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ABSTRACT

In this work we introduce a statistical framework in order to analyze the spatial redundancy in natural
images. This notion of spatial redundancy must be defined locally and thus we give some examples
of functions (auto-similarity and template similarity) which, given one or two images, computes
a similarity measurement between patches. Two patches are said to be similar if the similarity
measurement is small enough. To derive a criterion for taking a decision on the similarity between
two patches we present an a contrario model. Namely, two patches are said to be similar if the
associated similarity measurement is unlikely to happen in a background model. Choosing Gaussian
random fields as background models we derive non-asymptotic expressions for the probability
distribution function of similarity measurements. We introduce a fast algorithm in order to assess
redundancy in natural images and present applications in denoising, periodicity analysis and texture
ranking.

( )
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1 Introduction

In many image processing applications using local information coupled with long-range correlation is crucial. The
spatial redundancy on sub-images called patches, encodes the small scale structure of the image as well as its large
scale organization. For example, patch-based inpainting techniques, such as [1, 2], assign patches of the known region
to patches of the unknown region. Namely, each patch position on the border of the unknown region is associated
to an offset corresponding to the best patch according to the partial available information. In [2] the authors replace
the search on the whole image, which could be accelerated with a PatchMatch algorithm [3], by a search among the
most redundant offsets in the known region. This allows the authors of [2] to retrieve long-range spatial structure in
the unknown zone. Another famous application of the exploitation of spatial redundancy can be found in denoising
with the seminal work (Non-Local means) of Buades et al. [4], in which the authors propose to replace a noisy patch
by the mean over all spatially redundant patches. Last but not least, spatial redundancy is of crucial importance in
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exemplar-based texture synthesis. Indeed, long-range correlation is lost in microtexture models where the only structural
information is given by the first-order and second-order statistics of the exemplar image. These microtexture models
can be described by Gaussian random fields [5, 6, 7, 8]. In this case the loss of long-range spatial structures is explained
by the randomization of the Fourier phase. Parametric models using features such as wavelet transform coefficients
[9], scattering transform coefficients [10] or convolutional neural network outputs [11] have been proposed in order to
retrieve the lost spatial information. On the other hand, non-parametric patch-based algorithms such as [12, 13, 14]
propose to use most similar patches in order to fill the new texture images, similarly to inpainting techniques.

All these techniques lift images in higher dimensional spaces, making use of the redundancy of the lifting to extract
important structural information. There exist two main types of lifting: feature extraction or patch extraction. Feature
extraction relies on the use of filters, linear or non-linear, which aim at selecting substantial local information. Among
popular kernels are oriented and multiscale filters which happened to be identified as early processing in human vision
[15]. These last years have seen the rise of neural networks in which the filter basis is no longer given as an input
but learned through a data-driven optimization procedure [16]. On the other hand, patch-based methods rely on the
assumption that image processing tasks are simplified when conducted in a higher dimensional patch space. Indeed,
patches are local measurements which contain structural information and their spatial arrangement provides knowledge
about large-scale arrangement of the image. In their seminal paper, Efros and Leung [12] show that patch information
was sufficient to synthesize a wide variety of textures. Since then, patch information was successfully used in many
image processing tasks including inpainting [1], denoising [4] and texture synthesis [13, 17, 14, 18].

Every analysis performed in a lifted space, built via feature extraction or patch extraction, relies on the comparison
of points in this space. Thus different metrics or similarity scores yield different resemblance notions. In this paper,
we focus only on patch-based methods and propose similarity functions to evaluate if two points in the lifted space,
i.e. two patches, are similar or not. In patch-based lifted spaces, we aim at finding similarity functions such that two
patches are said to be close if they are perceptually close. Usually the squared Euclidean norm is preferred, however
this measurement is a poor choice if the lifted space is high dimensional, due to the well-known curse of dimensionality.
Measures relying on order two statistics were proposed in order to correct these drawbacks [19, 20] and give more
perceptually satisfying measurements. In this paper, we follow the work of [21] in which the authors propose new
similarity functions, defined by a few properties, for noisy images. Since noise in images can be modeled by a random
field, similarity functions can be designed as statistical measurements.

This leads us to consider a statistical hypothesis testing framework to assess similarity (or dissimilarity) between patches.
The null hypothesis is defined as the absence of local structural similarities in the image. Reciprocally the alternative
hypothesis is defined as the presence of such similarities. There exists a wide variety of tractable models exhibiting no
similarity at long-range, like Gaussian random fields [5, 6, 7, 8] or spatial Markov random fields [22], whereas sampling
and inference in very structured models rely on optimization procedures and may be computationally expensive, their
distribution being the limit of some Markov chain [23, 24] or some stochastic optimization procedure [25]. This leads
us to consider an a contrario approach, i.e. we do not consider the alternative hypothesis and focus on rejecting the
null hypothesis. This framework was successfully applied in many areas of image processing [26, 27, 28, 29, 30] and
aims at identifying structure events in images. This statistical model takes its roots in the fundamental work of the
Gestalt theory [31]. One of its principle, the non-accidentalness principle [32] or Helmholtz principle [33, 28], states
that no structure is perceived in a Gaussian white noise. This constitutes a first example of the a contrario methodology
which aims at identifying quantitative conditions under which a background model, a Gaussian white noise model in the
Helmholtz principle, can be rejected. To be precise, in our case of interest, we want to assess that no spatial redundancy
is perceived in microtexture models. This methodology allows us to only design a locally structured background model
to define a null hypothesis. Combining a contrario principles and patch-based measures, we propose an algorithm to
identify local auto-similarity in images.

We then turn to the implementation of such an algorithm and illustrate the diversity of its possible applications with three
examples: denoising, lattice extraction, and periodicity ranking of textures. In our denoising application we propose a
modification of the celebrated Non-Local means algorithm [4] (NL-means) by inserting a threshold in the selection of
similar patches. Using an a contrario model we are able to give probabilistic controls on the patch reconstruction.

We then focus on periodicity detection and, more precisely, lattice extraction. Periodicity in images was described as an
important feature in image analysis in early mathematical vision [34]. Most proposed methods to analyze periodicity
rely on global measurements such as the modulus of the Fourier transform [35] or the autocorrelation [36]. These
global techniques are widely used in crystallography where lattice properties, such as the angle between basis vectors,
are fundamental [37, 38]. Since all of our measurements are local, we are able to identify periodic similarities even in
images which are not periodic but present periodic parts, for instance if two crystal structures are present in a single
crystallography image. We draw a link between the introduced notion of similarity and the inertia measurement in
co-occurence matrices [34]. We then introduce our lattice proposal algorithm which combines a detection map, i.e. the
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output of our redundancy detection algorithm, and graphical model techniques, as in [39], in order to extract lattice
basis vectors.

Our last application concerns texture ranking. Since the definition of texture is broad and covers a wide range of images,
it is a natural question to identify criterions in order to differentiate textures. In [40], the authors use a classic measure
for distinguishing textures: regularity. In this work, we narrow this criterion and restrict ourselves to the study of
periodicity in texture images. The proposed graphical model inference naturally gives a quantitative measurement for
texture periodicity ranking. We give an example of ranking on 25 images of the Brodatz set.

Our paper is organized as follows. Section 2 is dedicated to the introduction of similarity functions and a contrario
models. In Section 2.1 we introduce similarity functions on patches, as local measurements on images. An a contrario
framework for local similarity detection is then proposed in Section 2.2. In the a contrario framework, a background
model, corresponding to the null hypothesis, is required. In Section 3.1 we justify our choice of Gaussian random fields
as noise models. The consequence of choosing Gaussian models as reference models are investigated and a redundancy
detection algorithm is proposed in Section 3.2. The rest of the paper is dedicated to some examples of application of the
proposed framework. After reviewing one of the most popular method in image denoising we introduce a denoising
algorithm in Section 4.1 and present our experimental results in Section 4.2. Local similarity measurements can be
used as periodicity detectors. The link between the locality of the introduced functions and the literature on periodicity
detection problems is investigated in Section 5.1. An algorithm for detecting lattices in images is given in Section 5.2
and numerical results are presented in Section 5.3. In our last experiment in Section 6, we introduce a criterion for
measuring texture periodicity. We conclude our study and discuss future work in Section 7.

2 Similarity functions and a contrario framework

2.1 Similarity functions

In order to evaluate redundancy in images we first need to derive a criterion for comparing images. We propose to use
similarity functions which take two images, or sub-images, as inputs. Before discussing the choice of function, or patch
domain, we must precise which images are going to be used to conduct the redundancy detection.

Indeed, when comparing sub-images, two cases can occur. We can compare a patch with another patch extracted from
the same image. We call this situation internal matching. Applications can be found in denoising [4] or inpainting [1]
where the information of the image itself is used to perform the image processing task. On the other hand, we can
compare a patch with a patch extracted from another image. We call this situation template matching. An application of
this case is presented in the non-parametric exemplar texture synthesis algorithm proposed by Efros and Leung [12].

The Euclidean distance is the usual way to measure similarity between patches [41] but many other measurements exist,
corresponding to different structural properties, see Figure 1. We introduce p-norms and angle measurements similarity
functions.

Definition 1 Let P,Q P Rω with ω a finite domain of Z2. When it is defined we introduce

(a) the `p-similarity, sppP,Qq “ }P ´Q}p “ p
ř

xPω |P pxq ´Qpxq|
pq

1{p
, with p P p0,`8q ;

(b) the `8-similarity, s8pP,Qq “ supωp|P ´Q|q ;

(c) the p-th power of the `p-similarity, sp,ppP,Qq “ sppP,Qq
p , with p P p0,`8q ;

(d) the scalar product similarity, sscpP,Qq “ ´xP,Qy “ 1
2

`

s2,2pP,Qq ´ }P }
2
2 ´ }Q}

2
2

˘

;

(e) the cosine similarity, scospP,Qq “
sscpP,Qq
}P }2}Q}2

, if }P }2}Q}2 ‰ 0 .

The locality of the measurements is ensured by the fact that these functions are defined on patches, i.e. sub-images
defined on domain ω. Following conditions (1) and (3) in [21] we check that similarity functions (a), (c) and (e) satisfy
the following properties

§ (Symmetry) spP,Qq “ spQ,P q ;

§ (Maximal self-similarity) spP, P q ď spP,Qq ;

§ (Equal self-similarities) spP, P q “ spQ,Qq .

Note that since ssc, the scalar product similarity, is homogeneous in P , maximal self-similarity and equal self-similarity
properties are not satisfied. In [21], the authors present many other similarity functions all relying on statistical
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properties such as likelihood ratios, joint likelihood criteria and mutual information kernels. The latter measurement is
defined by a cosine measurement in some feature space. In this paper we focus on similarity functions defined directly
in the spatial domain. The limits of this restriction will be investigated in Section 5.3.3.

Definition 2 (Auto-similarity and template similarity) Let u and v be two images defined over an image domain
Ω “ J0,M´1KˆJ0, N´1K Ă Z2, withM,N P N. Let ω Ă Z2 be a patch domain. We introduce Pωpuq “ p 9upyqqyPω
the patch at position ω in the periodic extension of u to Z2, denoted by 9u. We define the auto-similarity with patch ω
and offset t P Z2 by

ASipu, t, ωq “ si pPt`ωpuq, Pωpuqq , (1)
where si corresponds to sp with p P p0,`8s, sp,p with p P p0,`8q, ssc or scos. In the same way we define the
template similarity with patch ω and offset t by

T Sipu, v, t, ωq “ si pPt`ωpuq, Pωpvqq . (2)

The auto-similarity computes the local resemblance between a patch of u defined on a domain ω and the patch of u
defined by the domain ω shifted by the offset vector t, whereas the template similarity uses an image v as input and
computes local resemblances between u and v.

Suppose we evaluate the scalar product auto-similarity ASscpU, t, ωq with U a random field. Then the expectation
of the auto-similarity function depends on second-order statistics of U . In the template case, the expectation of
ASscpU, v, t, ωq depends on first-order statistics of U . This shows that auto-similarity and template similarity can
exhibit very different statistical behaviors even for the same similarity functions.

It is well-known that, due to the curse of dimensionality, the `2 norm does not behave well in large-dimensional spaces
and is a poor measure of structure. Thus, considering u and v two images, s2pu, vq, the `2 template similarity on full
images, does not yield interesting information about the perceptual differences between u and v. The template similarity
T S2pu, v,0, ωq avoids this effect by considering patches, thus reduncing the dimension of the data (if the cardinality of
ω, denoted |ω|, is small) and also allows for fast computation of similarity mappings. Even when considering small
patches there exist other limitations such as noise and outliers sensitivity or illumination dependence, see Figure 1.

In the following section, we introduce an a contrario framework on similarity functions. This framework will allow us
to derive an algorithm for detecting spatial redundancy in natural images.

2.2 A contrario framework

In this section we fix an image domain Ω Ă Z2 and a patch domain ω Ă Ω. We recall that our final aim is to design a
criterion that will answer the following question: are two given patches similar? This criterion will be given by the
comparison between the value of a similarity function and a threshold a. We will define the threshold a so that few
similarities are identified in the null hypothesis model, i.e. similarity does not occur “just by chance”. Thus we can
reformulate the initial question: is the similarity output of a similarity function between two patches small enough?
Or, to be more precise, how can we set the threshold a in order to obtain a criterion for assessing similarity between
patches?

This formulation agrees with the a contrario framework [31] which states that geometrical and/or perceptual structure
in an image is meaningful if it is a rare event in a background model. This general principle is sometimes called
the Helmholtz principle [33] or the non-accidentalness principle [32]. Therefore, in order to control the number of
similarities identified in the background model, we study the probability density function of the auto-similarity and
template similarity functions with input random image U over Ω. We will denote by P0 the probability distribution of
U over RΩ, the images over Ω. We will assume that P0 is a microtexture model, i.e. U does not present long-range
correlation. Consequently, exhibiting repetitive structure at long-range is a rare event in a microtexture model. We
define the following significant events which encode spatial redundancy:

§ auto-similarity event: ASipu, t, ωq ď aptq ;

§ template-similarity event: T Sipu, v, t, ωq ď aptq ;

where a, the threshold function, is defined over the offsets (t P Z2) but might also depends on other parameters such as
ω, P0 or v.

The Number of False Alarms (NFA) is a crucial quantity in the a contrario methodology. A false alarm is defined
as an occurrence of the significant event in the background model P0. In our model the significant event is patch
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s2 s1 s8

ssc scos

Figure 1: Structural properties of similarity functions. Sub-images show the twenty closest matches in the 20ˆ 20
patch space for the green upper-left patch in the original image for different similarity functions. All similarity functions
correctly identify the structure of the patch, i.e. a large clear part with diagonal textures and a dark ray on the right
side of the patch, except for s8 which is too sensitive to outliers. Indeed outliers have more importance for s8 than
they have perceptually speaking. Similarities s2 and s1 have analogous behaviors and find correct regions. It might be
noted that s1 is more conservative as it identifies 7 main different patches and s2 identifies eight. Similarity ssc is too
sensitive to contrast and, as it finds a correct patch, it gives too much importance to illumination. The behavior of scos

is interesting as it avoids some of the illumination problems encountered with the scalar product. The identified regions
were also found with s1 and s2, but with the addition of a new one.

redundancy. This test must be conducted for every possible configurations of the significant event, i.e. in our case we
test every possible offset t. The NFA is then defined as the expectation of the number of false alarms over all possible
configurations. Bounding the NFA ensures that the probability of identifying k offsets with spatial redundancy is also
bounded, see Proposition 1. In what follows we give the definitions of the NFA in the spatial redundancy context.

Definition 3 (NFA) Let U „ P0, where P0 is a background microtexture model. We define the auto-similarity
probability map AP for any t P Ω, ω Ă Ω and a P RΩ by

APipt, ω, aq “ P0 rASipU, t, ωq ď aptqs .

In the same way we introduce the template similarity probability map TP for v P RΩ by

TPipv, t, ω, aq “ P0 rT SipU, v, t, ωq ď aptqs .

We define the auto-similarity expected number of false alarms ANFA and template similarity expected number of false
alarms TNFA by

ANFAipω, aq “
ÿ

tPΩ

APipt, ω, aq and TNFAipv, ω, aq “
ÿ

tPΩ

TPipv, t, ω, aq . (3)

Note that APipt, ω, aq corresponds to the probability that ω ` t is similar to ω in the background model U . For any
t P Ω, the cumulative distribution function of the auto-similarity random variable ASipU, t, ωq under P0 evaluated
at value α is given by APipt, ω, αq. We denote by q ÞÑ AP´1

i pt, ω, qq the inverse cumulative distribution function,
potentially defined by a generalized inverse (AP´1

i pt, ω, qq “ infαPR APipt, ω, αq ě q), of the auto-similarity random
variable for a fixed offset t, with q P p0, 1q a quantile. The inverse cumulative distribution function of the template
similarity function under P0 is defined in the same manner. We now have all the tools to control the number of detected
offsets in the background model.
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Definition 4 (Detected offset) Let u P RΩ and image, ω Ă Ω a patch domain, and a P RΩ. An offset t is said to be
detected, in the auto-similarity case, if ASipu, t, ωq ď aptq. A similar definition is derived for template similarity
functions given v P RΩ.

Note that a detected offset in the background model P0 corresponds to a false alarm in the a contrario model. The next
proposition defines a function a such that the expected number of false alarms, i.e. the expected number of detected
offsets, is controlled in the null hypothesis case. In what follows we suppose that the cumulative distribution function of
ASipU, t, ωq is invertible for every t P Ω. This ensures that for any t P Ω and q P p0, 1q we have

APi
`

t, ω,AP´1
i pt, ω, qq

˘

“ q . (4)

Proposition 1 Let NFAmax ě 0.

(a) In the auto-similarity case, setting for all t P Ω,

aptq “ AP´1
i pt, ω,NFAmax {|Ω|q ,

we obtain that ANFAipω, aq “ NFAmax.

(b) In addition, we have that for any n P Nzt0u

P0 r“at least n offsets are detected in U” s ď
NFAmax

n
.

In the template similarity case the same proposition holds if we replace APipt, ω, aq by TPipv, t, ω, aq.

Proof:

(a) The proof is done in the auto-similarity case and adapts to the template similarity framework. Using Equation
(3), and aptq “ AP´1

i pt, ω,NFAmax {|Ω|q, we get

ANFAipω, aq “
ÿ

tPΩ

APipt, ω, aq “
ÿ

tPΩ

APi
`

t, ω,AP´1
i pt, ω,NFAmax {|Ω|q

˘

“ NFAmax ,

where the last equality is obtained using (4).

(b) Concerning the upper-bound, we have, using the Markov inequality, for any n P Nzt0u

P0 r“at least n offsets are detected in U” s “ P0

«

ÿ

tPΩ

1ASipU,t,ωqďaptq ě n

ff

ď

ř

tPΩ E
“

1ASipU,t,ωqďaptq

‰

n
ď

NFAmax

n
.

˝

Thus, setting a as in Proposition 1, in an image u P RΩ an offset t P Ω is detected, i.e. yields spatial redundancy, for a
given NFAmax if

ASipu, t, ωq ď AP´1
i pt, ω,NFAmax {|Ω|q . (5)

This a contrario detection framework can then be simply rewritten as 1) computing the similarity function with input
image u, 2) thresholding the obtained similarity map with the inverse cumulative distribution function of the computed
similarity function under P0. The choice of P0 will be discussed in the next section. The computed threshold can
depend on the offset and Proposition 1 ensures probabilistic guarantees on the expected number of detections under P0.
In many cases, cumulative distribution function of similarity functions are easier to compute than inverse cumulative
distribution function. Using the inverse property of the inverse cumulative distribution function and (5), we obtain that
an offset is detected if and only if

P0 rASipU, t, ωq ď ASipu, t, ωqs “ APi pt, ω,ASipu, t, ωqq ď NFAmax {|Ω| . (6)

This property will be used in Section 3.2 to define a similarity detection algorithm based on the evaluation of
AS2,2pu, t, ωq the auto-similarity associated to the square `2 norm, see Algorithm 1.

6
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3 Gaussian model and detection algorithm

In this section we compute APi pt, ω, αq, i.e. the cumulative distribution function of the similarity function under the
null hypothesis model, with a Gaussian background model. Indeed, if the background model is simply a Gaussian white
noise the similarities identified by the a contrario algorithm are the ones that are not likely to be present in the Gaussian
white noise image model. However this noise model does not contain any microtexture information. This can lead to the
detection of many false positives, see Figure 10 for a tangible example where this problem occurs. Thus, depending on
the application we may need a more general model that contains more structure. This model must fit two requirements:

§ being computationally reasonable, so that the cumulative distribution function of its associated similarity
functions can be numerically computed ;

§ containing local spatial information.

A good proposal for this model is given by stationary Gaussian random fields defined in the following way: we introduce
a spot, i.e. an image f over RΩ which contains the microtexture information we want to discard in our a contrario model.
We suppose that f has zero spatial mean. We consider its associated microtexture model by defining, U “ f ˚W ,
where ˚ is the convolution operator over defined by u ˚ vpxq “

ř

yPΩ 9upyq 9vpx´ yq and W is a white noise over Ω, i.e.
pW pxqqxPΩ are i.i.d. N p0, 1q random variables. The defined Gaussian random field has, in expectation, the same first
and second-order moments as the original image f , i.e. for all x, y P Ω, we have

E rUpxqs “ 0 and Cov rUpxqUpyqs “
ÿ

zPΩ

9fpzq 9fpz ` x ´ yq .

Thus in the following sections we are interested in the computation of the probability distribution function of similarity
functions in Gaussian random fields.

3.1 Gaussian model

We consider a random field U over Z2 and compute local similarity measurements. An asymptotic approximation
can be obtained when the patch size grows to infinity. In Theorem 1 we obtain a Gaussian asymptotic probability
distribution in the auto-similarity case.

Theorem 1 Let pmkqkPN, pnkqkPN two positive increasing integer sequences and pωkqkPN the sequence of subsets
such that for any k P N, ωk “ J0,mkKˆ J0, nkK. Let f P RZ2

, f ‰ 0 with finite support, W a Gaussian white noise
over Z2 and U “ f ˚W . For i “ sc, p or pp, pq, with p P p0,`8q there exist µi, σi P RZ2

and pαi,kqkPN a positive
sequence such that for any t P Z2zt0u we get

(a) limkÑ`8
1
αi,k

ASipU, t, ωkq “
a.s

µiptq ;

(b) limkÑ`8 |ωk|
1
2

´

1
αi,k

ASipU, t, ωkq ´ µiptq
¯

“
L
N p0, σiptqq .

The proof can be found in the companion paper [42]. Similar asymptotic properties can be derived for template
matching. In [42], constants are made explicit. Theorem 1 allows us to approximate the cumulative distribution function
of some similarity function by the cumulative distribution function of a Gaussian random variable with given parameters.
However, the generality of this theorem is not without compromise. Indeed, the approximation is valid only for large
enough patch sizes. It is shown in [42] that due to the slow convergence towards the Gaussian distribution these
approximations are not usable in practice, i.e. when the patch size is of the same order as the size of the spot support. In
the following section we aim at deriving non-asymptotic approximation of the probability distribution function.

3.2 Detection algorithm

In this section Ω is a finite rectangular domain in Z2. We fix ω Ă Ω. We also define f , a zero-mean function over Ω.
We consider the Gaussian random field U “ f ˚W , where W is a Gaussian white noise over Ω. We denote by Γf the
autocorrelation of f , i.e. Γf “ f ˚ f̌ where for any x P Ω, f̌pxq “ fp´xq. We introduce the offset correlation function
∆f defined for any t,x P Ω by

∆f pt,xq “ 2Γf pxq ´ Γf px ` tq ´ Γf px ´ tq . (7)

In the previous section we derived asymptotic properties for similarity functions. However, the asymptotic approx-
imations are often not satisfying and non-asymptotic techniques are required. For instance, it should be noted that
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the template matching for ssc is Gaussian, thus explicit constants in Theorem 1 can be made exact for every patch
size. The same remark holds for the template matching in the cosine case if the Gaussian model is a Gaussian white
noise model. In what follows we restrict ourselves to the auto-similarity framework and consider the square of the `2
auto-similarity function, i.e. AS2,2pu, t, ωq. In this case we show that there exists an efficient method to compute the
cumulative distribution function of the auto-similarity function.

The following proposition, proved in [42], gives the explicit probability distribution function of the squared `2 auto-
similarity.

Proposition 2 (Squared `2 auto-similarity function exact probability distribution function) Let Ω “ J0,M´1K2

with M P N, ω Ă Ω, f P RΩ and U “ f ˚W where W is a Gaussian white noise over Ω. The following equality holds
for any t P Ω

AS2,2pU, t, ωq “
L

|ω|´1
ÿ

k“0

λkpt, ωqZk , (8)

with Zk independent chi-square random variables with parameter 1 and λkpt, ωq the eigenvalues of the covariance
matrix Ct associated with function ∆f pt, ¨q restricted to ω, see Equation (7), i.e for any x1,x2 P ω, Ctpx1, x2q “

∆f pt,x1 ´ x2q.

Note that in the special case where U is a standard Gaussian over RΩ, i.e. a Gaussian white noise, and pt`ωqXω “ H,
we obtain that Ct “ 2 Id. Hence we get AS2,2pU, t, ωq “

L
2Z, where Z is a chi-square random variable with parameter

|ω|.

In order to compute the cumulative distribution function of a quadratic form of Gaussian random variables we must
deal with two issues: 1) the computation of the eigenvalues λkpt, ωq might be time-consuming and efficient methods
must be developed 2) the exact computation of the cumulative distribution function of a quadratic form of Gaussian
random variables requires the use of heavy integrals, see [43]. In [42] a projection method is introduced in order to
easily compute approximated eigenvalues, with equality when ω “ Ω. It performs a projection, for the Frobenius
norm, of the covariance matrix Ct on the set of symmetric circulant matrices. The so-called Wood F method, see
[44, 45], shows the best trade-off between accuracy and computational price to approximate the cumulative distribution
function of quadratic forms in Gaussian random variables with given weights. It is a moment method of order 3, fitting
a Fisher-Snedecor distribution to the empirical one. In what follows, we assume that we can compute the cumulative
distribution function of AS2,2pU, t, ωq and refers to [42] for further details.

In Algorithm 1 we propose an a contrario framework for spatial redundancy detection. We suppose that u and ω are
provided by the user. We recall that, given a function a, an offset is detected if ASipu, t, ωq ď aptq, see Definition 4.
Using Proposition 1 and (6) that follows, we say that an offset is detected if APi pt, ω,ASipu, t, ωqq ď NFAmax {|Ω|.
NFAmax is supposed to be set by the user and we choose i “ p2, 2q. In order to derive an auto-similarity detection
algorithm we must precise our background model P0. This null hypothesis model will be built using only the second-
order statistics of u. We first remove the spatial mean of u, i.e. we replace u by u ´

ř

xPΩ upxq{|Ω|, and consider
the Gaussian random field given by U “ |Ω|´1{2u ˚W , where W is a Gaussian white noise over Ω. Proposition 2
shows that choosing P0 to be the distribution of U we can compute AP2,2pt, ω, αq for any α, using the approximations
mentioned and fully described in the previous paragraph, see [42] for more details.

Algorithm 1 Auto-similarity detection

1: function AUTOSIM-DETECTION(u, ω, NFAmax)
2: uÐ u´

ř

xPΩ upxq{|Ω|
3: for t P Ω do
4: valÐ AS2,2pu, t, ωq
5: Pmapptq Ð AP2,2pt, ω, valq Ź AP2,2pt, ω, valq approximation detailed above
6: Dmapptq Ð 1PmapptqďNFAmax{|Ω|

7: end for
8: return the images Pmap, Dmap

9: end function

8
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4 Denoising

4.1 NL-means and a contrario framework

In this section we apply the a contrario framework to the context of image denoising and propose a simple modification
of the celebrated image denoising algorithm Non-Local Means (NL-means). This algorithm was introduced in the
seminal paper of Buades et al. [4] and was inspired by the work of Efros and Leung in texture synthesis [12]. It was also
independently introduced in [46]. This algorithm relies on the simple idea that denoising operations can be conducted
in the lifted patch space. In this space the usual Euclidean distance acts as a good similarity detector and we can obtain
a denoised patch by averaging all the patches with weights which depend on this Euclidean distance. Usually the
weight function is set to have exponential decay, but it was suggested in [47, 48, 49] to use compactly supported weight
function in order to avoid the loss of isolated details. Since its introduction, many algorithm derived from NL-means
have been proposed in order to embed the algorithm in general statistical frameworks [50, 41] or to take into account
the underlying geometry of the patch space [51]. Among the state-of-the-art denoising algorithms, see [52] for a review,
we consider Block-Matching and 3D Filtering (BM3D) [53] to compare our algorithm with.

There exist several works combining a contrario models and denoising tasks. Coupier et al. in [54] propose to combine
morphological filters and a testing hypothesis framework to remove impulse noise. In [55] the authors compare different
statistical frameworks to perform denoising with Gaussian noise or impulse noise. The a contrario model was also
successfully used to deal with speckle noise [56] and quasi-periodic noise [57], and rely on the thresholding of wavelet
or Fourier coefficients.

We highlight the potential of the a contrario framework in redundancy detection by the statistical analysis of the
NL-means denoising algorithm. Following a standard extension procedure of this algorithm we consider a threshold
version of NL-means. In what follows we fix a “clean”, or original, image u0 defined over Ω, a finite rectangular domain
over Z2, a noisy image u “ u0 ` σw, with w a realization of a standard Gaussian random field W and σ ą 0 the
standard deviation of the noise. We suppose the standard deviation to be known. Note that there exist several algorithms
to estimate σ, see [58] for instance. Our goal is to retrieve u0 based on the information in u. We consider the lifted
version of u in a patch space. Let ω0 be a centered 8 ˆ 8 patch domain. For a patch window ω “ x ` ω0 the patch
search window T will be defined by

T “
 

t P Z2, t` ω Ă Ω, }t}8 ď c
(

, (9)

with c P N. Note that the locality of the patch window was assessed to be a crucial feature of NL-means [59]. We now
introduce our modification of NL-means.

Algorithm 2 NL-means threshold

1: function NL-MEANS-THRESHOLD(u, σ, ω0, c, a)
2: for x P Z2, x` ω0 Ă Ω do
3: ωÐ x` ω0

4: T Ð
 

t P Z2, t` ω Ă Ω, }t}8 ď c
(

5: Nω Ð 0
6: p̂pu, ωq Ð 0
7: for t P T do
8: if AS2,2pu, t, ωq ď σ2aptq then Ź always true for t “ 0

9: p̂pu, ωq Ð Nω

Nω`1 p̂pu, ωq `
1

Nω`1Pt`ωpuq Ź recall that Pt`ωpuq “ u|t`ω
10: Nω Ð Nω ` 1
11: end if
12: end for
13: end for
14: return p̂pu, ¨q
15: end function

Note Algorithm 2 returns denoised patches and not a denoised image. We obtain a pixel at position x in the denoised
image û using the following average, see [60],

ûpxq “ |tt P Ω, s.t x P t` ω Ă Ωu|
´1

ÿ

tPΩ, s.t xPt`ωĂΩ

p̂pu, t` ωqpxq .

9
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There exists a large literature concerning the setting of c and ω0, see [49]. Note here that the output denoised version of
the patch p̂pu, ωq verifies the following equation

p̂pu, ωq “
ÿ

tPT

λtPt`ωpuq , λt “
1AS2,2pu,t,ωqďaptq

ř

sPT 1AS2,2pu,s,ωqďapsq
.

In the original NL-means method, λt “
exp

´

´
AS2,2pu,t,ωq

h2

¯

ř

tPT exp
´

´
AS2,2pu,t,ωq

h2

¯ . Setting h is not trivial and depends on many

parameters (patch size, search window size, content of the original image). As in Algorithm 2 , we denote Nωpuq “
ř

tPT 1AS2,2pu,t,ωqďaptq. The following proposition, similar to Proposition 1, gives a rationale for setting a.

Proposition 3 Let ε ą 0, a P RΩ such that for any t P Ω, aptq “ AP´1
2,2 pt, ω, 1´ εq, with background model a

Gaussian white noise W , see Section 2.2. Let T be defined in (9) and NωpW q P t0, . . . , T u the random number of
selected patches used to denoise patch PωpW q, see Algorithm 2. Then for any n P Nzt0u it holds that

P0 r|T | ´NωpW q ě ns ď
|T |ε

n
.

Proof: Using the Markov inequality, we have

P0 r|T | ´NωpW q ě ns ď
|T | ´

ř

tPT E
“

1AS2,2pW,t,ωqďaptq

‰

n
ď
|T |ε

n
.

˝ While Proposition 3 is very similar to Proposition 1, there
exists a crucial difference in the underlying a contrario model. In Proposition 1, the rare event considered in the noise
model is the high similarity between two patches. Here, the rare event considered is the high dissimilarity between two
patches. Note that this dissimilarity detection in Gaussian white noise images is close to the anomaly detection model
proposed by Davy et al. in [26]. In their model, an offset is said to be detected, i.e. to be a false alarm, if there is no
spatial redundancy in the background model. To be more precise an offset t P T is said to be detected if

AS2pu, t, ωq ą aptq .

The quantity |T | ´NωpW q represents the number of patches that are not used to denoise patch PωpW q, i.e. the number
of detected offsets. In order to denoise a standard Gaussian white noise we want this number to be small, i.e. NωpW q to
be close to |T |. Considering this a contrario framework, Proposition 3 rewrites

P0 r“at least n offsets are detected in W ” s ď
|T |ε

n
.

In this case the null hypothesis P0 is given by a standard Gaussian random field, which is a special case of the Gaussian
random field models introduced in Section 3. Thus by setting ε “ NFAmax{|T | we obtain, as in Proposition 1, that
ANFA2,2pω, aq is equal to NFAmax. In the next proposition, using the a contrario framework, we obtain probabilistic
guarantees on the distance between the reconstructed patch p̂pu, ωq and the true patch Pωpu0q.

Proposition 4 Let U “ u0 ` σW , where W is a Gaussian white noise over Ω, u0 P RΩ and σ ą 0. Let ω “ x` ω0

be a fixed patch and let ε ą 0. We introduce the random set T̂ “ tt P T, AS2,2pU, t, ωq ď σ2aptqu (the selected
offsets) with aptq “ AP´1

2,2 pt, ω, 1´ εq as in Proposition 3 and T defined in (9). Let aT “ maxtPT aptq. Then for any

aW ą 0, setting εW “ 1´ P
”

}PωpW q}
2
2 ď aW | T̂

ı

, we have

P
”

}p̂pU, ωq ´ Pωpu0q}2 ď σpa
1{2
T ` a

1{2
W q | T̂

ı

ě 1´ εW . (10)

Proof: We have for any t P T̂

}Pt`ωpUq ´ Pωpu0q}2 ď }Pt`ωpUq ´ PωpUq ` PωpUq ´ Pωpu0q}2

ď }Pt`ωpUq ´ PωpUq}2 ` }PωpUq ´ Pωpu0q}2

ď σa
1{2
T ` σ}PωpW q}2 .

This gives the following event inclusion for any t P T̂ ,
!

}PωpW q}2 ď a
1{2
W

)

Ă

!

}Pt`ωpUq ´ Pωpu0q}2 ď σpa
1{2
T ` a

1{2
W q

)

,

10
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We also have that by definition of εW

P
”

}p̂pU, ωq ´ Pωpu0q}2 ď σpa
1{2
T ` a

1{2
W q | T̂

ı

ě P

»

–

č

tPT̂

t}Pt`ωpUq ´ Pωpu0q}
2
2 ď σ2pa

1{2
T ` a

1{2
W q2u | T̂

fi

fl

ě P
”

}PωpW q}
2
2 ď aW | T̂

ı

ě 1´ εW .

˝ Note that this upper-bound depends on two quantities: aT which is related to the number of similar neighbors and aW
which corresponds to the loss of information due to the addition of noise. Choosing ε “ 1, which implies aT “ 0, leads
to only one patch identified to be similar with Pωpuq: the patch itself. Doing so, we strongly overfit the noise.

In order to implement Algorithm 2 we need to compute aptq “ AP´1
2,2 pt, ω, 1´ εq with a Gaussian white noise

background model. We recall that in Section 3.2 we give a method to compute this quantity in general Gaussian settings.
In Proposition 2, we highlighted that the probability distribution function of AS2,2pW, t, ωq is given as a weighted sum
of chi-square random variables with parameter 1. We shall use the Wood F approximation mentioned in Section 3.2 in
order to compute its inverse cumulative distribution function. Since the spotf is equal to δ0, the Dirac function in 0, in
the case of a Gaussian white noise, our case of interest here, we can compute directly the eigenvalues and do not need
any approximation, see the following proposition.

Proposition 5 Let t “ ptx, tyq P Z2zt0u, Ct as in Proposition 2 with spot f “ δ0 and ω “ J0, p´ 1K2, with p P N. If
}t}8 ě p then Ct “ 2 Id else, supposing that tx ‰ 0, we have, expressing Ct in the basis corresponding to the raster
scan order on the x-axis

Ct “

¨

˚

˚

˚

˚

˝

B0 B1 . . . Bp´1

BT1 B0
. . .

...
...

. . . B0 B1

BTp´1 . . . BT1 B0

˛

‹

‹

‹

‹

‚

.

with for any ` P J0, p ´ 1K, B` P MppRq and B` “ 0 except if ` “ |tx| in which case B|tx| “ ´D|ty | where Dj is
a zero matrix with ones on the j-th diagonal1 with j P J´pp ´ 1q, p ´ 1K, or if ` “ 0 in which case B0 “ 2 Id. The
eigenvalues of Ct are given by λm,k “ 4 sin2

`

kπ
2m

˘

with multiplicity rm,k where m P J2, q ` 1K, k P J1,m´ 1K and
q “ r

p
|tx|_|ty |

s. For any m P J2, q ` 1K, k P J1,m´ 1K it holds

(a) for any k1 P J1,m´ 1K, rm,k “ rm,k1 ;

(b) rm,k “ 2|tx||ty| if 2 ď m ă q ;

(c) rm,k “ rxry if m “ q ` 1 ;

(d)
řq`1
m“2

řm´1
k“1 rm,k “ p2 ,

with rx “
´

r
p
|tx|

s´ q
¯

|tx| ` |tx| ´ px, where px “ |tx|r p
|tx|

s´ p. We define ry in the same way. A similar proposition
holds if ty ‰ 0.

Proof: The proof is postponed to Appendix A. ˝

This property allows us to compute exactly the eigenvalues appearing in Proposition 2. In Figure 2 we illustrate that
aptq found using the proposed method is nearly constant for fixed patch size (8ˆ 8) and patch search window (21ˆ 21).
Thus in our implementation we suppose that aptq is constant and set its value to the mean of aptq over t P T .

4.2 Some experimental results

In the following paragraph we present and comment some results of our threshold NL-means algorithm, see Algorithm
2. In Figure 3 we present a first comparison with the NL-means algorithm. Perceptual results as well as Peak Signal to
Noise Ratio (PSNR) measurements 2 are commented. Results on other images than Barbara are displayed in Figure 4.

1If j ě 0 the we consider the |j|-th upper diagonal. If j ď 0 we consider the |j|-th lower diagonal.
2PNSRpu, vq “ 10 log10

´

maxΩ u2

}u´v}22

¯

.

11
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Figure 2: Thresholds dependence in ε. In this figure we display aptq “ AP´1
2,2 pt, ω, 1´ εq as a function of ε. The

patch size is fixed to 8ˆ 8, the offsets t satisfy }t}8 ď 10. The red dashed line is given by maxtPT aptq and the green
dashed line by mintPT aptq. The blue line represents the value obtained considering that patches are independent, i.e.
aptq “ 2χ´1

64 p1´ εq. The maximal increase between the maximum of aptq and the minimum of aptq is of 13.0%.

If the threshold is high, i.e. ε ! 1 then almost no patch is rejected. In consequence, the output denoised image is very
smooth. This smoothness is a correct guess for constant patches. However, this proposition does not hold when the
region contains details. Indeed, in this case details are lost due to the averaging process. By setting a conservative
threshold, i.e. ε « 0.1, for example, we reject all the patches for which the structure does not strongly match the
one of the input patch, see Figure 5. This conservative property of the algorithm ensures that we can control the loss
of information in the denoised image, see Proposition 4. However, if no patch, other than the input patch itself, is
detected as similar we highly overfit the original noise. Many algorithms such as BM3D, see [53], solve this problem
by treating this case as an exception, applying a specific denoising method in this situation. For instance, the patch
can be denoised by hard-thresholding its spectral coefficients. Note that in the original BM3D algorithm [53] the `2
distance is not computed between the images directly but between coarse-filtered versions of the patches. If our model
can easily be extended to any linear transformation of the patches, the prefiltering applied in BM3D is not linear and
thus a preprocessed Gaussian patch does not have a Gaussian probability distribution function anymore. We show the
differences between our version of NL-means and BM3D in Figure 6 .

In Figure 7, we show that Algorithm 2 has a good behavior compared to the original NL-means algorithm. By setting
ε “ 0.01 we obtain that the PSNR of the denoised image is better than the one of NL-means for nearly every value of
h.

Let us emphasize that our goal is not to provide a new state-of-the-art denoising algorithm. Indeed we never obtain
better denoising results than the BM3D algorithm. However, our algorithm slightly improves the original NL-means
algorithm. It shows that statistical testing can be efficiently used to measure the similarity between patches and therefore
provides a robust way to perform the weighted average in this algorithm.

5 Periodicity analysis

5.1 Existing algorithms

In the following sections we use our patch similarity detection algorithm, see Algorithm 1, to analyze images exhibiting
periodicity features. Let Ω Ă Z2 be a finite domain and ω Ă Ω a finite patch domain.

Periodicity detection is a long-standing problem in texture analysis [62]. First algorithms used the quantization of
images, relying on co-occurrence matrices and statistical tools like χ2 tests or κ tests. Global methods extract peaks in
the frequency domain (Fourier spectrum) [35] or in the spatial domain (autocorrelation).

In [34] the notion of inertia is introduced. It is defined for any t P Ω by

Iptq “
ÿ

pi,jqPJ0,NgK2

pi´ jq2

˜

ÿ

zPΩ

1 9upzq“i1 9upz`tq“j

¸

,

12



A PREPRINT - NOVEMBER 21, 2018

(a) (b)

(c) PSNR “ 29.81 (d) PSNR “ 29.29

Figure 3: Visual results. In (a) we present an original image (Barbara) scaled between 0 and 255. In (b) we add
Gaussian white noise with σ “ 10. We recall that the patch domain is fixed to ω0 being a 8ˆ 8 square. In (c) we present
the denoised results with NL-means threshold, Algorithm 2, where ε “ 0.01, which corresponds to 1% of rejected
patches in the search window of a Gaussian white noise. In (d) we present the results obtained with the traditional
NL-means algorithm with h “ 0.13σ|ω| (optimal h for this noise level and this image with regard to the PSNR
measure). The results are the same on the texture area for (c) and (d). The perceptual results on the zoomed region are
satisfying, even though some regions are too smooth compared to the original image (a). PSNR and perceptual results
are almost the same for both algorithms.
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PSNR “ 31.67 PSNR “ 30.81

PSNR “ 29.12 PSNR “ 28.44

PSNR “ 29.43 PSNR “ 29.03

PSNR “ 28.82 PSNR “ 28.68

Figure 4: NL-means comparison. In this figure we compare Algorithm 2 with the traditional NL-means algorithm.
Once again ω0 is fixed to be a 8ˆ 8 square. The first column contains clean images, the second column represents the
same images corrupted by a Gaussian noise with σ “ 20. The third column is the output of Algorithm 2 with ε fixed to
0.01 and the last column is the output of the NL-means algorithm for the optimal value of h (with regards to the PSNR).
Perceptual results and PSNR are comparable, even though our algorithm yields slightly better PSNR values.
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(a) ε “ 0.2 (b) ε “ 0.1 (c) ε “ 0.01

Figure 5: Number of detections. In this figure we present, for each denoised pixel, the number of detected offsets used
to compute the denoised patch, i.e. the cardinality of T̂ , see Proposition 4. A white pixel means that the number of
detected offsets is maximal and a black pixel means that the number of detected offsets is one, i.e. the patch is not
denoised. As ε decreases the number of detected offsets increases. Note that |T̂ | is small for textured regions with
contrast changes and regions with details.

(a) (b) (c) (d)

Figure 6: Comparison with BM3D. We compare Algorithm 2 to BM3D [53]. The original image (Barbara) is presented
in (a). We consider a noisy version of the input image with σ “ 20. In (b) we present the ouput of BM3D, with default
parameters, see [61]. The result in (c) corresponds to the output of Algorithm 2 with ε “ 0.01. The output (c) is
too blurry compared to (b). In order to correct this behavior we set ε “ 0.1, i.e. increase the global threshold. Some
improvements are noticeable, for examples the two marks on the left leg are retrieved in (b) and (d) but not in (c).
However the image remains blurry and artifacts due to the overfitting of the noise appear, this is known as the rare
patch effect in [50]. For instance, some patches in the scarf are not denoised anymore.
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(a) σ “ 10 (b) σ “ 20 (c) σ “ 40

Figure 7: PSNR study. In this figure we present the evolution of the Peak Signal to Noise Ratio (PSNR) for different
values of h in blue computed on the Barbara image. The x-axis represents h

σ|ω| . The orange dashed line is the PSNR

obtained for the threshold NL-means algorithm (Algorithm 2) with ε “ 0.01. Except for low levels of noise the
proposed method gives better PSNR values than the original implementation of NL-means algorithm for every choice
of h.

where u is a quantized image on Ng ` 1 gray levels. The following proposition generalizes this definition and extends
to a local framework results from [63].

Proposition 6 Let u P RΩ. Suppose that u is quantized, i.e. there existsNg P N such that for any x P Ω, upxq P J0, NgK.
We introduce the ω-inertia for any t P Ω

Iωptq “
ÿ

pi,jqPJ0,NgK2

pi´ jq2

˜

ÿ

zPω

1 9upzq“i1 9upz`tq“j

¸

.

Then we have
Iωptq “ AS2,2pu, t, ωq .

Proof: For any t P Ω we have

Iωptq “
ÿ

pi,jqPJ0,NgK2

pi´ jq2
ÿ

xPω

1 9upxq“i1 9upx`tq“j

“
ÿ

xPω

ÿ

pi,jqPJ0,NgK2

pi´ jq21 9upxq“i1 9upx`tq“j

“
ÿ

xPω

p 9upxq ´ 9upx ` tqq2 “ AS2,2pu, t, ωq.

˝

If ω “ Ω then the ω-inertia statistics is exactly the inertia introduced in [34] and the result is due to [63]. Proposition
6 gives an insight on the specificity of the AS2,2pu, t, ωq statistics: it relies on patches and local features instead of
global image properties, thus allowing for more flexibility in the periodicity analysis, at the cost of selecting the patch
size and position in the original image.

5.2 Algorithm and properties

Lattice detection is closely related to periodicity analysis, since identifying a lattice is similar to extracting periodic or
pseudo-periodic structures up to deformations and approximations. A state-of-the-art algorithm proposed in [39] uses a
recursive framework which consists in 1) a lattice model proposal based on detectors such as Kanade-Lucas-Tomasi
(KLT) feature trackers [64], 2) spatial tracking using inference in a probabilistic graphical model, 3) spatial warping
correcting the lattice deformations in the original image. In this section we propose a new algorithm for lattice detection.
The main difference with [39] is that our algorithm is rigid to deformations since it does not follow a recursive scheme
and does not include a spatial warping step. The lattice proposal step 1) is replaced by an Euclidean auto-similarity
matching detection (see Section 3.2 and Algorithm 1) where the patch domain ω is fixed. Using these detections we
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build a sparse graph. We use the same notation for the detection mapping t ÞÑ 1ASipu,t,ωqďaptq i.e. the Dmap output of
Algorithm 1, which is a binary function over the offsets, and the set of detected offsets. The graph G “ pV,Eq is then
built as follows:

§ Vertices: for each 8-connected component Ck in Dmap we note vk one position for which the minimum of
AS2,2pu, t, ωq over Ck is achieved. The set of vertices V is defined as V “ pvkqkPJ1,NC K where NC is the
number of 8-connected components in Dmap ;

§ Edges: each vertex is linked with its four nearest neighbors in the sense of the Euclidean distance, defining
four unoriented edges. This assumption was proposed and its limitations studied in [39]. This defines a set of
edges E.

Refering to the three steps of [39] we present our model to replace step 2) (i.e. the inference in a probabilistic graphical
model) and introduce the approximated lattice hypothesis defined on a graph.

Definition 5 (Approximated lattice hypothesis) Let G “ pV,Eq be a random graph with V Ă R2. We say that G
follows the approximated lattice hypothesis if there exists a basis B “ pb1, b2q of R2 and, for each edge e P E, a couple
of integers pme, neq P Z2 such that

e “ meb1 ` neb2 ` σZe,

with pZeqePE independent standard Gaussian random variables in R2 and σ ą 0. We denote by M the vector of all
coefficients pme, neqePE P Z2|E|.

This definition can be translated into a model on the vertices of the graph but the independence hypothesis would not
hold anymore.

The parameters in this model are given by pB,M, σ2q. The parameters pB,Mq describe the structure of G as a subset
of a lattice with basis B whereas σ describes the validity of the model. Indeed, if maxp}b1}2, }b2}2q « σ then there is
too much variability in the set of edges for G to be perceived as a lattice. Since a lattice is characterized by its basis
vectors, performing inference in this graphical model will allow us to retrieve the underlying lattice, if present in the
original detection set. In the following we compute the Maximum Likelihood Estimator (MLE) in this model, i.e. we
maximize the likelihood in the parameters pB,M, σ2q given the observations.

In the context of pixels, edges are integer-valued vectors since images are defined over finite discrete grid and a trivial
solution for the MLE is then given by B “ pp0, 1q, p1, 0qq, see Figure 8. In order to avoid this overfitting situation we
propose a priori probability distribution function on parameters B and M

§ π1pBq9 exp
`

´ δB
2σ2 }B}

2
2

˘

, with δB ą 0.

§ π2pMq9 exp
`

´ δM
2σ2 }M}

2
2

˘

, with δM ą 0.

Note that instead of the Gausian distributions on B and M we could have chosen only a hard constraint on B, given for
instance by π0pBq91}b1}ěβ1}b2}ěβ1sinpb1,b2qěγ , with β, γ ą 0. This constraint may be more natural to introduce but
is encoded as an improper prior which is difficult to include in a MLE computation. On the other hand, the Gaussian
assumption corresponds to a soft constraint on the coefficients. Note that the behavior enforced by π0 and π2 is the
same since imposing that coefficients are not too large is equivalent to imposing that basis vectors are not too small.
The resulting a priori distribution based on the two Gaussian constraints is denoted by π

πpB,Mq9 exp

ˆ

´
1

2σ2
rpB,Mq

˙

, with rpB,Mq “ δB}B}
2
2 ` δM }M}

2
2 . (11)

We use the distribution presented in (11) as an a priori in our model. The log-likelihood of the full model on the edges
E is given by

L pE|B,M, σ2q “ ´2p|E| ` 1q logpσ2q ´
1

2σ2

˜

ÿ

ePE

}meb1 ` neb2 ´ e}2 ` rpB,Mq

¸

loooooooooooooooooooooooomoooooooooooooooooooooooon

qpE|B,Mq

. (12)

A discussion on the dependence of the model on the hyperparameters pδB , δM q is conducted in Figure 8. Finding the
MLE of this full log-likelihood is a non-convex, integer problem. However performing the minimization alternatively
on B and M is easier since at each step we only have a quadratic function to minimize.
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Minimizing a positive-definite quadratic function over Z2 is equivalent to finding the vector of minimum norm in a
lattice. Indeed let qpvq “ pv ´ v0q

T
S pv ´ v0q, with S a positive definite symmetric matrix, v0 P Z2 and v P Z2.

We have
min
vPZ2

pv ´ v0q
T
S pv ´ v0q “ min

yPS1{2pZ2´v0q
}y}22 .

This last formulation is known as the Shortest Vector Problem (SVP) which is a challenging problem [65] (though it is
not known if it is a NP-hard problem). We replace this minimization procedure over a lattice by a minimization over
R2 followed by a rounding of this relaxed solution. Suppose that S is diagonal and v0 “ px0, y0q, then the optimal
solution over Z2 is given by prx0s, ry0sq where r¨s is the nearest integer operator. Hence the rounding approximation is
exact if the matrix S is diagonal. We will see in Proposition 7 a condition for this situation to occur.

Algorithm 3 Lattice detection – Alternate minimization

1: function ALTERNATE-MINIMIZATION(E, δB , δM , Nit)
2: M0 Ð 0
3: B0 Ð initialization procedure Ź initialization discussed in Section 5.2
4: for nÐ 0 to Nit ´ 1 do
5: M̃ Ð argmin

MPR2|E|

qpE|Bn,Mq Ź expression given in Proposition 7

6: if q
´

E|Bn, rM̃ s
¯

ă q pE|Bn,Mnq then

7: Mn`1 Ð rM̃ s
8: else
9: Mn`1 ÐMn

10: end if
11: Bn`1 Ð argmin

BPR4

qpE|B,Mn`1q Ź expression given in Proposition 7

12: end for
13: σ2

Nit
Ð argmin

σ2PR`

´L pE|BNit ,MNit , σ
2q

14: return BNit ,MNit , σ
2
Nit

15: end function

For any σ ą 0 we denote by Lnpσq “ L pE|Bn,Mn, σ
2q, with n P N, the log-likelihood sequence. This algorithm is

closely related to other matrix factorization algorithms [66].

Proposition 7 (Alternate minimization update rule) In Algorithm 3, we get for any n P N

M̃ “
`

ΛBn b Id|E|
˘´1

EBn P R2|E| , Bn`1 “
`

ΛMn`1 b Id2

˘´1
EMn`1 P R4 ,

with b the tensor product between matrices and

(a) ΛB “

ˆ

}b1}
2 ` δB xb1, b2y

xb1, b2y }b2}
2 ` δB

˙

, ΛM “

ˆ

}M1}
2 ` δM xM1,M2y

xM1,M2y }M2}
2 ` δM

˙

;

(b) EB “
ˆ

pxe, b1yqePE
pxe, b2yqePE

˙

, EM “

¨

˚

˝

ř

ePE

mee

ř

ePE

nee

˛

‹

‚

.

Proof: The proof is postponed to Appendix B. ˝

Note that if B is orthogonal, i.e. xb1, b2y “ 0 then ΛB is diagonal and the proposed method is the exact solution to the
minimization problem over Z2.

Theorem 2 (Convergence in finite time) For any σ ą 0, pLnpσqqnPN is a non-decreasing sequence. In addition,
pBnqnPN and pMnqnPN converge in a finite number of iterations.

Proof: pLnpσqqnPN is non-decreasing by construction because

Lnpσq ď L pE|Bn,Mn`1, σ
2q ď Ln`1pσq .
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Let us show that the sequences pMnqnPN and pBnqnPN are bounded. Since pLnpσqqnPN is non-decreasing, the sequence
`

qpE|Bn,Mn, σ
2q
˘

nPN
is non-increasing. We obtain that

δM }Mn}
2 ď qpE|B0,M0, σ

2q , δB}Bn}
2 ď qpE|B0,M0, σ

2q .

The sequence pMnqnPN is bounded thus we can extract a converging subsequence. Since pMnqnPN takes value in Z2|E|,
this subsequence is stationary with value M . Let n0 P N be the first time we hit value M . Let n P N, with n ě n0 ` 1,
there exists n1 P N, with n1 ě n such that Mn1 “Mn0 thus

Ln0
pσq ď Ln0`1pσq ď Lnpσq ď L pE|Bn1´1,Mn1

, σ2q ď L pE|Bn1´1,Mn0
, σ2q ď Ln0

pσq .

Hence for every n ě n0 ` 1, Lnpσq “ L pE|Bn,Mn, σ
2q “ L̃ pσq. Suppose there exists n ě n0 ` 1 such that

Mn ‰ Mn`1 this means that L pE|Bn,Mn`1, σ
2q ą Lnpσq (because of lines 6 and 7 of Algorithm 3) which is

absurd. Thus pMnqnPN is stationary and so is pBnqnPN. ˝

It must be noted that this alternate minimization algorithm can be written as an Expectation Maximization (EM)
algorithm [67] where Gaussian distributions are approximated as a Dirac in their modes. Indeed, knowing M,σ2 and E,
the basis B follows a Gaussian distribution. Hence we can perform an estimation of M using the EM framework. This
procedure introduces a hierarchy among the parameters. Proposition 8 gives the new update rule. Note that replacing
ΣEM by 0 we obtain the update rule of Proposition 7.

Proposition 8 (EM update rule) Conditionally to pE,M, σq, B has a Gaussian probability distribution function
denoted πEM with mean µEM P R4 and covariance ΣEM PM4pRq such that

ΣEM “ σ2 pΛM b Id2q
´1

, µEM “ pΛM b Id2q
´1
EM .

If line 5 in Algorithm 3 is replaced by the EM estimation M̃ “ argmin
MPR2|E|

EEM rqpE,B,Mqs, then we have

M̃ “
`

EπEM rΛBs b Id|E|
˘´1

EBn
“
``

ΛBn
` 2σ2

nΛ´1
Mn

˘

b Id|E|
˘´1

EBn
P R2|E| .

Proof: The proof is postponed to Appendix B. ˝

Notice that since ΣEM depends on σ, the estimation of σ can no longer be conducted at the end of the algorithm but
instead becomes sequential.

In Algorithm 3 as well as in its EM extension, M0 is initialized with zero and B0 is defined as an orthonormal (up to a
dilatation factor) direct basis where the first vector is given by an edge with median norm in E. Other initialization
procedures are implemented such as orthonormal (up to a dilatation factor) direct basis where the first vector is given by
the longest edge or random initialization on the circle with radius given by the mean norm of edges.

5.3 Experimental results

Combining the results of Section 5.2 and Section 3.2 we obtain an algorithm to extract lattices in images, see Figure 9.
In what follows we perform lattice detection using Algorithm 1 in order to extract auto-similarity given a patch in an
original image u, which implies that the patch domain ω is set by the user. Recall that in Algorithm 1, the eigenvalues of
the covariance matrix in Proposition 2 are approximated, and that the cumulative distribution function of the quadratic
form in Gaussian random variables is computed via the Wood F method [44]. Lattice detection is performed using
Algorithm 3 with parameters δM “ 10 and δB “ 10´2.

5.3.1 Escher paving

In this section we study art images, Escher pavings, with strongly periodic structure. We investigate the following
parameters of our lattice detection algorithm:

(a) background microtexture model P0,

(b) NFAmax parameter in Algorithm 1,

(c) patch domain ω.
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(a) δM “ 0 δB “ 0 (b) δM “ 5 δB “ 10´1 (c) δM “ 9 δB “ 10´1

Figure 8: Influence of coefficient hyperparameters. In this experiment we assess the importance of the hyperparame-
ters. We consider Algorithm 3 with input graph a detection map, output of Algorithm 1. The initialization in the three
cases is the canonical basis pp0, 1q, p1, 0qq. In (a), since the initial basis vectors are a local minimum to the optimization
problem, the algorithm converges after one iteration. However, this is not perceptually satisfying. Setting δM “ 5 and
δB “ 10´1 in (b) the true observed lattice is a sub-lattice of the output lattice of Algorithm 3. Increasing δM up to 9, in
(c) we obtain a perceptually correct lattice. For δM larger than 10, the basis vectors go to 0. Only the regularizing term
is minimized by the optimization procedure and the data-attachment term is not taken into account. Experimentally we
found that the choice of δM is more flexible and that δM P p1, 20q gives satisfying perceptual results if the initialization
heuristics proposed in Section 5.2 is chosen.

Patch
similarity
detection

Lattice
detection

Figure 9: Lattice proposal algorithm. Lattice detection and extraction in images require a patch from the user and
compute a binary image containing all the offsets with correct similarity as well as a lattice matching the underlying
graph. The patch auto-similarity detection step was presented in Section 3.2. The lattice detection step was presented in
Section 5.2. The first image is the input, the second one is the output of the detection algorithm. In the last step we
show the original image with red squares placed on the computed lattice. Behind this image, the unoriented edges of
the graph are shown in red.

Microtexture model We confirm that the choice of the microtexture model will influence the detected geometrical
structures. Indeed, our similarity detection method follows an a contrario framework and thus, the identified patches
reveal similarity which is not likely to be found in the background model. Hence the more structured is the background
noise model the less we obtain detections. This situation is considered in Figure 10. In this experiment we underline
that choosing a Gaussian white noise random field as a background model does not yield enough structure in order to
obtain robustness in the setting of NFAmax.

NFAmax parameter Using a more adapted microtexture model as background model we gain robustness compared to
other less structured models such as a Gaussian white noise. However, NFAmax must be set carefully otherwise two
situations can occur:

(a) if NFAmax is too high, too many detections can be obtained (true perceptual detections are not differentiated
from false positives) ;

(b) if NFAmax is too low, we fail to identify important perceptual structures in the image.

We observed that a general good practice is to set NFAmax equal to 10, see Figure 11. However, if the input patch is
corrupted one may increase this parameter up to 102 or 103, see Figure 16 and Figure 17.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Choice of the microtexture model. In this experiment we discuss the choice of the a contrario background
microtexture model. In the left column we display the graph obtained after the detection step. In the middle column we
superpose the proposed lattice on the original image. The original patch is drawn in green, obtained basis lattice vectors
are in cyan, and red squares are placed onto the proposed lattice. In (a) and (b) the microtexture model is a Gaussian
model with a spot equal to the full image and NFAmax is set to 10. A sample of this Gaussian model is presented in
(c). Obtained results match the perceptual lattice. In (d), (e), (g) and (h) the microtexture model is a Gaussian white
noise model with variance equal to the empirical variance of the original image. Sample from this Gaussian white noise
is presented in (f). In (d) and (e) NFAmax is set to 10, thus allowing in average 10 false alarms, i.e. detected offsets,
in Gaussian white noise. This leads to an excessive number of detections in the input image. In order to obtain the
perceptual lattice found in (b) with a Gaussian white noise model instead of more structured microtexture model, we
must set the NFAmax parameter to 10´111. Results are presented in experiments (g), (h) and (i). Image (h) is also an
example for which the median initialization for B0 in Algorithm 3 identifies a non satisfying local minimum. Indeed the
perceptual lattice is a sub-lattice of the perceptual lattice given by the arrangement of the white horses. This situation is
corrected in (i) with random initialization for B0. In (h) final log-likelihood value is ´565.5 which is inferior to the
final log-likelihood value in (i): ´542.1. Thus (i) gives a better local maximum of the full log-likelihood than (h).
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(a) (b) (c)

Figure 11: Choice of Number of False Alarms. In this experiment we discuss the choice of the NFAmax parameter in
the a contrario framework in the case where the underlying microtexture model is a Gaussian random field with full
image as a spot. Each column corresponds to a pair of images: the returned lattice and its associated underlying graph.
In (a), NFAmax is set to 1. Detections are correct, there are not enough points to precisely retrieve the perceptual lattice
and the algorithm returns a lattice which is contained in the perceptual one. This problem could be avoided starting
with another initialization in Algorithm 3. In (b,) NFAmax is set to 10. The estimated lattice is correct. In (c), NFAmax
is set to 103. In this case we obtain false detections which lead to an incorrect final lattice. Note that large detection
zones in the binary image (c) are due to the non-validity of the Wood F approximation for some offsets. This behavior
is also present in (a) and (b) but less noticeable.

Patch position Patch position and size are crucial in our detection model, since we rely on local properties of the
image. As shown in Figure 12 these parameters should be carefully selected by the user. However, for particular
applications such as lattice extraction for crystallographic purposes, there exist procedures to extract primitive cells
[37].

5.3.2 Crystallography images

Defect localization, noise reduction, correction of crystalline structures in images are central tasks in crystallography.
Usually, they require the knowledge of the geometry of a perfect underlying crystal. In our experiments we locally
identify the geometry of the periodic crystal, which allows for multiple structures in one image, provided a user input of
the primitive cell in a lattice. This primitive cell extraction can be automated [37]. In Figure 13, we present an example
of multiple geometry extraction. Statistics like angle and period can be retrieved using the estimated basis vectors. This
image contains two lattices and the locality of our measurements allows for the detection of both structures. Using
global methods such as analyzing the peaks of the modulus of the Fourier transform of the image would have failed here
since the structure is local. Using windowed Fourier transform could be efficient to obtain local measurements on the
periodicity of these images since the information is highly frequential. However in order to obtain the same detection
map as Algorithm 1 one must carefully set the threshold parameter, NFAmax. This situation is illustrated in Figure 14.

Finally we assess the precision of our measurements by comparing our results with a model used in crystallography,
see Figure 15. We indeed retrieve one of the possible bases used to describe these lattices. However, the symmetry
constraints are not present in the identified basis. To obtain another basis, one must relax the regularization parameters.
A more natural way to obtain the desired primitive cell would be to introduce symmetry constraints in the graphical
model formulation in (12).
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(a) (b) (c)

(d) (e) (f)

(g) 10ˆ 10 (h) 15ˆ 15 (i) 20ˆ 20

Figure 12: Influence of patch size and patch position. For each experiment NFAmax is set to 104, i.e. 4 % of the
pixels. In most cases lower NFAmax could be used but setting a high NFAmax ensures that we always get detections
even if the patch only contains microtexture information. Each row corresponds to a lattice proposal with same patch
position but different patch sizes: 10ˆ 10 for the left column, 15ˆ 15 for the middle one and 20ˆ 20 for the right one.
Each image represents the superposed proposed lattice on the original image. On the bottom-right of each image we
display the underlying graph as well as the binary detection. On the first row the patch contains only a white region with
a few gray pixels. The influence of these pixels is visible for small patch sizes (a) but is no longer taken into account for
larger patch sizes where all the white regions are detected as similar ((b) and (c)). On the second row the patch contains
gray microtexture which has some local structure. Once again this structure is less considered as the patch size grows.
We identify large similarity regions and no perceptual lattice is retrieved in (d), (e) and (f). The situation is different on
the third row. The 10ˆ 10 patch contains only uniform black information in (g), but the situation changes as the patch
sizes grows. In (h), the patch intersects black, gray and white zones. The graph is much sparser and the lattice is close
to the perceptual one even if there are some errors since the white area is small. In (i), the patch size is large enough to
cover large areas of the three gray levels and the perceptual lattice is identified.
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(a) (b) (c) (d)

Figure 13: Lattice extraction. In this experiment we consider a crystallographic image (an orthorombic NiZr alloy)
and set NFAmax to 102. Two lattices are present in this image and they are correctly identified in (b) and (d). Note that
in (a), respectively in (c), mostly points in the left, respectively right, part of the image are identified, thus yielding
correct lattice identification. Points which should be identified and are discarded nonetheless correspond to regions in
which we observe contrast variation. Image courtesy of Denis Gratias.

(a) (b) 90% (c) 95% (d) 99%

Figure 14: Comparison with Fourier based methods. Since the original image can be segmented in two highly periodic
components, Fourier methods might be well-adapted to the lattice extraction task. In (a) we present a sub-image of the
original alloy. We compute the autocorrelation of this sub-image and threshold it. This operation gives us a detection
map, like Algorithm 1. In (b) the threshold is set to 90% percent of the maximum value of the autocorrelation. Too
many points are identified. In (d) the threshold is set to 99% and only one point is identified. Correct lattice is identified
in (c).

5.3.3 Natural images

Identifying lattices in natural images is a more challenging task since we have to deal with image artifacts. In this
section we investigate the effect on the detection of the background clutter in natural images, see Figure 16, and the
effect of the camera position, see Figure 17.

Preprocessing Due to the occlusions occurring in natural images, if a lattice is superposed over a real photograph,
carefully selecting structural elements might not be enough in order to retrieve the periodicity. Indeed, if we observe a
repetition of the lattice pattern, the background does not necessarily contain any repetition and thus makes the detection
more complicated. In order to avoid such a problem we propose to introduce a preprocessing step in our algorithm.
This preprocessing step will be encoded in a linear filter h. Suppose U is a sample from a Gaussian model with spot f
then h ˚ U is a sample from a Gaussian model with spot h ˚ f . Thus all the properties derived earlier remain valid with
this linear operation. In Figure 16, we set h to be a Laplacian operator 3. This operation allows us to avoid contrast
problems.

Homography In the previous experiments we suppose that the lattice structure was in front of the camera. In many
cases this assumption is not true and there exists an homography that matches the deformed lattice in the image to a true

3We use a Laplacian operator ∆ such that for any x “ px1, x2q, we get that ∆puqpx1, x2q “

pupx1 ` 1, x2q ` upx1 ´ 1, x2q ` upx1, x2 ` 1q ` upx1, x2 ´ 1q ´ 4upxqq {4, where boundaries are handled periodically.
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(a)

Axe [001]

(b)

Figure 15: Agreement with crystallography models. In (a) we perform a zoom on of the lattice identified in Figure 13
and compare it to the one identified by crystallographists in (b). (a) is a zoomed rotated version of a crystalline structure
similar to (b). The output lattice in (a) is the same as the one in (b). Indeed in (b) the red points, for instance, form a
lattice. A possible basis for this lattice is given by the vectors of a parallelogramm. Up to rotation these basis vectors
match the one identified in (a). However, the parallelogramm basis is a symmetric and thus is not chosen by chemists
since it does not reflect the geometry of the alloy. The preferred basis is given by the symmetric rhombus (white edges
in (b)). Image courtesy of Denis Gratias.

lattice. Our algorithm makes the assumption that the lattice is viewed in a frontal way and fails otherwise. However,
locally, this assumption is true and we can observe partial match of the lattices in Figure 17.

6 Texture ranking

We conclude these experiments by showing that this simple graphical model can be used to perform ranking among
texture images, sorting them according to their degree of periodicity. We say that an image has high periodicity degree
if a lattice structure can be well fitted to the image. We introduce a criterion for evaluating the relevance of the lattice
hypothesis, and thus assessing the degree of periodicity of the texture. Let u be an image over Ω, let ω Ă Ω be a patch
domain and a be as in Proposition 1 with NFAmax set by the user.

Definition 6 (Periodicity criterion) Let tt P Ω, AS2,2pu, t, ωq ď aptqu be the set of detected offsets and NC its
number of connected components as defined in Section 5.2. Let also p pB,xM, pσq be the estimated parameters using
Algorithm 3. We define the following periodicity criterion cper as

cperpuq “
πpσ2

NC |detpb̂1, b̂2q|
,

where pB “ pb̂1, b̂2q.

The criterion cper simply computes the ratio between the error area of Algorithm 3, i.e. the error made when considering
the approximated lattice hypothesis, see Definition 5, and the area of the parallelogram defined by the output basis
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(a) (b) (c) (d)

Figure 16: Preprocessing and filtering. In (a) and (c) we display the graphs obtained with Algorithm 1 applied on
images (b) and (d). In (b) and (d) the original image is superposed with the estimated lattice (vectors in cyan and
proposed patches in red). In (a) and (b), NFAmax was set to 105 which corresponds to 35 % of detection in the associated
a contrario model. Lower NFAmax did not give enough points to conduct the lattice proposal step. We obtain a visually
satisfying lattice. In (c) and (d) we apply a simple preprocessing, a Laplacian filter, to the image and set NFAmax to 10.
The detection figure is much cleaner and the estimation makes much more sense from a perceptual point of view. Note
that, as in (b), the proposed lattice does not exactly match the fence periodicity. This is due to: 1) the initialization
of the algorithm and the structure of the graph in the alternate minimization algorithm ; 2) the fact that the horizontal
periodicity is broken by the black post.

(a) (b)

Figure 17: Homography and locality. In this experiment NFAmax was set to 103. Note that the detected graph is
localized around the original patch. This leads to a satisfying lattice proposal in a small neighborhood around the
original patch. However this proposal is not valid for the whole image.
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(a) (b) (c)

Figure 18: Parameters configurations. In each figure, dark blue points correspond to the vertex of the graph G .
Arrows represent the estimated basis pB and its associated parallelogram is displayed in blue. Red disks have radius
pσ. In (a) there exists a lattice in the graph which corresponds to some perceptual lattice on the vertices. In this case

πpσ2

| detpb̂1,b̂2q|
, the ratio of the uncertainty area and the primitive area, is small. In (b) no perceptual lattice is identified onto

the vertices and the estimated lattice vectors are not valid. This is expressed with a high ratio πpσ2

| detpb̂1,b̂2q|
. In (c), the

graph G contains only three vertices. Thus the lattice approximation is nearly optimal (up to regularization factors) and
the ratio πpσ2

| detpb̂1,b̂2q|
is very small. However, three points are not perceptually identified as a lattice. Hence considering

cper we take into account the number of points and we may retrieve that (a) is considered more periodic than (b) and (c).

vectors. If we have enough detections this quantity is supposed to be small when the approximated lattice hypothesis
holds and large when it does not. Nonetheless, we introduce a dependence in the number of detections. Indeed, even if
no lattice is perceived, the hypothesis in Definition 5 may still hold if the number of detected offsets is small, see Figure
18.

This cper criterion is arbitrary and many others could be derived. For example we could consider for any λ ą 0

cλper “
πpσ2

Nλ
C |detpb̂1, b̂2q|

,

Taking the logarithm of this criterion we obtain for any λ ą 0

log
`

cλper
˘

“ log

˜

πpσ2

|detpb̂1, b̂2q|

¸

` λ log

ˆ

1

NC

˙

,

and λ can be interpreted as a trade-off parameter between the area penalty and the number of detection penalty. We
present the result of the texture ranking algorithm on 25 images of the Brodatz dataset, see Figure 19. The criterion
classifies most of the texture correctly except for (i), (j) and (p). Notice that it is easy, from a perceptual point of view,
to decide if a texture is periodic or not: from (a) to (l) all images can be labeled as periodic and from (m) to (y) all
images can be labeled as non-periodic. However intra-class ranking is difficult.

7 Conclusion

In this paper we introduce a statistical model, the a contrario framework, to analyze spatial redundancy in images. We
present similarity functions in the context of image processing. After conducting a study on the statistical properties of
these similarities measures we propose a general algorithm for detecting redundancy in natural images. It relies on
Gaussian random fields as background models and takes advantage of the links between the `2 norm and Gaussian
densities. The a contrario formulation provides us with a statistically sound way of thresholding distances in order to
assess similarity between patches. In this rationale we replace the task of manually setting thresholds by the selection
of a Number of False Alarms. Doing so, we aim at giving a better understanding of some image processing algorithms
in which rules-of-thumb prevail in parameter selection.

We illustrate our contribution with three examples in various domains of image processing. Introducing a simple
modification of the NL-means algorithm we show that similarity detection (in this case, dissimilarity detection) in a
theoretical a contrario framework can easily be embedded in any image denoising pipeline. For instance, the threshold
we introduced could be integrated into the Non-Local Bayes algorithm [41] in order to estimate mean and covariance
matrices with probabilistic guarantees. The generality of our model allows for several extensions for non-Gaussian
noises [68] or to take into account the geometry of the patch space [51, 69].

Turning to periodicity detection we propose a novel graphical model using the output of Algorithm 1 in order to
extract lattices from images. In this model, lattice extraction is formulated as the maximization of some log-likelihood
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(a) -9.78 (b) -9.41 (c) -9.22 (d) -8.78 (e) -8.28

(f) -8.15 (g) -8.08 (h) -8.00 (i) -7.98 (j) -7.94

(k) -7.78 (l) -7.75 (m) -7.70 (n) -7.55 (o) -7.40

(p) -7.35 (q) -7.28 (r) -7.24 (s) -7.18 (t) -6.98

(u) -6.82 (v) -6.78 (w) -6.64 (x) -6.58 (y) -6.48

Figure 19: Texture ranking. In this experiment we sort 25 texture images based on the cper criterion. Images are of
size 256ˆ 256. Since the identified graph highly depends on the patch position and the patch size, for each image we
uniformly sample 30 patch positions and set the patch size to 20ˆ 20. For each set of parameters we find a lattice
using Algorithm 1 and Algorithm 3 with parameters NFAmax “ 1, δM “ 10, δB “ 10´2 and Nit “ 10. The cper
criterion is computed for each setting. We associate to each image the median of the 30 criterion values and sort the
images accordingly. (a) corresponds to the lowest criterion, i.e. the most periodic image according to cper criterion.
(y) corresponds to the largest criterion, i.e. the least periodic image according to cper. Under each image we give the
logarithm of the median cper values.
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defined on a graph. Proving the finite-time convergence of Algorithm 3 we study its links with classical Expectation-
Maximization formulation. We provide image experiments illustrating the role of the hyperparameters in our study
and we assess the importance of selecting adaptive Gaussian random fields as background models. We remark that the
expected number of false alarms parameter is linked to the choice of the input patch and give a range of possible values
for NFAmax settings. The lattice extraction algorithm is used on art images such as Escher pavings. We also illustrate
its possible application in crystallography as it correctly identifies underlying lattices in alloys. This rationale could
be used to identify symmetry groups (wallpaper groups) in alloys, following the work of [40]. Finally our method is
tested on natural images where some of its limits such as perspective defect or sensitivity to occlusion phenoma are
identified. It must be noted that our method could easily be extended to color images by considering R3-valued instead
of real-valued images.

Our last application consists in giving a quantitative criterion for periodicity texture ranking. This criterion is based
on the parameters estimated in Algorithm 3. Since we set our background models to be Gaussian random fields and
remarking that these are good microtexture approximations we wish to explore the possibility to embed our a contrario
framework in texture analysis and texture synthesis algorithms. For instance an a contrario methodology could be
incorporated in the algorithm proposed by Raad et al. in [17]. Another potential direction is to look at the behavior
of the introduced similarity functions for more general random fields in order to handle more complex and structured
situations such as parametric texture synthesis.
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A Eigenvalues

We start with the proof of Proposition 5.

Proof: We fix t ‰ 0 with }t}8 ă p and denote C “ Ct. Without loss of generality we consider that tx ą 0 and
ty ą 0. We consider X an eigenvector of C. Let Ω0 “ pΩ´ tq X Ωc and the function J : Ω0 Ñ J2,`8J such that
for any x0 P Ω0

Jpx0q “ min
kPNzt0u

x0 ` kt R Ω .

It is clear that I “ tpk,mq, k P J1,m ´ 1K, m P JpΩ0qu is in bijection with Ω. Let x0 P Ω0, m “ Jpx0q and
k P J1,m´ 1K. We define Xx0,k over Z2 such that

Xx0,kpx0 ` `tq “ sin

ˆ

`kπ

m

˙

for ` P J1,m´ 1K , 0 otherwise .

Using that sinpa` bq ` sinpa´ bq “ 2 sinpaq cospbq, we have for any x P Z2

Xx0,kpx` tq ´ 2 cos

ˆ

kπ

m

˙

Xx0,kpxq `Xx0,kpx´ tq “ 0 .

This implies that for any x P Z2

2Xx0,kpxq ´Xx0,kpx` tq ´Xx0,kpx´ tq “

„

2´ 2 cos

ˆ

kπ

m

˙

Xx0,kpxq “ 4 sin2

ˆ

kπ

m

˙

Xx0,kpxq .

Thus the one-dimensional vector (given by the raster-scan order on the x-axis) of the restriction of Xx0,k is an
eigenvector of C associated with eigenvalue 4 sin2

`

kπ
m

˘

.

Using that I is in bijection with Ω we get that the number of vectors pXx0,kq is |Ω|. We show that this family of vectors
is linearly-independent. Let Λx0,k P R such that

ÿ

x0PΩ0

Jpx0q´1
ÿ

k“1

Λx0,kXx0,k “ 0 .

Since Xx0,k and Xy0,k
1 have different support if and only if x0 ‰ y0 we get that for any x0 P

Ω0,
řJpx0q´1
k“1 Λx0,kXx0,k “ 0. This gives that pΛx0,kqkPJ1,Jpx0q´1K is in the kernel of the matrix
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psinp`kπ{pJpx0q ´ 1qqq1ďj,`ďJpx0q´1. Since the sinus discrete transform is invertible we obtain that for any x0 P Ω0

and k P J1, Jpx0q ´ 1K, Λx0,k “ 0. Thus the family Xx0,k is a basis of eigenvectors.

We aim at computing the cardinality of Kk,m “ tXx0,k, Jpx0q “ mu. By definition, in Proposition 5, rk,m “ |Kk,m|.
First note that |Kk1,m| “ |Kk,m|. We give the following decomposition Ω0 “ Ωx Y Ωy Y Ωx,y with

Ωx “ J´tx,´1Kˆ J0, p´ 1´ tyK, Ωx “ J0, p´ 1´ txKˆ J´ty,´1K, Ωx,y “ J´tx,´1Kˆ J´ty,´1K .
Note that for all x0 P Ω0 we have that x0 ` pq ` 1qt R Ω, with q “ r

p
|tx|_|ty |

s. Thus JpΩ0q Ă J2, q ` 1K. Let
m P J2, q ´ 1K. The cardinality of Kk,m is the cardinality of J´1pmq. Let x0 P Ωx we have

x0 “ pi0, j0q P Kk,m ô

$

&

%

i0 `mtx ě p

or
j0 `mty ě p

and

$

&

%

i0 ` pm´ 1qtx ď p´ 1

and
j0 ` pm´ 1qty ď p´ 1

.

Since x0 P Ωx we have i0 `mtx ď p´ 1, hence
x0 “ pi0, j0q P Kk,m ô j0 `mty ě p and j0 ` pm´ 1qty ď p´ 1 .

Thus |Ωx X J´1pmq| “ txty. Similarly we get that |Ωy X J´1pmq| “ txty and Ωx,y X J´1pmq “ H. Thus,
|Kk,m| “ 2txty .

We have computed |Kk,m| for every m P J2, q´1K. In order to complete our study it only remains to compute |Kk,q`1|,
since |Kk,q| can be deduced from the summability condition and from |Kk,m| “ |Kk1,m|. We only compute |Kk,q`1|.
We remark that ΩxXJ

´1pq` 1q “ Ωy XJ
´1pq` 1q “ H. Let x0 P Ωx,y then x0 “ ´t`px, yq with x P J0, tx´ 1K

and y P J0, ty ´ 1K. We obtain the following equivalence

x0 P J
´1pq ` 1q ô

$

&

%

´ tx ` x` pq ` 1qtx ě p

or
´ ty ` y ` pq ` 1qty ě p

and

$

&

%

´ tx ` x` qtx ď p´ 1

and
´ ty ` y ` qty ď p´ 1

.

Since qtx ě p or qty ě p we obtain that the first condition is always satisfied. Thus we get
x0 P J

´1pq ` 1q ô x ď p´ 1´ pq ´ 1qtx and y ď p´ 1´ pq ´ 1qty .

Using that p´ 1´ pq ´ 1qtx “
´

r
p
tx
s´ q

¯

tx ` tx ´ 1´ px, we conclude the proof. ˝

B Update rules

We derive the proof of Proposition 7.

Proof: Computing the minimum of qpE|B,Mq for fixed B P R4, respectively fixed M P R2|E|, gives the update rule
for M , respectively for B. We obtain that

qpE|B,Mq “
ÿ

ePE

m2
e}b1}

2 `
ÿ

ePEb

n2
e}b2}

2 ` 2
ÿ

ePE

menexb1, b2y

´ 2
ÿ

ePE

mexb1, ey ´ 2
ÿ

ePE

nexb2, ey ` rpB,Mq

“ BT pΛM b Id2qB ´ 2xB,EM y ` αpMq

“ } pΛM b Id2q
1
2 B ´ pΛM b Id2q

´1
2 EM }

2 ` αpMq

“ } pΛM b Id2q
1
2

´

B ´ pΛM b Id2q
´1
EM

¯

}2 ` αpMq ,

where αpMq depends only on M . Similar derivation goes for B and we obtain the proposed update rules. ˝

We give the proof of Proposition 8.

Proof: Since
qpE|B,Mq “ } pΛM b Id2q

1
2

´

B ´ pΛM b Id2q
´1
EM

¯

}2 ` αpMq ,

we obtain that

L pE|B,M, σ2q “ ´
1

2σ2
} pΛM b Id2q

1
2

´

B ´ pΛM b Id2q
´1
EM

¯

}2 ` βpσ,Mq ,

which proves that conditionally to E, M and σ2, B is Gaussian with mean pΛM b Id2q
´1
EM and covariance matrix

σ2 pΛM b Id2q
´1. ˝
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