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A result on power moments of Lévy-type perpetuities and its application to the L p-convergence of Biggins' martingales in branching Lévy processes

Introduction

Let (M k , Q k ) k∈N be a sequence of independent copies of an R 2 -valued random vector (M, Q) with arbitrary dependence of components. Further, denote by (Π n ) n∈N 0 the multiplicative (ordinary) random walk with factors M n for n ∈ N which starts at 1, that is, Π 0 := 1 and Π n := n i=1 M i , n ∈ N. Then define its perturbed variant (Θ n ) n∈N , that may be called a perturbed multiplicative random walk, by

Θ n := Π n-1 Q n , n ∈ N.
(1.1)

When M k and Q k are a.s. positive, the random sequence (log Θ n ) n∈N is known in the literature as a perturbed (additive) random walk. A major part of the recent book [START_REF] Iksanov | Renewal theory for perturbed random walks and similar processes[END_REF] is concerned with the so defined perturbed random walks, both multiplicative and additive. We refer to the cited book for numerous applications of these random sequences and to [START_REF] Alsmeyer | Null recurrence and transience of random difference equations in the contractive case[END_REF][START_REF] Buraczewski | On perpetuities with gamma-like tails[END_REF][START_REF] Damek | A renewal theorem and supremum of a perturbed random walk[END_REF][START_REF] Iksanov | Functional limit theorems for the number of busy servers in a G/G/∞ queue[END_REF][START_REF] Iksanov | Functional limit theorems for the maxima of perturbed random walks and divergent perpetuities in the M 1 -topology[END_REF] for more recent contributions.

Recall that, provided that the series k≥1 Θ k converges a.s., its sum

Ξ := k≥1 Θ k
is called perpetuity. The term stems from the fact that such random series may be used in insurance mathematics and financial mathematics to model sums of discounted payment streams. The state of the art concerning various aspects of perpetuities is discussed in [START_REF] Buraczewski | Stochastic models with power-law tails: the equation X = AX + B[END_REF] and [START_REF] Iksanov | Renewal theory for perturbed random walks and similar processes[END_REF]. We think that the most valuable feature of the perturbed multiplicative random walks is their link with perpetuities.

There is also an unexpected connection, unveiled in [START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk. Classical and modern branching processes[END_REF] and detailed in [START_REF] Iksanov | Elementary fixed points of the BRW smoothing transforms with infinite number of summands[END_REF] and [START_REF] Alsmeyer | A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks[END_REF], between perpetuities and branching random walks. The connection, which is not immediately seen, emerges when studying the weighted random tree associated with the branching random walk under a size-biased measure. In particular, criteria for the uniform integrability and the L p -convergence for p > 1 of the Biggins martingale (also known as the additive martingale or the intrinsic martingale in the branching random walk) are closely linked with criteria for the a.s. finiteness and the existence of the pth moment of perpetuities, respectively. In this way one arrives at a final version of the famous Biggins martingale convergence theorem which was originally proved by Biggins himself in [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF] with the help of a different argument and under additional moment assumptions. The recent article [START_REF] Bertoin | Infinitely ramified point measures and branching Lévy processes[END_REF] is aimed at obtaining sufficient conditions for the uniform integrability and the L pconvergence for p ∈ (1, 2] of the Biggins martingale in a branching Lévy process. To this end, a connection similar to that described at the beginning of the paragraph is exploited between certain continuous-time perpetuities and branching Lévy process. The conditions obtained in [START_REF] Bertoin | Infinitely ramified point measures and branching Lévy processes[END_REF] are not optimal.

In this article we first define perturbed multiplicative Lévy processes which are natural continuous-time counterparts of the perturbed multiplicative random walks. These are then used to construct Lévy-type perpetuities in the same way as the perturbed multiplicative random walks are used to construct the discrete-type perpetuities. The Lévytype perpetuities are a particular instance of the limit random variables for generalized Ornstein-Uhlenbeck processes. This restriction (that is, that we consider the particular rather than any limit) is motivated by a prospective application, see the end of this section for more details. Necessary and sufficient conditions for the a.s. finiteness of the Lévy-type perpetuities can be derived from [START_REF] Erickson | Generalized Ornstein-Uhlenbeck processes and the convergence of Lévy integrals[END_REF]Theorem 2].

Our main contribution is two-fold. First, we prove an ultimate criterion for the finiteness of the pth moment of the Lévy-type perpetuity for all p > 0. Second, we apply this criterion and the aforementioned result from [START_REF] Erickson | Generalized Ornstein-Uhlenbeck processes and the convergence of Lévy integrals[END_REF] to derive necessary and sufficient conditions for the a.s. and the L p -convergence for p ≥ 1 of the Biggins martingale in the branching Lévy process. Thus, we obtain final versions of Theorem 1.1 and Proposition 1.4 in [START_REF] Bertoin | Infinitely ramified point measures and branching Lévy processes[END_REF] which was our primary motivation.

Lévy-type perpetuities

In this section we first define a continuous-time counterpart of the perturbed multiplicative random walks, described in (1.1).

Let Λ be a sigma-finite measure on R × R with Λ({0, 0}) = 0. Define the projections Λ 1 and Λ 2 of Λ by

Λ 1 (B) := R Λ(B, dy) and Λ 2 (B) := R Λ(dx, B)
for Borel sets B in R\{0}. Throughout the article our standing assumption is that

R (x 2 ∧ 1)Λ 1 (dx) < ∞ and R (|y| ∧ 1)Λ 2 (dy) < ∞.
(2.1)

Denote by N := k ε (τ k ,(i k ,j k )) a Poisson random measure on R + × R 2 with mean measure LEB ⊗ Λ, where R + := [0, ∞), ε (t,(x,y)) denotes the Dirac mass at (t, (x, y)) ⊂ R + × R 2 ,
and LEB is the Lebesgue measure on R + . Define

N 1 := k ε (τ k ,i k ) and N 2 := k ε (τ k ,j k ) ,
the projections of N . These are Poisson random measures on R + × R with mean measures LEB ⊗ Λ j , j = 1, 2. For t ≥ 0, set

X t := vB t + bt + [0, t]×R x 1 [-1,1] (x)N c 1 (dsdx) + [0, t]×R x 1 R\[-1,1] (x)N 1 (dsdx) (2.
2)

Z t := [0, t]×R yN 2 (dsdy)
where

v 2 ≥ 0, b ∈ R and (B t ) t≥0 is a Brownian motion independent of N . The first integral in (2.
2) is a compensated Poisson integral (hence, the notation N c 1 ) which can be defined as the following limit in

L 2 lim δ↓0 [0, t]×R x 1 (δ,1] (|x|)N 1 (dsdx) -t δ<|x|≤1 xΛ 1 (dx).
In view of the second assumption in (2.1) the process Z := (Z t ) t≥0 is a drift-free Lévy process of bounded variation. In particular, Z can be represented as the difference of two independent subordinators. The random measure N is the measure of jumps of the two-dimensional Lévy process (X t , Z t ) t≥0 .

Define the random process Y := (Y t ) t≥0 by

Y t = y, if N 2 ({t} × {y}) = 1; 0, if N 2 ({t} × R) = 0, that is, Y = (Z t -Z t-) t≥0
is the process of jumps of Z. The process (Y t e -X t-) t≥0 which is a natural continuous-time generalization of the discrete-time process (Θ n ) n∈N defined in (1.1) will be called perturbed multiplicative Lévy process. For t ≥ 0, set

S t := 0≤s≤t e -X s-Y s = τ k ≤t e -X τ k -j k = [0, t] e -X s-dZ s . (2.3)
Whenever the a.s. limit S := lim t→∞ S t exists and is finite, we call the random variable

S = s≥0 e -X s-Y s = k e -X τ k -j k = R + e -X s-dZ s (2.4)
Lévy-type perpetuity.

The following result which gives necessary and sufficient conditions for the a.s. finiteness of Lévy-type perpetuities is a specialization1 of Theorem 2 in [START_REF] Erickson | Generalized Ornstein-Uhlenbeck processes and the convergence of Lévy integrals[END_REF]. For x ≥ 1, set

A(x) := 1 + x 1 Λ 1 ((y, ∞))dy = 1 + R (x ∧ z -1) + Λ 1 (dz),
where z + = max(z, 0) and y ∧ z = min(y, z) for all y, z ∈ R. It should not come as a surprise that Proposition 2.1 is very similar to Theorem 2.1 in [START_REF] Goldie | Stability of perpetuities[END_REF] which provides a criterion for the a.s. finiteness of discrete-time perpetuities Ξ.

Power moments of Lévy-type perpetuities

Main result

The purpose of this section is to point out necessary and sufficient conditions for the finiteness of power moments of S. Before formulating the corresponding result we note that the distribution of S is degenerate if, and only if, it is degenerate at 0, and that the latter occurs if, and only if, Λ 2 is trivial which means that Λ 2 ≡ 0. The non-obvious part of this statement, that is, that the distribution of S cannot be degenerate at a nonzero point follows from the fact that Z does not have a Brownian component and Theorem 2.2 in [START_REF] Bertoin | On continuity properties of the law of integrals of Lévy processes[END_REF].

Theorem 3.1. Assume that Λ 2 is nontrivial and let p > 0. The following assertions are equivalent:

E e -pX 1 < 1 and R\[-1,1]
|y| p Λ 2 (dy) < ∞;

(3.1)

E |S| p < ∞. (3.2)

Auxiliary results

Proposition 3.2 and Proposition 3.3 given below are our main technical tools for the proof of Theorem 3.1. We start by recalling a criterion obtained in Theorem 1.4 of [START_REF] Alsmeyer | On distributional properties of perpetuities[END_REF] for the finiteness of power moments of discrete-time perpetuities Ξ. The following assertions are equivalent:

E |M | p < 1 and E |Q| p < ∞; (3.5) E |Ξ| p < ∞. (3.6) 
The next proposition gives sufficient conditions for the finiteness of the pth moment of the integral of an adapted process against the Lévy process Z defined in Section 2. Proposition 3.3. Let (Z s ) s≥0 be a drift-free Lévy process of finite variation (as defined in Section 2) and (H s ) s≥0 an adapted càdlàg process. Suppose that there exists p > 0 such that

E |Z 1 | p < ∞ and E sup s∈(0,1] |H s | p < ∞. Then E (0,1] H s-dZ s p < ∞.
Proof. When p ≥ 1 the assertion follows from Lemma 6.1 in [START_REF] Behme | Distributional properties of solutions of dV t = V t-dU t + dL t with Lévy noise[END_REF].

Assume that p ∈ (0, 1). Subadditivity of x → x p on R + and the triangle inequality entail

E (0,1] H s-dZ s p ≤ E (0,1] |H s-| dZ (1) s p + E (0,1] |H s-| dZ (2) s p , ( 3.7) 
where, for t ≥ 0,

Z (1) t := [0, t]×R |y| 1 [-1,1] (y)N 2 (dsdy) = τ k ≤t |j k | 1 {|j k |≤1}
and Z

(2)

t := [0, t]×R |y| 1 R\[-1,1] (y)N 2 (dsdy) = τ k ≤t |j k | 1 {|j k |>1} . Note that Z (i) := (Z (i)
t ) t≥0 , i = 1, 2 are drift-free subordinators. We shall prove finiteness of the two summands on the right-hand side of (3.7) separately.

We start by observing that Z (2) is a compound Poisson process with jumps sizes larger than one. Denote by T 1 , T 2 , . . . the times at which Z (2) jumps, ranked in the increasing order, and set

R i := Z (2) T i -Z (2) T i -for i ∈ N. The sequence (T k ) k∈N forms the arrival times of a Poisson process with intensity c := Λ 2 (R\[-1, 1]), and (R k ) k∈N are i.i.d. random variables with distribution P{R 1 > x} = c -1 Λ 2 (R\[-x, x]) for x > 1 and P{R 1 > x} = 1 for x ≤ 1. Moreover, for each fixed i ∈ N, (H T i -, T i ) is independent of R i .
Using these facts in combination with the aforementioned subadditivity we obtain

E (0, 1] H s-dZ (2) s p ≤ E i≥1 |H T i -| p R p i 1 {T i ≤1} = E i≥1 |H T i -| p 1 {T i ≤1} E R p 1 = c E 1 0 |H s | p ds c -1 R\[-1, 1] |y| p Λ 2 (dy),
where, recalling that (H s ) s≥0 is an adapted process, the second equality is justified by the compensation formula for Poisson random measures. As a result,

E (0, 1] H s-dZ (2) s p ≤ E sup s∈[0,1] |H s | p R\[-1, 1] |y| p Λ 2 (dy) < ∞.
Here, according to Theorem 25.3 in [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF], the inequality

R\[-1, 1] |y| p Λ 2 (dy) < ∞ is guar- anteed by the assumption E |Z 1 | p < ∞.
It remains to show that

E (0,1] |H s-| dZ (1) s p < ∞. (3.8) For each A > 0 and each t ∈ [0, 1], set K A t = |H t | ∧ A. Also, for each n ∈ N and integer 1 ≤ k ≤ n, set I k,n := ((k -1)/n, k/n] and let F k,n denote the σ-algebra generated by (H s-, Z (1)
s ) 0≤s≤k/n (we also denote by F 0,n the trivial σ-algebra). Recalling that Z (1) is a drift-free subordinator we write

E (0, 1] K A s-dZ (1) s p = E n k=1 I k,n K A s-dZ (1) s p ≤ 2 E n k=1 E I k,n K A s-dZ (1) s F k-1,n p ≤ 2 E n k=1 I k,n E(K A s |F k-1,n )ds p [-1, 1] |y|Λ 2 (dy) p ,
where the first inequality follows by an application of Lemma 6 on p. 411 in [START_REF] Chow | Probability theory: independence, interchangeability, martingales[END_REF], and the second inequality is a consequence of subadditivity of x → x p on R + and the equality

E I k,n K A s-dZ (1) s F k-1,n = I k,n E(K A s |F k-1,n )ds [-1, 1] |y|Λ 2 (dy)
which is implied by the compensation formula for Poisson random measures. Further, letting n → ∞ and using the fact that (K A s ) s≥0 is an adapted bounded process, an appeal to Lebesgue's dominated convergence theorem yields

lim n→∞ E n k=1 I k,n E(K A s |F k-1,n )ds p = E 1 0 K A s ds p ≤ E( sup s∈[0, 1] (K A s ) p ).
Thus, we have proved that, for each A > 0,

E (0,1] (|H s-| ∧ A)dZ (1) s p ≤ 2 E( sup s∈[0,1] |H s | ∧ A) p [-1, 1] |y|Λ 2 (dy) p ≤ E( sup s∈[0,1] |H s |) p [-1, 1] |y|Λ 2 (dy) p < ∞.
Letting A → ∞ in the latter formula, we infer (3.8) with the help of Lévy's monotone convergence theorem.

The result given next is a consequence of Theorem 25.18 in [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]. A direct proof can be found in Lemma 2.1 (a) of [START_REF] Aurzada | Exponential moments of first passage times and related quantities for Lévy processes[END_REF].

Lemma 3.4. Let p > 0. If E e -pX 1 < ∞, then E sup s∈[0,1] e -pXs = E exp(-p inf s∈[0,1] X s ) < ∞.

Proof of Theorem 3.1

Proof of (3.1)⇒(3.2). We first show that conditions (3.1) ensure |S| < ∞ a.s. Indeed, by Jensen's inequality E e -pX 1 < 1 entails E X 1 ∈ (0, ∞], whence lim t→∞ X t = +∞ a.s. Further, |y|>1 |y| p Λ 2 (dy) < ∞ ensures |y|>1 log |y|Λ 2 (dy) < ∞ and, a fortiori, the second condition in (2.5). Now |S| < ∞ a.s. follows from Proposition 2.1. Now observe that the random variable S can be obtained as a discrete-time perpetuity generated by the pair of random variables

(M * , Q * ) := (e -X 1 , [0, 1] e -X s-dZ s ).
In view of the discussion at the beginning of Section 3.1 and our assumption that Λ 2 is nontrivial, the distribution of S is nondegenerate. Therefore, P{Q * + M * r = r} < 1 for all r ∈ R. This enables us to invoke Proposition 3.2 which states that E |S| p < ∞ if, and only if, Proof of (3.2)⇒(3.1). We assume that Λ 2 charges all the punctured line R\{0}. Otherwise, the proof becomes simpler. We have E M p * = E e -pX 1 < 1 by another appeal to Proposition 3.2. Using the inequality |x + y| p ≥ (2 1-p ∧ 1)|x| p -|y| p , x, y ∈ R which is implied by convexity (respectively subadditivity) of s → s p for s ≥ 0 when p ≥ 1 (resp. when p ∈ (0, 1)) we obtain

E M p * = E e -pX 1 < 1 and E |Q * | p = E | [0, 1] e -X s-dZ s | p < ∞. It is well-known that the second assumption in (3.1) is equivalent to E |Z 1 | p < ∞ (see,
∞ > E |S| p = E [0, 1] e -X s-d Z (1) s + [0, 1] e -X s-d Z (2) s p ≥ (2 1-p ∧ 1) E [0, 1] e -X s-d Z (2) s p -E [0, 1] e -X s-d Z (1) s p ,
where, for t ≥ 0,

Z (1) t := [0, t]×R y 1 [-1,1] (y)N 2 (dsdy) = τ k ≤t j k 1 {|j k |≤1} Z (2) t := Z t -Z (1) t = [0, t]×R y 1 R\[-1,1] (y)N 2 (dsdy) = τ k ≤t j k 1 {|j k |>1} .
By Theorem 25.3 on p. 159 in [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF], the random variable | Z 

E [0, 1] e -X s-d Z (1) s p < ∞. Recall the notation (T i , R i ) i∈N introduced
in the proof of Proposition 3.3 for the jump times and jump sizes of Z (2) , respectively. Noting that T 1 , T 2 , . . . are also the jump times of Z (2) , set 

V i := Z (2) T i -Z (2) T i -for i ∈ N and observe that |V i | = R i . We infer ∞ > E [0, 1] e -X s-d Z (2) s p ≥ E T k ≤1 e -X T k -V k p 1 {T 1 ≤1<T 2 } = E |e -X T 1 -V 1 | p e -c c = E e -pX T 1 -E |V 1 | p e -c c,
where c = Λ 2 (R\[-1, 1]), thereby proving that E |V 1 | p < ∞ or,

Applications to branching Lévy

Definitions and main result

Branching Lévy processes are a continuous-time generalization of branching random walks. Similarly to Lévy processes (see (2.2)), branching Lévy processes are characterized by a triplet (σ 2 , a, Π), where σ 2 ≥ 0, a ∈ R and Π is a sigma-finite measure on

P := x = (x n ) ∈ [-∞, ∞) N : x 1 ≥ x 2 ≥ • • • and lim n→∞ x n = -∞ .
Also, it is assumed that Π satisfies

P (x 2 1 ∧ 1)Π(dx) < ∞, (4.1) 
and that there exists θ > 0 such that

P   e θx 1 1 (1,∞) (x 1 ) + j≥2 e θx j   Π(dx) < ∞. (4.2) 
In the sequel we reserve the letter θ to denote a fixed (possibly unique) positive number for which (4.2) holds. The set of individuals alive at time t which we denote by N t can be encoded using an adaptation of Ulam-Harris notation (see [START_REF] Shi | Probability tilting of compensated fragmentations[END_REF] for the proposed encoding in the context of compensated fragmentations). For all s ≤ t and all individual u alive at time t, we write X s (u) for the position at time s of u if u ∈ N s , and for the position of its ancestor at time s if u / ∈ N s . We outline the evolution of a branching Lévy process with characteristics (σ 2 , a, Π) and refer to Sections 4 and 5 in [START_REF] Bertoin | Biggins' martingale convergence for branching Lévy processes[END_REF] for more details. Denote by N = ε (t k ,x (k) ) a Poisson random measure on R + × P with mean measure LEB ⊗ Π. The position of the initial particle in the branching Lévy process follows the path of the process (X t ( )) t≥0 defined by

X t ( ) := σB * t + at + [0, t]×P x 1 1 [-1,1] (x 1 )N c (dsdx) + [0, t]×P x 1 1 R\[-1,1] (x 1 )N (dsdx), t ≥ 0, (4.3) 
where (B * t ) t≥0 is a Brownian motion independent of N , and the first Poisson integral is taken in the compensated sense (see Section 2 for more details concerning a similar integral). For each atom (t k , x (k) ) of N , the initial particle gives birth at time t k to new individuals which are started at position

X t k -( ) + x (k) 2 , X t k -( ) + x (k)
3 , . . .. Each of the newborn particles then starts an independent copy of the branching Lévy process from their birth time and position. Note that (X t ( )) t≥0 is a Lévy process with characteristic triplet (σ 2 , a, Π 1 ), where Π 1 is the image measure of Π under the mapping x → x 1 , and (4.3) is its Lévy-Itô decomposition (compare with (2.2)). Condition (4.1) guarantees that this Lévy process is well-defined.

For z ∈ C with Re(z) = θ, set Therefore, it is natural to say that κ(z) is the value at z of the cumulant generating function of the branching Lévy process. For later needs we also note that according to the manyto-one formula for branching Lévy processes ([10, Lemma 2.2]), the function Ψ : R → C defined by Ψ(s

κ(z) = 1 2 σ 2 z 2 + az + P   k≥1 (e zx k -1 -zx 1 1 (-1,1) (x 1 ))   Π(dx).
) := κ(θ + is) -κ(θ) (4.5)
is the Lévy-Khinchine exponent of a Lévy process that we denote by ξ = (ξ t ) t≥0 . The branching property of the branching Lévy process tells us that conditionally on the positions of the particles at time t the processes initiated by these particles are i.i.d. branching Lévy processes, shifted by the position of their ancestor, see [START_REF] Bertoin | Infinitely ramified point measures and branching Lévy processes[END_REF]Fact (B)]. The branching property in combination with (4.4) imply that the process W := (W t ) t≥0 defined by

W t := u∈Nt e θXt(u)-tκ(θ) , t ≥ 0 (4.6)
is a non-negative continuous-time martingale with respect to the natural filtration. This martingale, often called Biggins' or McKean's martingale, and its a.s. limit W ∞ are of primary importance for the study of branching Lévy processes. According to a classical result in the field of branching processes 

P{W ∞ = 0} ∈ {P{∃t > 0 : N t = }, 1}, i.e.,
j =k e θx j Π(dx) < ∞, (4.7) 
where A(y) = 1 + P k≥1 e θx k ((-x k ) ∧ y -1) + Π(dx) for y ≥ 1. In [10, Theorem 1.1] similar necessary and sufficient conditions for the uniform integrability of W were obtained under the additional assumption that E ξ 1 ∈ (-∞, ∞). A new aspect of part (i) of Theorem 4.1 is that E ξ 1 may be infinite or not exist. In [START_REF] Bertoin | Biggins' martingale convergence for branching Lévy processes[END_REF]Proposition 1.4] it was proved that conditions (4.8) entail the L p -convergence of W under the additional integrability condition κ(qθ) < ∞ for some q > p.

Using [START_REF] Doney | Fluctuation Theory for Lévy Processes[END_REF]Theorem 4.15] one can give an integral test expressed in terms of the characteristics of the branching Lévy process which is equivalent to the first condition in (4.7), that is, lim t→∞ (θξ t -tκ(θ)) = -∞ a.s. Theorem 4.1 will be proved along the lines of the proof of the corresponding result for branching random walks, see the introduction for more details. To this end, in the next section we define a size-biased measure and the corresponding spinal decomposition. The latter as well as Proposition 2.1 and Theorem 3.1 are essential ingredients for the proof of Theorem 4.1.

Spinal decomposition

The spinal decomposition is a useful tool to construct the branching Lévy process under the size-biased law

P Ft := W t P| Ft , t ≥ 0,
where (F t ) t≥0 is the natural filtration for W . The resulting process is a branching process with the set of distinguished individuals, called the spine. While the individuals belonging to the spine produce offspring and displace them according to a special law, the rest of the population behaves as in a standard branching Lévy process. This justifies the term 'spinal decomposition'.

To explain the evolution of a branching Lévy process with spine we need more notation. Let Π be a measure on P × N defined by

Π(dxdk) = e θx k (Π(dx)Count(dk)) , ( 4.9) 
where Count is the counting measure on N. Set

a = a + θσ 2 + P k≥1 x k e θx k 1 [-1,1] (x k ) -x 1 1 [-1,1] (x 1 ) Π(dx)
and note that a is well-defined and finite by (4.1) and (4.2). Also, we denote by N a Poisson random measure on R + × P × N with mean measure LEB ⊗ Π and by ( B t ) t≥0 a Brownian motion which is independent of N . Now we define the spine process ξ = ( ξ t ) t≥0 by the following Lévy-Itô decomposition: for t ≥ 0

ξ t :=σ B t + at + [0, t]×P×N x k 1 [-1,1] (x k ) N (c) (dsdxdk) + [0, t]×P×N x k 1 R\[-1,1] (x k ) N (dsdxdk).
Plainly, ξ is a Lévy process with characteristic triplet (σ 2 , a, Λ 1 ), where the Lévy measure is given by

R f (-x)Λ 1 (dx) = P k≥1 e θx k f (x k ) Π(dx). (4.10) 
Further, it can be checked that the Lévy-Khinchine exponent of ξ is Ψ defined in (4.5).

We are now ready to discuss briefly the evolution of a branching Lévy process with spine. The spine particle displaces according to the Lévy process ξ, and for each atom (t, x, k) of N , the spine particle produces offspring at positions ξ t-+ x j for all j = k. Each of these newborn particles then immediately starts an independent branching Lévy process from their birth place and time. Retaining the notation N t and X s (u) (see Section 4.1) for the branching Lévy process with spine we shall also write w t for the label at time t of the spine particle. With these at hand we denote by P the law of ((X t (u)) u∈Nt,t≥0 , (N t ) t≥0 , (w t ) t≥0 ).

Denote by (H t ) t≥0 the filtration associated to (X t (u)) u∈Nt,t≥0 for the branching Lévy process with spine which excludes the information concerning the labels of the spine individuals. Lemma 4.2. We have P |Ht = P |Ht for t ≥ 0 and

P{w t = u|H t } = e θXt(u)-tκ(θ) W t , t ≥ 0.
Furthermore, under P, (X t (w t )) t≥0 is a Lévy process with Lévy-Khinchine exponent Ψ.

The spinal decomposition was introduced in [START_REF] Lyons | Conceptual Proofs of L log L criteria for mean behavior of branching processes[END_REF] in the context of Galton-Watson processes. Lyons [START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk. Classical and modern branching processes[END_REF] then proved a spinal decomposition result for branching random walks. This result was further generalized to branching Markov chains and general associated harmonic functions in [START_REF] Biggins | Measure change in multitype branching[END_REF], to general Markov processes and multiple spines in [START_REF] Harris | The many-to-few lemma and multiple spines[END_REF], etc. In the context of growth-fragmentation processes a proof of the spinal decomposition appeared in [START_REF] Bertoin | Martingales in self-similar growthfragmentations and their connections with random planar maps[END_REF] for binary compensated fragmentations, i.e., under the assumption Π({x 1 > 0}) + Π({x 3 > -∞}) = 0. The first general spinal decomposition result for branching Lévy processes was obtained in [START_REF] Shi | Probability tilting of compensated fragmentations[END_REF]Theorem 5.2] under the assumption Π({x 1 > 0}) = 0. A simple argument was given in [START_REF] Bertoin | Biggins' martingale convergence for branching Lévy processes[END_REF]Lemma 2.3] which enabled one to deduce the spinal decomposition for branching Lévy processes from that for branching random walks.

Proof of Theorem 4.1

We start with some preliminary work. Denote by Ω s the multiset 2 of children's positions at time s relative to the positions of their parents belonging to the spine, i.e.,

Ω s = , if N ({s} × P × N) = 0 {(x j ) j =k }, if N ({(s, x, k}) = 1.

Setting

S t := 0≤s≤t e θX s-(w s-)-sκ(θ) z∈Ωs e θz , t ≥ 0 we note that the P-a.s. limit lim t→∞ S t , provided it is finite, is a Lévy-type perpetuity (see (2.4)) in which the role of X is played by (-θX t (w t )+tκ(θ)) t≥0 under P, and the associated Lévy measures Λ 1 and Λ 2 are given, respectively, by (4.10) and

R + f (x)Λ 2 (dx) = P k≥1 e θx k f   j =k e θx j   Π(dx).
2 I.e., the set of elements counted with their multiplicity.

It can be checked that assumptions (4.1) and (4.2) guarantee that the so defined Λ 1 and Λ 2 satisfy (2.1).

To facilitate a forthcoming application of Proposition 2.1 let us note that the second condition in (4.7) is equivalent to

(e,∞) log y A(log y) Λ 2 (dy) < ∞, (4.11) 
where A(x) = 1 + x 1 Λ 1 ((y, ∞))dy for x ≥ 1 as in Section 2 but with Λ 1 as defined above. As far as an application of Theorem 3.1 is concerned observe that κ(pθ) < pκ(θ) which is the first condition in (4.8) is equivalent to

E exp((p -1)(θX t (w t ) -tκ(θ))) = exp(κ(pθ) -pκ(θ)) < 1.
(4.12)

The latter is the first condition in (3.1) with X as defined in the previous paragraph. Further, the second condition in (4.8) is equivalent to

(1,∞) y p-1 Λ 2 (dy) < ∞. (4.13)
Now we write a basic representation for what follows:

W * t := E (W t |G) = e θXt(wt)-tκ(θ) + S t , t ≥ 0, (4.14) 
where G is the σ-algebra which contains the information concerning the trajectory of the spine as well as the birth place and the birth times of its offspring. Passing to the proof of Theorem := u∈Nt e θ(Xt(u)-Xr(u))-(t-r)κ(θ) 1 {u descendant of z} are independent of G and have the same P-distribution as the P-distribution of W t-r . Letting now t → ∞ we infer, for all s ≥ 0,

W ∞ ≥ r≤s e θX r-(wr)-rκ(θ) z∈Ωr e θz W (r,z) ∞ P -a.s., (4.18) 
where W (r,z) ∞

is the limit of the Biggins martingale associated to the descendant of the spine born at time r at position z.

The random variables (W (r,z) ∞ ) r≥0,z∈Ωr are i.i.d. In view of the assumption W ∞ < ∞ Pa.s. equivalence (4.15) ensures E W (r,z) ∞ = 1. As a consequence, there exists δ > 0 such that

P{W (r,z) ∞ ≥ 1} = δ. Setting e (r,z) = 1 [1,∞) (W (r,z)
∞ ) we conclude that the random variables (e (r,z) ) r≥0,z∈Ωr are independent Bernoulli random variables with parameter δ. Now (4.18) implies that, for all s ≥ 0, W ∞ ≥ r≤s e θX r-(wr)-rκ(θ) z∈Ωr e θz e (r,z) =: Γ s P -a.s.

In particular, there exists a sequence (s j ) such that lim j→∞ Γ s j < ∞ P-a.s.

Assume now that lim t→∞ S t = ∞ P-a.s., so that lim j→∞ (Γ s j /S s j ) = 0 P-a.s. Since Γ s j /S s j ≤ 1 P-a.s. Γ s j /S s j must converge to 0 in P-mean. However, this is not the case, for E(Γ s j /S s j ) = δ, a contradiction. Thus, we have shown that lim t→∞ S t < ∞ P-a.s. By Proposition 2.1 this implies that the second condition in (4.7) holds. The proof of Lemma 4.3 is complete.

The proof of the second part of Theorem 4.1 follows by a similar reasoning. We first use the fact that (W n ) n∈N 0 is the Biggins martingale of a branching random walk with the underlying point process u∈N 1 ε X 1 (u) . The following result is well-known and can be found in Theorem 3.1 of [START_REF] Alsmeyer | Double martingale structure and existence of φ-moments for weighted branching processes[END_REF], Corollary 5 of [START_REF] Iksanov | Elementary fixed points of the BRW smoothing transforms with infinite number of summands[END_REF], Theorem 2.1 of [START_REF] Liu | On generalized multiplicative cascades[END_REF] and perhaps some other articles: the L p -convergence of (W n ) n∈N 0 for p > 1 is equivalent to the following two conditions κ(pθ) < pκ(θ) and E W p 1 < ∞. Another form of the left-hand inequality is given by the first inequality in

1 > E u∈N 1
e p(θX 1 (u)-κ(θ)) = e κ(pθ)-pκ (θ) .

As the L p -convergence of W is obviously equivalent to that of (W n ) n∈N 0 , it only remains to check that conditions (4.8) and (4.19) are equivalent. Proof. ⇐: We intend to prove that E W p 1 < ∞ or equivalently EW p-1 1 < ∞. By Theorem 3.1, conditions (4.12) and (4.13) ensure that S := lim t→∞ S t < ∞ P-a.s. and that ES p-1 < ∞. Recalling (4.14) we obtain

EW p-1 1 ≤ E[ E(W 1 |G) p-1
] ≤ E e (p-1)(θX 1 (w 1 )-κ(θ)) + S p-1 1 < ∞ having used the conditional Jensen inequality for the first inequality, subadditivity of x → x p-1 on R + for the second, and (4.12) together with ES p-1 < ∞ together with (4.12) ensure that ES p-1 < ∞. Formula (4.13) then follows by Theorem 3.1. The proof of Lemma 4.4 is complete.

Proposition 3 . 2 .

 32 Let p > 0 and suppose that P{M = 0} = 0 and P{Q = 0} < 1 (3.3) and that P{Q + M r = r} < 1 for all r ∈ R. (3.4)

  for instance, Theorem 25.3 on p. 159 in[START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]). By Lemma 3.4, the first condition in (3.1) guarantees E sup s∈[0,1] e -pXs < ∞. With these at hand we infer E |Q * | p < ∞ by Proposition 3.3.

( 1 ) 1 |

 11 has finite power moments of all positive orders. In particular, E | Z (1) 1 | p < ∞. Hence, according to Proposition 3.3,

  equivalently, that the second inequality in (3.1) holds. The proof of Theorem 3.1 is complete.

Condition ( 4 . 2 )

 42 ensures that κ(z) is finite on its domain. By [10, Theorem 1.1(ii)], we have, for t ≥ 0,

(k≥1 e θx k j =k e θx j p- 1 1

 1 ii) Let p ∈ (1, 2]. The martingale W converges in L p if, and only if, κ(pθ) < pκ(θ) and P (e,∞) j =k e θx j Π(dx) < ∞ (4.8)

Lemma 4 . 4 .

 44 Let p ∈[START_REF] Alsmeyer | Null recurrence and transience of random difference equations in the contractive case[END_REF][START_REF] Alsmeyer | A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks[END_REF]. Assume (4.1) and (4.2) hold and that κ(pθ) < pκ(θ). ThenE W p 1 < ∞ ⇐⇒ P k≥1 e θx k j =k e θx j p-1 1 (e,∞)j =k e θx j Π(dx) < ∞.

1 ≤ 1 : 1 P 1 ≥ S p-1 1 × 1 ) p-1 S 1 P 1 , we deduce that EW p-1 1 ≥ ES p-1 1 EW p-1 1 , 1 <

 111111111111 ES p-1 for the third. ⇒: For s > 0 and z ∈ Ω s , denote by (W (s,z) u ) u≥0 the Biggins martingale associated to the descendant of the spine born at time s at position z. Setting W (s,z) = inf u∈[0,1] W (s,z) u we obtain W 1 ≥ 0≤s≤1 e θX s-(w s-)-sκ(θ) z∈Ωs e θz W (s,z) 1-s ≥ 0≤s≤1 e θX s-(w s-)-sκ(θ) z∈Ωs e θz W (s,z) -a.s. The random variables W (s,z) 1 are P-i.i.d., positive with positive probability and independent of all the other random variables occurring under the sum. Using concavity of x → x p-1 on R + yields W p-1 0≤s≤1,z∈Ωs e θX s-(w s-)-sκ(θ) e θz (W (s,z) -a.s. Denoting by W 1 a generic copy of W (s,z) thereby showing that ES p-1 ∞. Using Proposition 3.2 in the same way as in the proof of Theorem 3.1, implication (3.1)⇒ (3.2) we conclude that ES p-1 1

Proposition 2.1. Assume that lim

  

	t→∞	X t = +∞ a.s. and	R\[-e,e]	log |y| A(log |y|)	Λ 2 (dy) < ∞.	(2.5)
	Then					
		P{ lim t→∞	S t exists and is finite} = 1.	(2.6)
	Conversely, if (2.5) fails, then (2.6) fails.			

  either W ∞ is strictly positive a.s. on the survival set of the branching Lévy process or W ∞ = 0 a.s. While the first case is equivalent to the uniform integrability of the martingale W , the second one is called the degenerate case.We are ready to state the second main result of the present article.

	Theorem 4.1. Let X be a branching Lévy process satisfying (4.1) and (4.2), W the cor-
	responding Biggins martingale, and ξ the Lévy process with the Lévy-Khinchine exponent
	given in (4.5).					
	and	P k≥1	e θx k	log A log	j =k e θx j j =k e θx j	1 (e,∞)

(i) The martingale W is uniformly integrable if, and only if,

lim t→∞ (θξ t -tκ(θ)) = -∞ a.s.

  [START_REF] Alsmeyer | Double martingale structure and existence of φ-moments for weighted branching processes[END_REF].1 we first deal with the uniform integrability of W . ∞ . Assume that conditions (4.7) hold. Since the law of the Lévy process (ξ t ) t≥0 is the same as the P-law of (X t (w t )) t≥0 , the first condition in(4.7) ensures that This entails lim t→∞ W * t = lim t→∞ S t P-a.s. With (4.11) and (4.16) at hand, an application of Proposition 2.1 (recall our specific choice of X) yields lim t→∞ S t < ∞ P-a.s. and thereupon lim t→∞ W * t < ∞ P-a.s. Invoking the conditional Fatou lemma we further infer lim inf t→∞ W t < ∞ P -a.s. (4.17)According to Proposition 2 in[START_REF] Harris | Measure changes with extinction[END_REF], 1/W is a positive supermartingale under P. Thus, 1/W t converges P-a.s. as t → ∞. In view of (4.17) the limit cannot be zero. Therefore, W ∞ < ∞ P-a.s. which is equivalent to the uniform integrability of W . Conversely, assume that W is uniformly integrable or equivalently W ∞ < ∞ P-a.s.

	Then				
	W t ≥		e θXt(u)-tκ(θ) ≥ e θXt(wt)-tκ(θ) , t ≥ 0
	u∈Nt		
	entails lim sup t→∞ (θX t (w t ) -tκ(θ)) < ∞ P-a.s, whence lim t→∞ (θX t (w t ) -tκ(θ)) = -∞
	P-a.s. This proves that the first condition in (4.7) holds.
	Passing to the proof of the second condition in (4.7) we first observe that, for all
	0 ≤ s ≤ t,				
	W t ≥		e θX r-(wr)-rκ(θ)	e θz W	(r,z) t	P -a.s.,
	0≤r≤s	z∈Ωr	
	where the random variables W	(r,z) t		
	Lemma 4.3. Under the assumptions of Theorem 4.1 the martingale W is uniformly inte-
	grable if, and only if, conditions (4.7) hold.		
	Proof. We use the classical observation (see, for instance, p. 220 in [29]) that
	W is uniformly integrable under P ⇐⇒ W ∞ := lim sup
	lim t→∞	(θX t (w t ) -tκ(θ)) = -∞ P -a.s.	(4.16)

t→∞ W t < ∞ P -a.s. (4.15)

Therefore, it is enough to prove that conditions (4.7) are equivalent to the P-a.s. finiteness of W

In the cited result Z is allowed to be an arbitrary Lévy process. The random process (St) t≥0 in (2.3) is then called a generalized Ornstein-Uhlenbeck process. In view of the second condition in (2.1) which is motivated by a forthcoming application of our results to branching Lévy processes we only consider a subclass of generalized Ornstein-Uhlenbeck processes.
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