Harmonic functions, conjugate harmonic functions and the Hardy space H1 in the rational Dunkl setting - Archive ouverte HAL
Article Dans Une Revue Journal of Fourier Analysis and Applications Année : 2019

Harmonic functions, conjugate harmonic functions and the Hardy space H1 in the rational Dunkl setting

Jean-Philippe Anker
Jacek Dziubanski
  • Fonction : Auteur
  • PersonId : 945721
Agnieszka Hejna
  • Fonction : Auteur
  • PersonId : 1039141

Résumé

In this work we extend the theory of the classical Hardy space H 1 to the rational Dunkl setting. Specifically, let ∆ be the Dunkl Laplacian on a Euclidean space R N. On the half-space R + ×R N , we consider systems of conjugate (∂ 2 t +∆ x)-harmonic functions satisfying an appropriate uniform L 1 condition. We prove that the boundary values of such harmonic functions, which constitute the real Hardy space H 1 ∆ , can be characterized in several different ways, namely by means of atoms, Riesz transforms, maximal functions or Littlewood-Paley square functions.
Fichier principal
Vignette du fichier
ADHnov2018.pdf (563.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01925688 , version 1 (17-11-2018)

Identifiants

  • HAL Id : hal-01925688 , version 1

Citer

Jean-Philippe Anker, Jacek Dziubanski, Agnieszka Hejna. Harmonic functions, conjugate harmonic functions and the Hardy space H1 in the rational Dunkl setting. Journal of Fourier Analysis and Applications, 2019. ⟨hal-01925688⟩
139 Consultations
828 Téléchargements

Partager

More