PATCH REDUNDANCY IN IMAGES: A STATISTICAL TESTING FRAMEWORK AND SOME APPLICATIONS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

PATCH REDUNDANCY IN IMAGES: A STATISTICAL TESTING FRAMEWORK AND SOME APPLICATIONS

Bruno Galerne
Arthur Leclaire

Résumé

In this work we introduce a statistical framework in order to analyze the spatial redundancy in natural images. This notion of spatial redundancy must be defined locally and thus we give some examples of functions (auto-similarity and template similarity) which, given one or two images, computes a similarity measurement between patches. Two patches are said to be similar if the similarity measurement is small enough. To derive a criterion for taking a decision on the similarity between two patches we present an a contrario model. Namely, two patches are said to be similar if the associated similarity measurement is unlikely to happen in a background model. Choosing Gaussian random fields as background models we derive non-asymptotic expressions for the probability distribution function of similarity measurements. We introduce a fast algorithm in order to assess redundancy in natural images and present applications in denoising, periodicity analysis and texture ranking.
Fichier principal
Vignette du fichier
main_preprint_patch.pdf (11.06 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01931733 , version 1 (22-11-2018)
hal-01931733 , version 2 (30-04-2019)

Identifiants

  • HAL Id : hal-01931733 , version 1

Citer

Valentin de Bortoli, Agnès Desolneux, Bruno Galerne, Arthur Leclaire. PATCH REDUNDANCY IN IMAGES: A STATISTICAL TESTING FRAMEWORK AND SOME APPLICATIONS. 2018. ⟨hal-01931733v1⟩
217 Consultations
403 Téléchargements

Partager

More