1.1 in Ref. [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF], we have the following local well posedness result for the inviscid Kuznetsov equation:

Theorem 14 [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] Let ν = 0 , n ∈ N * and s > n 2 + 1 . For all u 0 ∈ H s+1 (R n ) and

u 1 ∈ H s (R n ) such that u 1 L ∞ (R n ) < 1 2αε , u 0 L ∞ (R n ) < M 1 and ∇u 0 L ∞ (R n ) < M 2 ,
with M 1 and M 2 in R * + , the following results hold: 1. There exists T * > 0 , finite or not, such that there exists a unique solution u of the inviscid Kuznetsov system (112) with the following regularity

u ∈ C r ([0, T * [; H s+1-r (R n )) for 0 ≤ r ≤ s, ( 113 
) ∀t ∈ [0, T * [, u t (t) L ∞ (R n ) < 1 2αε , u L ∞ (R n ) < M 1 , ∇u L ∞ (R n ) < M 2 . ( 114 
)
2. The map (u 0 , u 1 ) → (u(t, .), ∂ t u(t, .)) is continuous in the topology of H s+1 × H s uniformly in t ∈ [0, T * [ .

Ref. [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] allows us to give a result on the lower bound of the lifespan T ε of the Kuznetsov equation. The method is similar to the case of the Euler system (109)-(110). It is based on the use of a group of linear transformations preserving the wave equation u tt -∆u = 0 , initially proposed by John [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF]. Let us briefly summarize the lifespan and blow-up time results for the inviscid Kuznetsov equation in the following theorem:

Theorem 15 1. [10] Let m ∈ N , m ≥ n 2 + 2 . For u 0 ∈ H m+1 (R n ) and u 1 ∈ H m (R n ) such
that the results of Theorem 14 hold for s = m , let u 0 and u 1 be also small enough in the sense of an energy defined in Point 3 of Theorem 1.1 in Ref. [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF]. Then there exists a generic constant C > 0 independent of ε such that

T ε ≥ C ε . 2. [10] Let m ∈ N , m ≥ n + 2 if n is even and m ≥ n + 1 if n is odd. For u 0 ∈ H m+1 (R n ) and u 1 ∈ H m (R n
) such that the results of Theorem 14 hold for s = m , let u 0 and u 1 be also small enough in the sense of a generalized energy defined in Theorem 3.3 in Ref. [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF]. Then there exists a generic constant C > 0 independent of ε such that Remark 5 In R 2 and R 3 we see that the lifespan of the inviscid Kuznetsov equation corresponds to the blow-up time estimation for the compressible isentropic Euler system in Theorems 12 and 13, a result in accordance with the fact that the inviscid Kuznetsov equation is an approximation of the Euler system.We also notice that in the two cases (for the Euler system and the Kuznetsov equation) having a longer existence time requires more regularity on the initial data.

T ε ≥ C ε 2 for n = 2, T ε ≥ exp C ε -1 for n = 3 and T ε = +∞ for n ≥ 4.
Relying now the existence results for the Euler system and the Kuznetsov equation, we formulate our approximation result: Theorem 16 Let n = 2 or 3 . If the initial data u 0 ∈ H 4 (R n ) and u 1 ∈ H 3 (R n ) for the Cauchy problem for the inviscid Kuznetsov equation (112) satisfy

u 0 H 4 (R n ) + u 1 H 3 (R n ) ≤ k (115)
with a constant k > 0 small enough, there exists T * ε > 0 and C > 0 , independent of ε , satisfying

T * ε ≥ C ε such that there exist local in time solutions U ε = (ρ ε , ρ ε v ε ) t and U ε = (ρ ε , ρ ε v ε ) t on [0, T * ε [
of the approximate Euler system given by ( 30) and of the exact Euler system given by ( 29) with ν = 0 , both considered with the state law [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] and with the same initial data [START_REF] Molinet | Remarks on the mass constraint for KP type equations[END_REF].

In addition, the solutions have the same regularity corresponding to

U ε -(ρ 0 , 0) t ∈ 3 ℓ=0 C ℓ ([0, T * ε [; [H 3-ℓ (R n )] n+1 ). (116) 
Here ρε | t=0 and vε | t=0 are constructed as the functions of the initial data for the Kuznetsov equation u 0 and u 1 by formulas ( 35)-( 36) according to ( 12)-( 13) and ( 15)-( 16) taken with ν = 0 . Moreover, there exist constants C > 0 and K > 0 independent of ε and on time t , such that ∀t ≤

C ε (U ε -U ε )(t) 2 L 2 (R 3 ) ≤ Ktε 3 e Kεt ≤ 4ε 2 . ( 117 
) If u 0 ∈ H s+2 (R n ) and u 1 ∈ H s+1 (R n ) with s > n 2
and there exists a classical solution of the Euler system found for the initial data satisfying (1), then estimate (2) holds with

ρ ε -ρ 0 ∈ C([0, T * ε [; H s+1 (R n )) ∩ C 1 ([0, T * ε [; H s (R n )), (118) 
v ε ∈ C([0, T * ε [; H s+1 (R n )) ∩ C 1 ([0, T * ε [; H s (R n )) (119) 
and with the remainder terms R Euler-Kuz 1 and R Euler-Kuz 2 (see ( 24)-( 25) 115) with a k > 0 small enough, the Cauchy problem for the inviscid Kuznetsov equation ( 112) is locally well-posed according to Theorem 15. Moreover the solution u belongs to

with ν = 0 ) belonging to C([0, T * ε [; H s (R n )) . Proof : Taking u 0 ∈ H 4 (R n ) and u 1 ∈ H 3 (R n ) satisfying Eq. (
4 ℓ=0 C ℓ ([0, T ε,1 [; H 4-ℓ (R n )) with T ε,1 ≥ C 1 ε and C 1 > 0 independent of ε . As u 0 ∈ H 4 (R n ) and u 1 ∈ H 3 (R n ) , it ensures that ρ ε -ρ 0 | t=0 ∈ H 3 (R n ) and v ε | t=0 ∈ [H 3 (R n )] 3 .
Therefore ρ ε | t=0 > 0 if u 0 and u 1 are small enough. By Theorem 12 it is sufficient to have a local solution U ε on [0, T ε,2 [ of the exact Euler system (see [START_REF] Matsumura | Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids[END_REF] with ν = 0 ) verifying (116) with

T * ε corresponding to T ε,2 , T ε,2 ≥ C 2 ε with C 2 > 0 independent of ε . Now we consider T * ε = min(T ε,1 , T ε,2
) , and we have T * ε ≥ C ε with C > 0 independent of ε . As ρ ε and v ε are defined by ansatz (12)-( 13) with ρ 1 and ρ 2 given in Eqs. ( 15)-( 16), the regularity of u implies for U ε at least the same regularity as given in (116). To find it we use the Sobolev embedding [START_REF]Delayed singularity formation in 2 D compressible flow[END_REF] for the multiplication.

Knowing the existence results for the two problems, we validate the approximation of U ε by the solution of the Kuznetsov equation, i.e. by U ε , following Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF]: we make use of the convex entropy as in Ref. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften[END_REF] for the isentropic Euler equation and the rest follows exactly as in the proof of Theorem 3 except that ν = 0 .

Let us finish the proof with the remark on the minimal regularity of the initial data for the Kuznetsov equation such that the approximation of the Euler system is possible, i.e. the remainder terms R Euler-Kuz 1 and R Euler-Kuz 2 must be kept bounded for a finite time interval. Indeed, if we take

u 0 ∈ H s+2 (R n ) and u 1 ∈ H s+1 (R n ) with s > n 2 , then u ∈ C([0, T * ε [; H s+2 (R n )) and u t ∈ C([0, T * ε [; H s+1 (R n )), u tt ∈ C([0, T * ε [; H s (R n )).
Since ρ ε is defined by ( 12) with ( 15)-( 16) and v ε by ( 13) with ν = 0 , respectively, we deduce regularity (118)-(119). As this time for ν = 0 , we don't have the term ∆∂ t u as in the viscous case in Eq. ( 24), the remainder terms belong to C([0, T * ε [; H s (R n )) .

Remark 6 If we allow the Euler system to have not the classical, but an admissible weak solution with the bounded energy (see Definition 1 and take ν = 0 ) taking the initial data in a small on ε L 2 -neighborhood of U ε (0) , then we also formally have estimate [START_REF] Alinhac | Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux[END_REF]. But, thanks to Ref. [START_REF] Luo | Non-uniqueness of admissible weak solutions to compressible Euler systems with source terms[END_REF] it is known that the Euler system can provide infinitely many admissible weak solutions, and thus there are no sense to approximate them.

For the approximation of solutions of the Euler system by the solutions of the NPE equation we obtain the following theorem: Theorem 17 Let n = 2 or 3 . There exists a constant k > 0 such that if the initial datum ξ 0 ∈ H 5 (T z × R n-1 ) for the Cauchy problem for the NPE equation (99) with ν = 0 is sufficiently small ξ 0 H 5 (Tz ×R n-1 ) < kε, has the mean value zero, then 

× R n-1 . If ξ 0 ∈ H s (T x 1 × R n-1
) with s > 3 and there exists a classical solution of the Euler system found for the initial data satisfying (1), then estimate (2) holds with

ρ ε -ρ 0 ∈ C([0, T * ε [; H 2 (T x 1 × R n-1 )) ∩ C 1 ([0, T * ε [; L 2 (T x 1 × R n-1 )), (120) 
v ε ∈ C([0, T * ε [; H 3 (T x 1 × R n-1 )) ∩ C 1 ([0, T * ε [; H 1 (T x 1 × R n-1 )) (121) 
and with the remainder terms R Euler-N P E

1 and R Euler-N P E 2 (see (93)-(95) with ν = 0 ) belonging to C([0, T * ε [; L 2 (T x 1 × R n-1
)) . Proof : The work of Dafermos in Ref. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften[END_REF] can always be applied on T x 1 × R n-1 for n = 2 or 3 instead of R n so we have an equivalent of Theorem 11 and we also have the same equivalent of Theorem 12. This is due to the fact that the energy estimate in the articles of Sideris [START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF][START_REF]The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit[END_REF][START_REF]The lifespan of 3 D compressible flow[END_REF][START_REF]Delayed singularity formation in 2 D compressible flow[END_REF] are always true on T x 1 × R and T x 1 × R 2 . In all this cases we must also suppose that we have the mean value equal to zero in the direction x 1 . As by Theorem 4 the NPE equation is locally well posed on [0, T ε [ with T ε ≥ C ε if ξ 0 H 5 (Tz ×R n-1 ) < kε, we have an equivalent of Theorem 16 for the exact compressible isentropic Euler system and its approximation by the NPE equation on T x 1 × R n-1 for n = 2 or 3 , as ξ 0 ∈ H 5 (T z × R n-1 ) also implies ρε | t=0 and vε | t=0 in H 3 (T x 1 × R n-1 ) .

The minimum regularity of the initial data (see Table 1) to have the remainder terms well defined is found exactly in the same way as in Theorem 10 for the viscous case, as soon as the least regular term does not disappear taking ν = 0 .

For the approximation by the KZK equation the inviscid case has already been studied in Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF]. The key point is that we must restrict our spatial domain to a cone in order to take into account the fact that the KZK equation is only locally well posed. For the completeness of the article and for the reader convenience, we give, updating for our new ansatz, the Euler-KZK approximation result, proved in details in Ref. [START_REF]On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF].

Theorem 18 Suppose that there exists the solution I of the KZK Cauchy problem (72) with I 0 ∈ H s (T τ × R n-1 ) for s > max{10, n 2 + 1} and ν = 0 such that I(τ, z, y) is L-periodic with respect to τ and defined for |z| ≤ R and y ∈ R n-1 y . Let U ε = (ρ ε , ρ ε v ε ) t be the approximate solution of the isentropic Euler system (85)-(86) with ν = 0 deduced from a solution of the KZK equation. Then the function U ε (t, x 1 , x ′ ) is defined in T t × Ω ε with

Ω ε = {x 1 ∈ R| |x 1 | < R ε -ct} × R n-1 x ′
and is smooth enough according to the regularity of I :

ρ ε ∈ C(T t ; H 4 (Ω ε )) ∩ C 1 (T t ; H 3 (Ω ε )) and v ε ∈ C(T t ; H 3 (Ω ε )) ∩ C 1 (T t ; H 2 (Ω ε )).
Let us now consider the Euler system (29) with ν = 0 in a cone

C(t) = {0 < s < t} × Q ε (s) = {x = (x 1 , x ′ ) : |x 1 | ≤ R ε -Ms, M ≥ c, x ′ ∈ R n-1 }
with the same initial data

(ρ ε -ρ ε )| t=0 = 0 and (v ε -v ε )| t=0 = 0.
Consequently, (see Ref. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften[END_REF] p. 62) there exists T 0 > 0 , such that for the time interval 0 ≤ t ≤ T 0 ε there exists the classical solution U ε = (ρ ε , ρ ε v ε ) of the Euler system (29) with ν = 0 in a cone

C(T ) = {0 < t < T |T < T 0 ε } × Q ε (t) with ∇U ε L ∞ ([0, T 0 ε [;H s-1 (Qε)) < εC for s > n 2 + 1.
Moreover, there exists K > 0 , such that for any ε small enough the solutions U ε and U ε , which were determined as above in cone C(T ) with the same initial data, satisfy the estimate for 0 < t < T 0 ε

(U ε -U ε )(t) 2 L 2 (Qε(t)) ≤ c 2 0 ε 3 te 2Kεt ≤ 4ε 2
with c 2 0 > 0 . If I 0 ∈ H s (T t × R n-1 ) with s ≥ 6 then ρ ε (t, x 1 , x ′ ) -ρ 0 and v ε (t, x 1 , x ′ ) ∈C 1 ([0,

T 0 ε [; H 1 (Q ε )) (122) 
and R N S-KZK 1 and R N S-KZK

2

(for the definitions see Appendix A) are in C([0, T 0 ε [; L 2 (Q ε )) and hence estimate (2) holds as soon as the initial data of the classical solution of the Euler system U ε are taken in their small L 2 -neighborhood defined by [START_REF] Adams | Sobolev spaces[END_REF].

Proof : Considering expressions for ρ ε and v ε in (82) with ν = 0 , the term asking the most regularity of I 0 is the same as for the viscous case and given by ∂ -1 τ ∂ z I . Thus, we need to impose the same regularity of I 0 ∈ H s with s > 10 as for ν > 0 to ensure v ε ∈ C(T t , H 3 (Ω ε )) . This regularity if we take the same initial data implies the existence of the classical solution U ε of the Euler system. Now, if the initial data are taken in a small L 2 neighborhood, according to (1), we can find the minimal regularity on I 0 ensuring that the remainder terms are bounded and well defined.

If I 0 ∈ H s with s ≥ 6 we have for 0 ≤ ℓ ≤ 1 remainder terms is ∂ 3 z Φ ) and that the initial data found from I 0 for the Navier-Stokes system satisfies Theorem 5. Indeed, if I 0 ∈ H s (T t × R n-1 ) with s > max{8, n 2 } , then for 0 ≤ k ≤ 4 I(τ, z, y) ∈ C ℓ (] -R, R[; H s-2ℓ (T τ × R n-1 )).

Let us denote Ω = T τ × R n-1 . Defining ρ ε by Eq. (58) with Eqs. ( 55) and (56) and v ε by (66) with ν = 0 respectively, we have as in the proof of Theorem 6 for 0 ≤ ℓ ≤ 1 considering ρ ε and v ε as functions of (τ, z, y) :

∂ ℓ z ∂ τ ρ ε ∈ C(] -R, R[; H s-1-2ℓ (Ω)), ∂ ℓ z ∂ τ v ε ∈ C(] -R, R[; H s-3-2ℓ (Ω)),
from where we deduce (122). These regularities of ρ ε and v ε viewed as functions of (t, x 1 , x ′ ) allow to have all left-hand terms in the approximated Euler system (85)-( 86) with ν = 0 of the regularity C([0, T 0 ε [; L 2 (Q ε )) and the remainder terms in the right-hand side inherit it. Since the least regular term in the remainder terms is J 2 ∂ z [(∂ z Φ) 2 ], the regularity of I 0 ∈ H s (T t × R n-1 ) with s ≥ 6 (see also Table 1) is minimal to ensure that R N S-KZK 

Conclusion

We summarize all obtained approximation results in the comparative Table 1.

A Expressions of the remainder terms

The expression of H , the profile of ρ 2 , in the paraxial variables of the KZK ansatz is:

H(τ, z, y) = - ρ 0 (γ -1) 2c 4 (∂ τ Φ) 2 - ν c 4 ∂ 2 τ Φ + ε - ρ 0 2c 2 [(∇ y Φ) 2 - 2 c ∂ z Φ ∂ τ Φ] - ν c 2 [∆ y Φ - 2 c ∂ 2 zτ Φ] + ε 2 [- ρ 0 2c 2 (∂ z Φ) 2 - ν c 2 ∂ 2 z Φ]. (123) 
If we consider (83)-(84) the expressions of R N S-KZK 1 and R N S-KZK 2 are written with the terms I and J defined by (55) and (56) respectively: Ansatz [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF] paraxial approximation u = Φ(t -x 1 c , εx 1 , √ εx ′ ) ρ ε = ρ 0 + εI + ε 2 J, v ε from (66), I = ρ 0 c 2 ∂ τ Φ, J from (56) paraxial approximation u = Ψ(εt, x 1 -ct, √ εx ′ ) among the x 1 axis

ε 3 R N S-KZK 1 = ε 3 -ρ 0 ∂ 2 z Φ + 1 c ∂ z I∂ τ Φ + 1 c ∂ τ I∂ z Φ -∇ y I.∇ y Φ + 2 c I∂ 2 τ z Φ -I∆ y Φ - 1 c 2 ∂ τ J∂ τ Φ - 1 c 2 J∂ 2 τ Φ + ε 4 -∂ z I∂ z Φ -I∂ 2 z Φ + 1 c ∂ z J∂ τ J + 1 c ∂ τ J∂ z Φ -∇ y J.∇ y Φ + 2 c J∂ 2 τ z Φ -J∆ y Φ + ε 5 [-∂ z J∂ z Φ -J∂ 2 z Φ];
ρ ε = ρ 0 + ερ 1 + ε 2 ρ 2 , v ε = -ε∇u, ρ 1 = ρ 0 c 2 ∂ t u, ρ 2 from
ρ ε = ρ 0 + εξ + ε 2 χ, v ε from (89), ξ = -ρ 0 c ∂ z Ψ, χ from (92) Models ∂ 2 t u -c 2 ∆u = ε∂ t (∇u) 2 + γ-1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u c∂ 2 τ z I -(γ+1) 4ρ 0 ∂ 2 τ I 2 -ν 2c 2 ρ 0 ∂ 3 τ I -c 2 2 ∆ y I = 0 ∂ 2 τ z ξ + (γ+1)c 4ρ 0 ∂ 2 z (ξ 2 ) -ν 2ρ 0 ∂ 3 z ξ + c 2 ∆ y ξ = 0 Approxi- mation Order O(ε 3 ) Domain Ω R 3 the half space {x 1 > 0, x ′ ∈ R n-1 } the cone {|x 1 | < R ε -ct} ×R n-1 x ′ T x 1 × R 2 Approxi- mation U ε -U ε L 2 ≤ ε
ε 3 R N S-KZK 2 . -→ e 1 = ε 3 - ρ 0 2c ∂ τ [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] - ν c ∂ τ [- 2 c ∂ 2 τ z Φ + ∆ y Φ] - I 2c ∂ τ [ 1 c 2 (∂ τ Φ) 2 ] + J c ∂ 2 τ Φ + ε 4 ρ 0 2 ∂ z [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] + ν∂ z [- 2 c ∂ 2 τ z Φ + ∆ y Φ] - I 2c ∂ τ [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] + I 2 ∂ z [ 1 c 2 (∂ τ Φ) 2 ] -J∂ 2 τ z Φ - J 2c ∂ τ [ 1 c 2 (∂ τ Φ) 2 ] - ρ 0 2c ∂ τ [(∂ z Φ) 2 ] - ν c ∂ τ ∂ 2 z Φ + ε 5 - I 2c ∂ τ [(∂ z Φ) 2 ] + I 2 ∂ z [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] + J 2 ∂ z [ 1 c 2 (∂ τ Φ) 2 ] - J 2c ∂ τ [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] + ρ 0 2 ∂ z [(∂ z Φ) 2 ] + ν∂ 3 z Φ + ε 6 I 2 ∂ z [(∂ z Φ) 2 ] - J 2c ∂ τ [(∂ z Φ) 2 ] + J 2 [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] + ε 7 J 2 ∂ z [(∂ z Φ) 2 ]
and in the hyperplane orthogonal to the x 1 axis n i=2 (R N S-KZK

2

.

-→ e i ) -→ e i = ε

7 2 ρ 0 2 ∇ y [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] + ν∇ y [- 2 c ∂ 2 τ z Φ + ∆ y Φ] + I 2 ∇ y [ 1 c 2 (∂ τ Φ) 2 ] -J∇ y [∂ τ Φ] + ε 9 2 I 2 ∇ y [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] + J 2 ∇ y [ 1 c 2 (∂ τ Φ) 2 ] + ρ 0 2 ∇ y [(∂ z Φ) 2 ] + ν∇ y [∂ 2 z Φ] + ε 11 2 I 2 ∇ y [(∂ z Φ) 2 ] + J 2 ∇ y [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] + ε 13 2 J 2 ∇ y [(∂ z Φ) 2 ] .

4. 1

 1 Derivation of the KZK equation from an isentropic Navier-Stokes system.

Figure 1 :

 1 Figure 1: Paraxial change of variables for the profiles U(t -x 1 /c, ǫx 1 , √ ǫx ′ ) .

2 .(

 2 (Shock formation) Let T * be the largest time on which such a solution is defined, |∂ τ I(τ, t, y)| + |∇ y I(τ, t, y)|) dt = +∞. 3. (Global existence) If ν > 0 we have the global existence for small enough data: there exists a constant C 1 > 0 such that

Figure 2 :

 2 Figure 2: Periodic subsonic inflow-outflow boundary conditions for the Navier-Stokes system.

5. 1

 1 Derivation of the NPE equation.

Figure 3 :

 3 Figure 3: Paraxial change of variables for the profiles U(ǫt, x 1 -ct, √ ǫx ′ ) .

1 and

 1 R N S-N P E 2 defined respectively in Eqs. (93)-(95) instead of R N S-Kuz 1 and R N S-Kuz 2 .

v ε, 0 + x 2 2 + x 2 3

 022 (x) = v r |x| 3 -→ e r , with ρ ε,0 and v r ∈ D(R 3 ) depending only on r = |x| 3 = x 2 1 for x = (x 1 , x 2 , x 3 ) t . Then the Euler system (109)-(110) with initial data (111) admits a C ∞ solution for t ∈ [0, T ε [ with lim ε→0 ε ln(T ε ) = C > 0. Now let us consider the derivation of the Kuznetsov equation of Subsection 3.1 in the assumption ν = 0 . Taking ansatz (12)-(13) for ρ ε and v ε and imposing (15)-(16) for ρ 1 and ρ 2 with ν = 0 , we derive as in Subsection 3.1 the inviscid Kuznetsov equation with the notation α

3. [ 3 ] 1 ε 2 and T ε = O exp 1 ε

 3121 In dimension n = 2 and 3 , there exist functions u 0 ∈ D(R n ) and u 1 ∈ D(R n ) such that the solution u of the Cauchy problem for the inviscid Kuznetsov equation (112) has a geometric blow-up for the time of order T ε = O respectively.

1 and

 1 R N S-KZK 2 are in C([0, T 0 ε [; L 2 (Q ε )) .

  1. There exist unique local in time solutions U ε of the approximate Euler system[START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] and U ε of the exact Euler system (29) with ν = 0 respectively. The solutions U ε and U ε are of the same regularity corresponding to (104) on [0, T * ε [ instead of [0, +∞[ and of mean value zero in the x 1 -direction, both considered with the state law[START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] and with the same initial data (105). Here ρε | t=0 and vε | t=0 are constructed as the functions of the initial datum for NPE equation ξ 0 according to formulas (89)-(92) with ν = 0 .

	2. Moreover, there exists C > 0 independent of ε such that T * ε > C ε and for t ≤ C ε it holds inequality (117) on T x 1

Table 1 :

 1 Approximation results for models derived from Navier-Stokes and Euler systems

		Kuznetsov	KZK		NPE
		Navier-Stokes	Euler	Navier-Stokes	Euler	Navier-Stokes	Euler
	Theorem	Theorem 3	Theorem 16	Theorem 6	Theorem 18	Theorem 10 Theorem 17

  for t ≤ T
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	Initial data regularity Data regularity for remainder boundness	u 0 ∈ H 5 (Ω) u 1 ∈ H 4 (Ω) u 0 ∈ H s+2 (Ω) u 1 ∈ H s+1 (Ω) s > n 2	u 0 ∈ H 4 (Ω) u 1 ∈ H 3 (Ω) u 0 ∈ H s+2 (Ω) u 1 ∈ H s+1 (Ω) s > n	I 0 ∈ H 10 (Ω)	I 0 ∈ H 10 (Ω)	ξ 0 ∈ H 5 (Ω)	ξ 0 ∈ H 5 (Ω)

2 I 0 ∈ H 8 (Ω) I 0 ∈ H 6 (Ω) ξ 0 ∈ H 4 (Ω) ξ 0 ∈ H 4 (Ω)