S-RL Toolbox: Environments, Datasets and Evaluation Metrics for State Representation Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

S-RL Toolbox: Environments, Datasets and Evaluation Metrics for State Representation Learning

Résumé

State representation learning aims at learning compact representations from raw observations in robotics and control applications. Approaches used for this objective are auto-encoders, learning forward models, inverse dynamics or learning using generic priors on the state characteristics. However, the diversity in applications and methods makes the field lack standard evaluation datasets, metrics and tasks. This paper provides a set of environments, data generators, robotic control tasks, metrics and tools to facilitate iterative state representation learning and evaluation in reinforcement learning settings.
Fichier principal
Vignette du fichier
S_RL_Toolbox.pdf (1.49 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01931713 , version 1 (29-11-2018)

Identifiants

Citer

Antonin Raffin, Ashley Hill, René Traoré, Timothée Lesort, Natalia Díaz-Rodríguez, et al.. S-RL Toolbox: Environments, Datasets and Evaluation Metrics for State Representation Learning. NeurIPS 2018 Workshop on “Deep Reinforcement Learning”, Dec 2018, Montreal, Canada. ⟨hal-01931713⟩
128 Consultations
251 Téléchargements

Altmetric

Partager

More