A result on power moments of Lévy-type perpetuities and its application to the L p-convergence of Biggins' martingales in branching Lévy processes - Archive ouverte HAL
Article Dans Une Revue ALEA : Latin American Journal of Probability and Mathematical Statistics Année : 2019

A result on power moments of Lévy-type perpetuities and its application to the L p-convergence of Biggins' martingales in branching Lévy processes

Résumé

Lévy-type perpetuities being the a.s. limits of particular generalized Ornstein-Uhlenbeck processes are a natural continuous-time generalization of discrete-time perpetuities. These are random variables of the form $S := \int_{(0,\infty)} e^{-X_{s-}} dZ_s$ , where (X, Z) is a two-dimensional Lévy process, and Z is a drift-free Lévy process of bounded variation. We prove an ultimate criterion for the finiteness of power moments of S. This result and the previously known assertion due to Erickson and Maller (2005) concerning the a.s. finiteness of S are then used to derive ultimate necessary and sufficient conditions for the L p-convergence for p > 1 and p = 1, respectively, of Biggins' martingales associated to branching Lévy processes. In particular, we provide final versions of results obtained recently by Bertoin and Mallein (2018).
Fichier principal
Vignette du fichier
IksMal230118.pdf (424.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01929897 , version 1 (21-11-2018)
hal-01929897 , version 2 (18-05-2019)

Identifiants

Citer

Alexander Iksanov, Bastien Mallein. A result on power moments of Lévy-type perpetuities and its application to the L p-convergence of Biggins' martingales in branching Lévy processes. ALEA : Latin American Journal of Probability and Mathematical Statistics, 2019, 16 (1), pp.315. ⟨10.30757/ALEA.v16-11⟩. ⟨hal-01929897v2⟩
106 Consultations
103 Téléchargements

Altmetric

Partager

More