N
N

N

HAL

open science

Harmonic functions, conjugate harmonic functions and
the Hardy space H1 in the rational Dunkl setting

Jean-Philippe Anker, Jacek Dziubanski, Agnieszka Hejna

» To cite this version:

Jean-Philippe Anker, Jacek Dziubanski, Agnieszka Hejna. Harmonic functions, conjugate harmonic
functions and the Hardy space H1 in the rational Dunkl setting. Journal of Fourier Analysis and

Applications, 2019. hal-01925688

HAL Id: hal-01925688
https://hal.science/hal-01925688
Submitted on 17 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01925688
https://hal.archives-ouvertes.fr

HARMONIC FUNCTIONS,
CONJUGATE HARMONIC FUNCTIONS
AND THE HARDY SPACE H!

IN THE RATIONAL DUNKL SETTING

JEAN-PHILIPPE ANKER, JACEK DZIUBANSKI, AGNIESZKA HEJNA

ABSTRACT. In this work we extend the theory of the classical Hardy space H' to the
rational Dunkl setting. Specifically, let A be the Dunkl Laplacian on a Euclidean space
RY. On the half-space R, x RY, we consider systems of conjugate (02 + Ay )-harmonic
functions satisfying an appropriate uniform L' condition. We prove that the boundary
values of such harmonic functions, which constitute the real Hardy space H}, can be
characterized in several different ways, namely by means of atoms, Riesz transforms,
maximal functions or Littlewood-Paley square functions.

1. INTRODUCTION

Real Hardy spaces on RY have their origin in the study of holomorphic functions of
one variable in the upper half-plane R? = {z = 2 + iy € C : y > 0}. The theorem of
Burkholder, Gundy, and Silverstein [5] asserts that a real-valued harmonic function u
on R? is the real part of a holomorphic function F(z) = u(z) + iv(z) satisfying the L?
condition

sup/ |F(z 4+ iy)|Pde < oo, 0<p< oo,

y>0 JR
if and only if the nontangential maximal function u*(x) = sup, .|, [u(2'+iy)| belongs
to LP(R). Here 0 < p < co. The N-dimensional theory was then developed in Stein and
Weiss [36] and Fefferman and Stein [18], where the notion of holomorphy was replaced
by conjugate harmonic functions. To be more precise, a system of C? functions

’U,(SL’(], L1,y ... ,SL’N) = (UO(SL’O,LL’l, c. ,S(,’N),ul(l’o, L1,y .. ,LL’N), c. ,UN(LL’(), L1y .. ,LL’N)),
where xy > 0, satisfies the generalized Cauchy-Riemann equations if

Ouj  Ou, Ou,

. —_— = < < =
(1.1) 5r oz, V0<i#j<N and ;a%
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One says that w has the LP property if

(1.2) sup/ |u(zo, 21, ..., 2Nn)|Pdry ... dey < 0.
zo>0 JRN
As in the case N =1, if 1—% < p < o0 and wuy(zg, x1, ..., 2yN) is @ harmonic function,
there is a system uw = (ug,u1, ..., uy) of C? functions satisfying (1.1) and (1.2) if and
only if
ug(x) = sup  fug(wo,X)]

[[x—x'||<z0

belongs to LP(RY). Here x = (1, ...,7y) € RY and similarly x' = (2], ..., ). Then
up has a limit fj in the sense of distributions, as xg \ 0, and ug is the Poisson integral
of fo. It turns out that the set of all distributions obtained in this way, which form
the so-called real Hardy space HP(RY), can be equivalently characterized in terms of
real analysis (see [18]), namely by means of various maximal functions, square functions
or Riesz transforms. Another important contribution to this theory lies in the atomic
decomposition introduced by Coifman [7] and extended to spaces of homogeneous type
by Coifman and Weiss [9].

The goal of this paper is to study harmonic functions, conjugate harmonic functions,
and related Hardy space H' for the Dunkl Laplacian A (see Section 2). We shall prove
that these objects have properties analogous to the classical ones. In particular, the
related real Hardy space HX, which can be defined as the set of boundary values of
(02 + A )-harmonic functions satisfying a relevant L' property, can be characterized by
appropriate maximal functions, square functions, Riesz transforms or atomic decompo-
sitions. Apart from the square function characterization, this was achieved previously
in [2] and [12] in the one-dimensional case, as well as in the product case.

Hardy spaces associated with semigroups of linear operators have a long history. Let
us present a small and selected part of it. Muckenhoupt and Stein [26] introduced a
notion of conjugacy for the one-dimensional Bessel operator, which initiated a study
of Hardy spaces in the Bessel setting, continued subsequently in [4]. In [19] and [0],
the authors developed a theory of real Hardy spaces HP on homogeneous nilpotent
Lie groups, associated either with a sublaplacian (if the group is stratified) or with
a Rockland operator (if the group is graded). Another important contribution is the
theory of local Hardy spaces in [21], which has several applications, e.g., in the study of
Hardy spaces associated with the twisted laplacian [25] or with Schrédinger operators
with certain (large) potentials [13]. Hardy spaces associated with semigroups whose
kernels satisfy Gaussian bounds were studied in [23]. There, the theory of tent spaces
([8] and [33]) was used to produce specific atomic decompositions for Hardy spaces
defined by square functions. This theory was further enhanced in [10] and [37] by
characterizations by means of maximal functions.

In the one-dimensional case and in the product case considered in [2] and [12], the
Dunkl kernel can be expressed explicitly in terms of classical special functions (Bessel
functions or the confluent hypergeometric function). Thus its behavior is fully under-
stood. In the general case considered in the present paper, no such information is
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available. Therefore an essential part of our work consists in estimating the Dunkl ker-
nel, the heat kernel, the Poisson kernel, and their derivatives (see the end of Section 3,
Section 4, and Section 5). As observed in [2], the heat kernel satisfies no Gaussian
bound in the Dunkl setting. However, as it is shown in Section 4, some Gaussian-type
bounds hold provided the Euclidean distance is replaced by the orbit distance (3.3).
Similarly for the Poisson kernel, whose estimates in terms of the orbit distance resemble
the analysis on spaces of homogeneous type (see Section 5). These crucial observations
allow us to adapt the techniques of [23], [10], and [37] in order to obtain atomic, maxi-
mal function, and square function characterizations of the Hardy space HX. As far as
the Riesz transform characterization of H} is concerned, we use the maximum principle
for Dunkl-Laplace subharmonic functions, together with estimates for the Dunkl and
Poisson kernels.

Let us finally mention some further works in the continuation of the present pa-
per. In [15] another atomic decomposition for the Hardy H} space is obtained. The
article [22] provides characterizations of the Hardy space associated with the Dunkl
harmonic oscillator, while [16] is devoted to non-radial multipliers associated with the
Dunkl transform.

1.1. Notation.

e Asusual, N={0,1,2,...} denotes the set of nonnegative integers.
e The Euclidean space R” is equipped with the standard inner product

N
y)=>_ %y
and the corresponding norm |[|x|| = (E;\;l \xj\z)l/z. Throughout the paper,

B(x,r) = {yeR"[|x—y|<r}

stands for the ball with center x € RV and radius r>0. Finally, RY™" denotes
the half-space (0,00) x RY in R
e In RY, the directional derivative along ¢ is denoted by J;. As usual, for every

multi-index o= (ay,ay,...,ay) €N we set |a|= Zj\;l a; and

0= 05 0dg0. .. 000N,
where {e1,es,...,en} is the canonical basis of RY. The additional subscript x
in 0¢ means that the partial derivative 0¢ is taken with respect to the variable
xcRY,

e The symbol ~ between two positive expressions f, g means that their ratio g is
bounded from above and below by positive constants.

e The symbol < (respectively ) between two nonnegative expressions f, g means
that there exists a constant C'> 0 such that f <Cyg (respectively f>Cyg).

e We denote by Co(RY) the space of all continuous functions on RY vanishing
at infinity, by C2°(RY) the space of all smooth functions on R with compact
support, and by S(RY) the Schwartz class on R,
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2. STATEMENT OF THE RESULTS

In this section we first collect basic facts concerning Dunkl operators, the Dunkl
Laplacian, and the corresponding heat and Poisson semigroups. For details we refer the
reader to [11], [30] and [32]. Next we state our main results.

In the Euclidean space RY the reflection o, with respect to the hyperplane o't or-
thogonal to a nonzero vector a € R” is given by

(x,0)
ol ®

A finite set R C RV \ {0} is called a root system if 0,(R) = R for every a € R. We shall
consider normalized reduced root systems, that is, ||a||* = 2 for every a € R. The finite
group G generated by the reflections o, is called the Weyl group (reflection group) of
the root system. We shall denote by O(x), resp. O(B) the G-orbit of a point x € RY,
resp. a subset B C RY. A mualtiplicity function is a G-invariant function k : R — C,
which will be fixed and > 0 throughout this paper.

Given a root system R and a multiplicity function k, the Dunkl operators Ty are the
following deformations of directional derivatives O by difference operators:

Teso9= 0 + 3" 0 0ol

Oa(x) =x—2

aER <Oé, X>
0+ 3K ><afg;a<x>>.
a€Rt ’

Here R" is any fixed positive subsystem of R. The Dunkl operators T¢, which were
introduced in [11], commute pairwise and are skew-symmetric with respect to the G-
invariant measure dw(x) = w(x) dx, where

= TT a0 @= T (e x) .

a€R a€Rt

Set T; = T¢,, where {e1,...,ex} is the canonical basis of RY. The Dunkl Laplacian

assomated w1th R and k is the differential-difference operator A = 7", T?, which acts

on C? functions by
A.f( ): euclf + Z k = euclf ‘l‘ 2 Z k’
a€ER a€ERT

where

0af(x)  f(x)— floa(x))

(o, x) (o, x)?

Oaf(x) =

The operator A is essentially self-adjoint on L?(dw) (see for instance [1, Theorem 3.1])
and generates the heat semigroup

(2.) 1) =47(x) = [ 1o y)f(y) du)
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Here the heat kernel h;(x,y) is a C* function in all variables ¢t > 0, x € RY, y € RY,
which satisfies

hi(x,y) = h(y,x)>0 and /RN hi(x,y) dw(y) = 1.

Notice that (2.1) defines a strongly continuous semigroup of linear contractions on
LP(dw), for every 1 < p < o0.
The Poisson semigroup P, = e *V~2 is given by the subordination formula,
> t2 du
2.2 Pf(x) = —1/2/ “exp (—A) F(x)
(22) 0 =72 [ etenp (A) 160 2

and solves the boundary value problem

{ (02 + Ay u(t,x) =0

u(0,x) = f(x)
in the half-space RN = (0, 00) x RY C R™¥ (see [31, Section 5]). Let ey = (1,0,...,0),
e1 = (0,1,...,0),..., ex = (0,0,...,1) be the canonical basis in R'*¥. In order to unify

our notation we shall denote the variable ¢ by zy and set Ty = 0, .
Our goal is to study real harmonic functions of the operator

N
(2.3) L=Tj+A=) T/

J=0

The operator £ is the Dunkl Laplacian associated with the root system R, considered
as a subset of R under the embedding R C RY — R x RV,
We say that a system

u = (ug,u1,...,uy), where u; =u;(zo,z1,...,25) V0 <j <N,

X

of C"! real functions on R}:’N satisfies the generalized Cauchy-Riemann equations if

T =Tu; VY0<i#j<N,
(2.4) I
2 j—o Lju; = 0.

In this case each component u; is £-harmonic, i.e., Lu; = 0.

We say that a system u of C? real £-harmonic functions on ]RffN belongs to the
Hardy space H! if it satisfies both (2.4) and the L' condition

|ul|#: = sup H\u(:co, -)\HLl(dw) = sup/ lu(zg, x)| dw(x) < oo,
xo>0 z0>0 JRN

N 5\ /2
where [u(ao, x)| = (321 [us(z,x)[2)

We are now ready to state our first main result.
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Theorem 2.5. Let ug be a L-harmonic function in the upper half-space ]R}fN. Then
there are L-harmonic functions u; (j =1,...,N) such that u = (ug, uy,...,uy) belongs
to H' if and only if the nontangential mazimal function

(26) US (X) = sup lIx’ —x||<zo |U0 (ZI}'(], X/)|

belongs to L'(dw). In this case, the norms ||ug||11(aw) and |[uljzp are moreover equiva-
lent.

If u € H', we shall prove that the limit f(x) = lim,, s ug(70o, X) exists in L'(dw) and
uo(zo,x) = Py, f(x). This leads to consider the so-called real Hardy space

Hy={f(x) = xl(;lgouo(:co,x) | (uo, ua, ..., un) € H'},
equipped with the norm

1 llzzy = Nl (uo, wa, - )0

Let us denote by

(2.7) Mp f(X) = SUp <t | Pf (X))

the nontangential maximal function associated with the Poisson semigroup P, = e V=4,
According to Theorem 2.5, H) coincides with the following subspace of L'(dw):

(2.8) Hpop = {f € LN (dw) [ £lla,, , = IMpfllrcaw) < oo}
Moreover, the norms || f||z1 and | f|[z:  are equivalent.

Our task is to prove other characterizations of H by means of real analysis.

A. Characterization by the heat maximal function. Let
M f(x) = SUp x_r 2y [ Hi f (X)]

be the nontangential maximal function associated with the heat semigroup H; = e
and set

(2.9) Hoerr = {f € L (dw) | || f] = M fll 2wy < 00}

Theorem 2.10. The spaces Hy and H),, y coincide and the corresponding norms
||fHH1 and || f| are equivalent.

B. Characterization by square functions. For every 1 < p < oo, the operators
Q; = tv/—Ae ™~2 are uniformly bounded on LP(dw) (this is a consequence of the
estimates (4.4), (5.8) and (5.5)). Consider the square function

(211) <//| 2l )>>)m

and the space

tA

H!

max, H

H1

max, H

Hslquaro = {f S Ll(dw) | ||SfHL1(dw) < OO}
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Theorem 2.12. The spaces Hy and H,.. coincide and the corresponding norms
[ fley and [[SflLi(aw) are equivalent.

Remark 2.13. The square function characterization of H} is also valid for Q; =
2A A,
C. Characterization by Riesz transforms. The Riesz transforms, which are defined
in the Dunkl setting by

R;f =Ty(=A)""2f
(see Section 8), are bounded operators on LP(dw), for every 1 < p < oo (cf. [3]). In the

limit case p = 1, they turn out to be bounded operators from HJ into H\ C L'(dw).
This leads to consider the space

Hpsoo, = {f € L' (dw) || Rj f|l 1wy < 00, V1 <j < N}

Riesz

Theorem 2.14. The spaces H) and H}
and

coincide and the corresponding norms | f|| gy

iesz

[nalyes

Riesz

N
= | fllzr(aw) + ijl 1R f | L1 (duw) -
are equivalent.

D. Characterization by atomic decompositions. Let us define atoms in the spirit
of [23]. Given a Euclidean ball B in RY, we shall denote its radius by rp and its G-
orbit by O(B). For any positive integer M, let D(AM) be the domain of AM as an
(unbounded) operator on L?(dw).

Definition 2.15. Let 1 < ¢ < oo and let M be a positive integer. A function a €
L?(dw) is said to be a (1, q, M)-atom if there exist b € D(AM) and a ball B such that
o a=AMp,
e supp (A‘) C O(B) VO < (< M,
o [[(r30) b pagaw) < 3 w(B)TTN VO < £ < M.
Definition 2.16. A function f belongs to H(llquM) if there are \; € C, > .|\ < oo,
and (1, ¢, M)-atoms a; such that

(2.17) f= Zj Aja; -

In this case, set
£l .,y = i { 32 N1

where the infimum is taken over all representations (2.17).

Let us note that by the Holder inequality, ||a||r1(qw) < |G \1_%, where |G| denotes the
number of elements of G. Hence the series in (2.17) converges in L'(dw). The results of
the paper guarantee that the convergence holds in the Hardy space H! considered here
as well.
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Theorem 2.18. The spaces HX and H(qu’M) coincide and the corresponding norms are
equivalent.

Let us briefly describe the organization of the proofs of the results. Clearly, H (11’ o C
H(llqu’M) for 1 < g < ¢ < 0o. The proof (ug,uy,...,uy) € H' implies ufy € L' (dw),
which is actually the inclusion H C Hrlnax, p, is presented in Section 7, see Proposition
7.12. The proof is based on L-subharmonicity of certain function constructed from u
(see Section 6). The converse to Proposition 7.12 is proved at the very end of Section 11.
Inclusions: HA C Hpey, C HA are shown in Section 8. Further, H; ,/y C Hye, for

M large is proved in Section 9. Section 10 is devoted to proving Hrlnax, g =H! ax.p- Lhe

proofs of Hy..; C H, ) for every M > 1 are presented in Section 11. Inclusion:

H(llquM) C H,},, 5 for every M > 1 is proved in Section 12. Finally, H(11727M) C H! C

square

iesz iesz

H (11727 Ay ATe established in Section 13.

3. DUNKL KERNEL, DUNKL TRANSFORM AND DUNKL TRANSLATIONS

The purpose of this section is to collect some facts about the Dunkl kernel, the Dunkl
transform and Dunkl translations. General references are [11], [24], [30], [32]. At the end
of this section we shall derive estimates for the Dunkl translations of radial functions.
These estimates will be used later to obtain bounds for the heat kernel and for the
Poisson kernel, as well as for their derivatives, and furthermore upper and lower bounds
for the Dunkl kernel.

We begin with some notation. Given a root system R in RY and a multiplicity
function £ > 0, let

(3.1) N = Zaemk(a) and N = N+ 2.

The number N is called the homogeneous dimension, because of the scaling property
w(B(tx, tr)) = tNw(B(x,71)).

Observe that

w(B(x,r)) ~ N T (e, )| +7)H.
a€R
Thus the measure w is doubling, that is, there is a constant C' > 0 such that

w(B(x,2r)) < Cw(B(x,r)).

Moreover, there exists a constant C' > 1 such that, for every x € RY and for every
ro > 11 > 0,

N N
(3.2) o ()" < w(B(x 1)) (=),

T1 T1
Set
V(x,y,t) = max {w(B(x,1)),w(B(y,1))}.

Finally, let
(3.3) d(x,y) = min [|x — o(y)]

oeG
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denote the distance between two G-orbits O(x) and O(y). Obviously, O(B(x,r)) =
{yeRY |d(y,x) < r} and

w(B(x,r)) <w(O(B(x,7))) < |Glw(B(x,7)).

3.1. Dunkl kernel. For fixed x € RY the Dunkl kernel y — E(x,y) is the unique
solution to the system

{Tffz (€x)f VEERY,

f(0)=1.
The following integral formula was obtained by Rosler [28]:
(3.4) Bxy) = [ i),
RN

where 11, is a probability measure supported in the convex hull conv O(x) of the G-orbit
of x. The function E(x,y), which generalizes the exponential function e*¥) extends
holomorphically to CV x C¥ and satisfies the following properties:

E(0,y)=1 VyecCV,

E( ) (y> ) \V/X,YGCN,

E()\xy) E(x,\y) VAeC, Vx,yeCV,
E(o(x),0(y)) = E(x,y) YoeG, Vx,yecCV,
E(x,y)=E(x.y) VxyeCY

E(x,y)>0 Vx,yecRY,
|E(ix,y)| <1 Vx,y €RY,
09 E(x,y)| < X[ max,eq e ™Y Vae NV (Y), vxeRY, Vy e CV.

3.2. Dunkl transform. The Dunkl transform is defined on L!(dw) by

FHO =6 [ 0B ~i6) du(x)

Ck:/ i duw(x)> 0.
RN

The following properties hold for the Dunkl transform (see [24], [32]):

where

e The Dunkl transform is a topological automorphisms of the Schwartz space
S(RY).

o (Inversion formula) For every f € S(RY) and actually for every f € L'(dw)
such that Ff € L'(dw), we have

f(x) = (F)?f(—x) vV x e RV,

e (Plancherel Theorem) The Dunkl transform extends to an isometric automor-
phism of L*(dw).
e The Dunkl transform of a radial function is again a radial function.
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e (Scaling) For A € R*, we have

F(E) = FFAS),

where f\(x) = |A|™Nf(A"1x).
e Via the Dunkl transform, the Dunkl operator 7, corresponds to the multiplica-
tion by =i (n, - ). Specifically,

F(Tyf) =i(n,-) FF,
Ty(Ff) = =i F((n,-)f).

In particular, F(Af)(§) = —[I€IPFf(£).

3.3. Dunkl translations and Dunkl convolution. The Dunkl translation 7« f of a
function f € S(RY) by x € RY is defined by

(3.5) ref(y) = i / B(i€, x) E(i€, y) F(€) du(€).

RN
Notice the following properties of Dunkl translations:

e each translation 7, is a continuous linear map of S(R™) into itself, which extends
to a contraction on L?(dw),

o (Identity) 1o =1,

o (Symmetry) 7« f(y) =1y f(x) Vx,y € RN,V feSRY),

o (Scaling) Tx(fr) = (a1 f)a VA>0, VxeRY V f e SRY),

o (Commutativity) the Dunkl translations 7y and the Dunkl operators T¢ all com-
mute,

o (Skew-symmetry)

/RNTxf(Y) 9(y) dw(y) = » f(y)Txg(y) dw(y) VxeRM Vf geSRY).

The latter formula allows us to define the Dunkl translations 7, f in the distributional
sense for f € LP(dw) with 1 < p < co. In particular,

[ t@aue) = [ r5)du) vxeR”, v eSEY)

Finally, notice that 7, f is given by (3.5), if f € L'(dw) and Ff € L'(dw).

The Dunkl convolution of two reasonable functions (for instance Schwartz functions)
is defined by

(f*9)(x) = F(Ff)(Fg)l(x) = / (FHIUE) (F9)(€) E(x,i€) dw(§) Vx€RY

RN

or, equivalently, by

(fxg9)(x) = » fy) g(=y)dw(y) VxeR".
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3.4. Dunkl translations of radial functions. The following specific formula was
obtained by Résler [29] for the Dunkl translations of (reasonable) radial functions f(x) =

<l
(3:6) nfy) = [ oy mdin)  VxyeRY.

Here

A, y,n) = Vx> + Iy 2 = 2{y.m) = VIxI? = [l + Iy —]?
and [y is the probability measure occurring in (3.4), which is supported in conv O(x).
In the remaining part of this section, we shall derive estimates for the Dunkl transla-
tions of certain radial functions. Recall that d(x,y) denotes the distance of the orbits
O(x) and O(y) (see (3.3)). Let us begin with the following elementary estimates (see,
e.g., [3]), which hold for x,y € R and 7 € conv O(x):

(3.7) A(x,y,m) > d(x,y)
and
IVy{A(x,y,n)?}H < 2A(x,y,7),

(3.8) |00{A(x,y,n)*} <2 if B8] =2,
O5{AGx,y.n)?} =0 if (9] > 2.

Hence

(3.9) IVyA(x,y,n)| <1

and, more generally,
050 0 A)(x,y,m)| < Cs Alx,y, )" ¥ 5 eNY,
if 8 € C*°(R~{0}) is a homogeneous symbol of order m € R, i.e.,

(L)0(x)| < Cyla|™®  VaeR~{0},VBeN.

Similarly,
)00 Ay < O {1+ A=y} V5N,
if # € C®(R) is an even inhomogeneous symbol of order m € R, i.e.,

[(4)°0(z)| < Cy (1+]z))™" VaeeR,VBeN.

Consider the radial function
q(x) = e (L[~
on RY, where M > N and ¢); > 0 is a normalizing constant such that [,y ¢(x)dw(x) =1.

Notice that G(z) = cpr (14+22)™™/2 is an even inhomogeneous symbol of order —M. The
following estimate holds for the translates ¢;(x,y) = 7xq:(—y) of ¢:(x) = t Ng(t~'x).

Proposition 3.10. There exists a constant C' > 0 (depending on M) such that
0<q(xy)<CV(ixy )" Vt>0,Yxy€eR"
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Proof. By scaling we can reduce to t = 1. Fix x,y € RY. We shall prove that

/RN(I + A%, y,m)) Mdpx(n) ~ /RN(1 + A(x,y, 7)) M dpue(n)
=qxy) <CV(x,y, 1)

Set B = {y' € RY||ly’—y| < 1}. By continuity, the function B > y' — q(x,y’)
reaches a maximum K = q;(X,yo) > 0 on the ball B at some point y, € B. For every
y' € B, we have

(3.11)

0 SQ1 (Xa yO) —q1 (Xa y/) = {((j o A) (Xa Yo, 77) - ((j © A) (Xa y/a 77)} dﬂx(n)

/]RN/ 9s 1 (.9 + S(yo — '), n) ds dpx(n)

Y5

1
s;nyo-ywy/“ j/ (@ © A)(%, o, )| ds diin(n)
RN Jo
1
< Mlyo—vl / / (G0 A)(X, yo, 1) ds dpin(n)
RN JO

= lvo ¥ [ aleyds
<Myo—Y[l K.
Here we have used (3.9) and the elementary estimate
§(z)] < Mg(z) VazeR.
Hence

K K
a(xy) > axy0) — |a(x,50) —@1(x,¥)] > K — 5 =3

)

if y' € BN B(yo,r) with 7 = 5. Moreover, as w(B N B(yy,r)) ~ w(B), we have

1= /R (% y)duw(y) 2 / q(x,y") dw(y’)

BNB(yo,r)

> BB Blynr) > 2 wB).
2 C
Therefore
0<q(x,y) <K <Cuw(B(y,1)™"
We deduce (3.11) by using the symmetry ¢;(x,y) = ¢1(y, x). O

Consider next a radial function f satisfying
fE)] S A+~ vxeRY

with M >N and £ >0. Then the following estimate holds for the translates f;(x,y) =
Tfe(=y) of fi(x) =N f(t7"x).
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Corollary 3.12. There exists a constant C'>0 such that

d —K
eyl < OVeey. (1 I i vy erY.
Proof. By scaling we can reduce to ¢t = 1. By using (3.6), (3.7), and (3.11) we get

IS [ AGym) ™ (1Al n) duslo)

<COV(xy, 1) M (1+d(x, y))_'i.
[

Notice that the space of radial Schwartz functions f on RY identifies with the space
of even Schwartz functions f on R, which is equipped with the norms

(3.13) 1 flls, = max sup (1+]|z|)™ ‘ (i)Jf(:)s)’ V'meN.

0<j<m yeR dx

Proposition 3.14. For every x > 0, there exist C' > 0 and m € N such that, for
all even Schwartz functions 1 2 and for all even nonnegative integers €1, 0y, the
convolution kernel

Vsa(x,y) ZC?/ (sllelNw M (slel el 2w €l B(x, i) B(=y. i€) dw(€)

RN
satisfies

|\IIS¢(X7 y)| < C ||w{1}’|3m+21+52 ||w{2}’|3m+21+52

xmin{ (5) ()"} vy, s+ 07 (14 di’:?)_”,

for every s,t > 0 and for every x,y € RV,

Proof. By continuity of the inverse Dunkl transform in the Schwartz setting, there exists
a positive even integer m and a constant C' > 0 such that

sup ez (1+[|2]) M | F 7 f (2)] < C | flls,:

for every even function f € C™(R) with || f
t =1. Then

1(s&) 9t (s6) €241 (€)
According to Corollary 3.12, we deduce that
W, 1(x,y)| S ON " V(x,y, 1) (1+d(x,y) "
_ d(x,y)\ "
< & 714+ —22
<CNs"V(x,y,s+1) ( + st 1 ) )
. In the case s =1 >t > 0, we have similarly

s, < 00. Consider first the case 0 < s <

sn < C 0t s

m —

|¢{2}

Sm SerZl +4Lo

where N'=[[v|s, o 10 s

m-+Ly+Ly

14 _ d(X ) —K
X < 2V 1 1 1 Yy
|\Ill,t( 7.5>| > CN (X,}u t) ( —+ ! ) .
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The general case is obtained by scaling. O

4. HEAT KERNEL AND DUNKL KERNEL

Via the Dunkl transform, the heat semigroup H, = e'® is given by
Hif(x) = F (e P FF(©) ().
Alternately (see, e.g., [32])
Hf ) = Feiu) = [ ulxy) fy) duly)
RN

where the heat kernel h;(x,y) is a smooth positive radial convolution kernel. Specifically,
for every t > 0 and for every x,y € RY,

4.1 h — 1 (94)"N/2 _HXHQLHyHZE x oy e
-y y) = (207 <\/27t\/2_t> hi(—y),
where 2

he(x) = he(|x]) = ¢ ' (26) N2 e~

In particular,

ht(X7 Y> = ht(yv)c) > O,
/RN hi(x,y) dw(y) = 1,

d(x,y)?

(4.2) hi(x,y) < ¢t (2t) N2 e

4.1. Upper heat kernel estimates. We prove now Gaussian bounds for the heat
kernel and its derivatives, in the spirit of spaces of homogeneous type, except that the
metric ||x —y/|| is replaced by the orbit distance d(x,y) (see (3.3)). In comparison with
(4.2), the main difference lies in the factor tN/2, which is replaced by the volume of
appropriate balls.

Theorem 4.3. (a) Time derivatives: for any nonnegative integer m, there are constants
C,c > 0 such that

(4.4) 0" hy(x,y)| < CtV(x,y, Vi) Lecdooy?/t

for every t>0 and for every x,y € RY.
(b) Holder bounds: for any nonnegative integer m, there are constants C,c > 0 such
that

(45)  1Orh(x,y) = O hu(x, )| < CE (w) V(x,y, /1) e edey)? /e,

for every t>0 and for every X,y,y'€RY such that ||y—y'||<Vt.
(c) Dunkl derivative: for any & € RN and for any nonnegative integer m, there are
constants C,c>0 such that

(46) Tﬁ,x 8;71 ht (Xa y) S C t_m_l/2 V(X> Ya\/t_)_l 6_Cd(X7y)2/t 9
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for all t>0 and x,y € R".
(d) Mixed derivatives: for any nonnegative integer m and for any multi-indices «, 3,
there are constants C,c>0 such that, for every t > 0 and for every x,y € RY,

(4.7) \8?8,‘2‘85@();, y)‘ < Cm-5 -5 V(x,y, Vi) eyt

for every t>0 and for every x,y €RYN.

Proof. The proof relies on the expression

(4.8) hi(x,y) = /R Nilt (A(x,y,n)) dpx(n)

and on the properties of A(x,y,n).
(a) Consider first the case m=0. By scaling we can reduce to t=1. On the one hand,
we use (3.7) to estimate

RN

< o dlxy)?/s / =AY IS g ()
< x
On the other hand, it follows from Proposition 3.10 and Corollary 3.12 that

e ) S Vxy
]RN
for any fixed ¢>0. Hence

hi(x,y) S V(x,y,1) te dxw)?/s,

Consider next the case m > 0. Observe that 9/"h,(z) is equal to t~™h,(z) times a
polynomial in ””72 Therefore

(4.9) 07 hy(2)] < Con ™ hoy(2) -
By differentiating (4.8) and by using (4.9), we deduce that
|07 he(x%,5)| < Cont ™" hau(x,y) -

We conclude by using the case m=0. .

b) Observe now that b,(z) = 0,0/ hi(x) is equal to —=<h.(x) times a polynomial in
t tm+

2

- hence

t b

(4.10) 15.(2)] < Crnt™™ Y2 hy ().
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By differentiating (4.8) and by using (3.9) and (4.4), we estimate

orhu(xy) — P hux 3l = | [ {00 hu(AGe ) — AR AG, Y1) i)
‘/ / 5O hi(A(x y’+8(y—y’),n))d8dux(n)‘

< ly—v'I / / 15(AG yor 1) | dyi() dis

<C ly— y”/h2txys)d

d(x, )2
<cltm ly— y|| X, Vs, V2t ) e~ ¢ 55 ds .

In order to conclude, notice that
(4.11) V(x,y:,V2t) ~ V(x,y,Vt)

under the assumption ||y —y’|| <+/t and let us show that, for every ¢ >0, there exists
C >1 such that

3 dex,y)? d(x,ys o 40 y>2

(4.12) Cle2¢c™t <e "t <Ce
2)

As long as d(x,y) = O(v/t), all expressions in (4.1
the other hand, if d(x,y) > v/32¢, then

|d(x,y)? = d(x,y)?| = |d(x,y) — d(x,y,)| {d(x,y) + d(x,y:)}
<|ly—ysll {2d(x,y) + |ly =y} < V2t {2d(x,y) + V2t}
< V8td(x,y) +2t < %d(x, y)?+ 2t.

are indeed comparable to 1. On

Hence 3
Y d(X, y)2/t -2 S d(X> YS)2/t S 5 d(X, y)2/t + 2.

(c) By symmetry, we can replace T¢ x by T¢y. Consider first the contribution of the
directional derivative in T¢ . By differentiating (4.8) and by using (4.10) and (4.4), we
estimate as above

06,00 x| < €] [ 1Bi(AGx,y. 1) el
<Ot hy(x,y)
< Ct—m—1/2 V(X, y’\/{)—l e—cd(x,y)Q/t.

Consider next the contributions
atmht(x> Y) - atmht(xa er(Y))
(o, y)

(4.13)
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of the difference operators in T . If |[(a,y)|>/t/2, we use (4.4) and estimate sepa-

rately each term in (4.13). If |[{a,y)| < 1/t/2, we estimate again

OMhy(x,y) — O hy(x, 00 (y)) 1
(a,y) } < ﬁ/RN/O 16:(A(x, ys,m))|ds dux(n)

1
< Ct‘m_1/2/ hot(x,ys) ds
0

1 X, Vs 2
S Ct_m_1/2/ V(X, ys7 /2t)—1 e_cd( Z)t’) d
0

. d(x;yﬁ

<Ot V(xy Vi) e

In the last step we have used (4.11) and (4.12), which hold as |ly,—y| <+vt.
(d) This time, we use (3.8) to estimate

~ _m_@ ~
(4.14) ‘050{”@ (A(x,y, n))‘ < Cppt 2 ha(A(x,y, 1)) -
Firstly, by differentiating (4.8) and by using (4.14), we obtain
L8l
(4.15) ‘8{”85@(){, y)| < Crpt 2 ho(x,y) .

Secondly, by differentiating

h(x,y) = /Rth(x,z) hijo(z,y) dw(z) ,

by using (4.15) and by symmetry, we get
070200 hy(%,¥)| < Conap 775 75 hy(x,y).

We conclude by using (4.4).

4.2. Lower heat kernel estimates. We begin with an auxiliary result.

S

Lemma 4.16. Let f be a smooth bump function on R such that 0 < f < 1, f(:z) =1

if |z| < 3 and f(x) =0 if || > 1. Set as usual
Fo) = FUIxl) and  f(x,y) = mf (=)

Then 0 < f(x,y) <1 and f(x,y) =0 if d(x,y) > 1. Moreover, there exists a positive

constant ¢; such that

(4.17) veoup T¥) 2 CBLD)y

for every x € RY.

Proof. All claims follow from (3.6) and (3.7). Let us prove the last one. On the one

hand, by translation invariance,

f(x,y)dw(y) = . f(y) dw(y) > w(B(0,1/2)).

RN
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On the other hand,

F(x.y) du(y) = / . y) duly) < |Glu(Bx1) sup  f(xy).

O(B(x,1)) y€O(B(x,1))

This proves (4.17) with ¢; = %. O

RN

Proposition 4.18. There exist positive constants co and € such that
(&)

w(B(x,v1))’

for every t > 0 and x,y € RN satisfying |[|x —y|| < eVt.

ht (X7 Y) 2

Proof. By scaling it suffices to prove the proposition for ¢ = 2. According to Lemma

4.16, applied to h; = f, there exists c3 > 0 and, for every x € RY, there exists
y(x) € O(B(x,1)) such that

hi(x,y(x)) > c3w(B(x,1))

This estimate holds true around y(x), according to (4.5), Specifically, there exists 0 <
e < 1 (independent of x) such that

hi(x,y) 2 $w(B(x, 1)) Vye€ By(x)e).
By using the semigroup property and the symmetry of the heat kernel, we deduce that

ha(x,x) = /hl(x, y) ha(y,x) dw(y)

hl X, 2dw
> /B oo (x,y)” dw(y)
> w(B(y(x),e) (£)* w(B(x,1))72.

By using the fact that the balls B(y(x), ), B(x, 1), B(x,v/2) have comparable volumes
and by using again (4.5), we conclude that

h2(x> Y) 2 Cy w(B(X> \/E))_17
for all x,y € RY sufficiently close. O

A standard argument, which we include for the reader’s convenience, allows us to
deduce from such a near on diagonal estimate the following global lower Gaussian bound.

Theorem 4.19. There exist positive constants C' and ¢ such that

C
(4.20) hu(x,y) > min {w(Bx,v7)), w(B(y.v/E))}

for every t > 0 and for every x,y € RV.

_ _ 2
e—eleyl/t,

Proof. We resume the notation of Proposition 4.18. For s € R, we define [s] to be
the smallest integer larger than or equal to s. Assume that ||[x — y|[*/t > 1 and set
n = [4||x —y|?/(e*)] > 4. Let x, = x+i(y —x)/n (i =0,...,n), so that xg = x,
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X, =Y, and ||X;41 — x| = ||x — y||/n. Consider the balls B; = B(x;, $1/t/n) and
observe that

e [t e [t e |t t
I¥ies =l < Lyl + Il s — vl < S/ 20 S 8yl

ify; € B; and y; 1 € B;y1. By using the semigroup property, Proposition 4.18 and the
behavior of the ball volume, we estimate

hi(x,y) = /RN' "/RN ht/n(X> Y1)ht/n(Y1aY2) . 'ht/N(Yn—laY) dw(yi) . ..dw(y,—1)
/B /B t/n)) ...w(B(yn_l, M))_ldw(yl) codw(yn—1)

n—1 (Bl)UJ(Bn_l)
>y w(B(x,\t/n
N (Bx, Vt/m)™ w(B(x1,/t/n)) ... w(B(xX,_1,/t/n))
> BV = g w(Beo VD) e 2 Cu(Ble V) e
We conclude by symmetry. U

By combining (4.4) and (4.20), we obtain in particular the following near on diagonal
estimates. Notice that the ball volumes w(B(x,v/t)) and w(B(y,v/t)) are comparable
under the assumptions below.

Corollary 4.21. For every ¢ > 0, there exists C > 0 such that
Ct C

— < h(xy) S —————,

w(BV) w(B(x.v/1))
for every t>0 and x,y €RY such that ||x—yl| <cVt.
4.3. Estimates of the Dunkl kernel. According to (4.1), the heat kernel estimates
(4.4) and (4.20) imply the following results, which partially improve upon known esti-
mates for the Dunkl kernel. Notice that x can be replaced by y in the ball volumes
below.
Corollary 4.22. There are constants ¢ > 1 and C > 1 such that
C lxl 2+ 1112

-t Il 2+ Ly 112 > S >
e - LR o y)
wBE)C SExY) < UBmD) ¢ ’
for all x,y € RN. In particular,
e for every e > 0, there exists C' > 1 such that
c-! Il 2+ 1y 112 C 112+ 1y 112
- e 2 < F < — e "z
wBD)C S S umy e
for all x,y € RY satisfying |[|x —y|| < ¢;
e there exist ¢ > 0 and C > 0 such that
E(lx,y) > ¢ e>\(1—6|lx—yll2)’

w(B(VAx,1))
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for all \> 1 and for all x,y € RY with ||x|| = ||y|| = 1.

5. POISSON KERNEL IN THE DUNKL SETTING

The Poisson semigroup P, = e~ V=2 is subordinated to the heat semigroup H; = e'4
by (2.2) and correspondingly for their integral kernels
du

5.1 Pe(X,y :7r_1/2/ e he(xy)—.
(5.1) ((x.y) g ey

This subordination formula enables us to transfer properties of the heat kernel h,(x,y)
to the Poisson kernel p;(x,y). For instance,

pt(X7 y) = pt(yv X)> 07

/RNpt(x, y)dw(y) =1,

(5-2) pt(xv Y) = Txpt(_Y>7
where

~ / 2 2 _%
(5.3) pe(x) = pe([x]]) = ¢, t (£ + [1x]|*)
and N

, 2N

¢, = ———=>0.

ﬁck

The following global bounds hold for the Poisson kernel and its derivatives.

Proposition 5.4. (a) Upper and lower bounds: there is a constant C>1 such that
ct t C t
ooyt -yt -yl =P S Vv deey)) T dexy)
for every t > 0 and for every x,y € RV,
(b) Dunkl gradient : for every & € RY | there is a constant C' > 0 such that
C 1
Vix,y, t+dxy)) t +d(xy)

(5.5)

(5.6) | Teypi(x,y)| <

forall t >0 and x,y € RV,
(c) Mized derivatives : for any nonnegative integer m and for any multi-index [3, there
is a constant C'>0 such that, for every t > 0 and for every x,y € RV,

1 if m=20,

1+ 49 0.

5.7)  |ralp(xy)| < Cplxy) (t+dx,y)) " % {

Moreover, for any nonnegative integer m and for any multi-indices 3,3, there is a
constant C >0 such that, for every t > 0 and for every x,y € RY,

(58) |07 050] pi(x.y)| < CH P g (x ).
Notice that, by symmetry, (5.6) holds also with T¢ « instead of T .
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Proof. (a) The Poisson kernel bounds (5.5) are obtained by inserting the heat kernel
bounds (4.4) and (4.20) in the subordination formula (5.1). For a detailed proof we
refer the reader to [17, Proposition 6].

(b) The Dunkl gradient estimate (5.6) is deduced similarly from (4.6).

(c) The estimate (5.7) is proved directly. As (¢, z) — (t>+22)~(N+1)/2 is 3 homogeneous
symbol of order —N—1 on R?, we have

10 ()| < Ci o+ ) 5ula)
5.9 T _ Vi>0,VzeR,
59 {|a:”a£pt<x>|sCm,ﬁt—1<t+|a:|>1—m—ﬁpt<z>

for every positive integer m and for every nonnegative integer 8. By using (3.6), (3.7),
(5.2), (5.3) and (5.9), we estimate

90,0 9|< [ 10§ AGx, v, 1) el

< Cg/RN (t+ Ay, m) " B AG, y, 1) dis(n)

-8

< Cp (t+d(x,y) "'p,(x,y)

and, similarly,
m - 1-m—|3
(0700 P (x,¥)| < Cs 7 (t+d0xy) " pix, ),
for every positive integer m. Finally, (5.8) is deduced from (5.7) by using the semigroup
property. More precisely, by differentiating

Dt (Xa y) = /RN Pi/2 (Xa Z) pt/2(z> Y) dw(z) )

by using (5.7) and by symmetry, we obtain

‘8?18585/1%()(7 y)‘ 5 t_m_‘6|_‘6/| /N pt/2(X7 Z) pt/2(27 Y) dw(z) = t_m_wl_wl‘ pt(X7 Y> '
R
O

Notice the following straightforward consequence of the upper bound in (5.5):
(5.10) Mpf(x)SY_ Murf(o(x)),
ceG

where My denotes the Hardy-Littlewood maximal function on the space of homoge-
neous type (RY, ||x —y||, dw). Likewise, (4.4) yields

M) Murf(o(x)).
ceG

Observe that the Poisson kernel is an approximation of the identity in the following
sense.
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Proposition 5.11. Given any compact subset K C RN, any r > 0 and any € > 0,
there exists to = to(K,r,e) > 0 such that, for every 0 <t < tg and for every x € K,

/”_ ” n(x,y)dw(y) < e.

Proof. Let K be a compact subset of RY and let r,e > 0. Fix xo € K and consider
f € C(RY) such that 0 < f <1, f =1 on B(xg,7/4) and supp f C B(xp,7/2). B
the inversion formula,

£ = P =it [ (1= Bl x) FF(€) du(e),

hence
(5.12) 160 = PGl < 6! [ (1= 140 FF© ).
As Ffe S(RY), (5.12) implies that there is to=to(xg,7,€) >0 such that
sup |f(x) — Pf(x)|<e VO<t<ty.
x€RN

In particular, for every 0 <t <ty and for every x € B(xg,r/4), we have

0 (X, y) dw =1- (X, y) dw
< /” ) y”>Tp( y) dw(y) /n ) ynqp( y) dw(y)
<f(x) - /H P ) duly) <1769 = I (9<e.

We easily conclude the proof by compactness. O
The following results follow from (5.5), (5.10), and Proposition 5.11.

Corollary 5.13. Let f be a bounded continuous function on RY. Then its Poisson
integral u(t,x) = P, f(x) is also bounded and continuous on [0,00) x RV,

Corollary 5.14. Let f € LP(dw) with 1 < p < 00. Then for almost every xc RV,

lim sup |Pf(y)— f(x)]=0.
t—0 lly—x||<t

Remark 5.15. The assertion of Proposition 5.11 remains valid with the same proof if
pi(x,y) is replaced by ®;(x,y) = 7®:(—y), where ® € S(RY) is radial, nonnegative,
and [ ®(x) dw(x) = 1.

6. CONJUGATE HARMONIC FUNCTIONS - SUBHARMONICITY
For o0 € G, let f7(x) = f(o(x)). It is easy to check that
(6.1) Tef?(x) = (Tref)"(x), 0€G, x,§€RY,

(Af7)(x) = (Af)7(x).
Let {0y;};_; denote the matrix of o € G written in the canonical basis ey,...,ex of

RY. Clearly, {oi;}};_, belongs to the group O(N,R) of the orthogonal N x N matrices.
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Lemma 6.2. Assume that u(xg,x) = (ug(xg, %), u1(xo,X), ..., un(xo, X)) satisfies the
Cauchy-Riemann equations (2.4). For o € G, set

(6.3)  Upo(xo,x) = ug(x0,0(X)), Uy (z0,x Zawul xg,0(x)), j=1,2,...,N.
Then u,(xo,x) = (tso(T0, X), Us1 (20, X), . . .,umN(xo,X)) satisfies the Cauchy-Riemann
equations. Moreover,

(6.4) [, (w0, x)| = [u(wo, o(x))].

Proof. Let 1 <k,j < N. Then

N N
(6.5) Tite (2o, x Z 0ii Tk (ui(xo, 0)) (%) = ZUU ZO’gk Tou;) (o, 0(x)),
=1 =1

and, similarly,

(6.6) Tt (0, X ZUszU@ (Tows) (20, 0(x)).
=1

Recall that Tyu; = Tjuy. Hence, (6.6) becomes

(6.7) Tt (0, X Z%Z% (True) (20, 0(x)).
i=1

Now we see that (6.5) and (6.7) are equal. The proof that Tyuy,o = Touey is straight-

forward. The second equality of (2.4) follows directly from (6.7) and the fact that

ol =o".

Since {o;;} € O(NV,R),

N
\Uoo(Ioa | _'_Z |u0'j Ty, X )| - |u0 Zo, 0 ‘ + Z Zamuz Zo, 0
(68) 7j=1 7j=1 |i=1
= |uo(0, 7 (x))[* + Z [ui(xo, o )
which proves (6.4). O
Let
(6.9) F(t,x) = {u,(t,x) }sec-

We shall always assume that u and u, are related by (6.3). Then, by (6.4),

F(xg,x ZZ [t 0(z0, %) > =D [ue (w0, %) > = ) [u(xg, o(x

oeG (=0 oeG oeG

Observe that |F(zg,x)| = |F(x,0(x))| for every o € G.
Consequently, for every o € R,
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i\f: (Uaz (2o, x Ua,e(a?o,aa(x))> Uy (T, X)

oeG (=0

Slyy

oeG (=0

(6.10)

‘ 2

U t(T0, X) — Uy (T0, 00 (X))

We shall need the following auxiliary lemma.

Lemma 6.11. For every ¢ > 0 there is § > 0 such that for every matriz A = {a;; }\,
with real entries a;; one has

JAIP < e ((tr A + > (ay — aza)?) + (1 - 6)| AllEs,
i<j
where ||A|lus denotes the Hilbert-Schmidt norm of A.

4,j=0

Proof. The lemma was proved in [12]. For the convenience of the reader we present a
short proof. The inequality is known for trace zero symmetric A (see Stein and Weiss
[36, Lemma 2.2]). By homogeneity we may assume that ||A|lgs = 1. Assume that
the inequality does not hold. Then there is ¢ > 0 such that for every n > 0 there is

A, = {a{"} Ni—o» || Anllus = 1 such that

4217 > (e + Sl - a7) + (1= 1) Il
1<J
Thus there is a subsequence ng such that A,, — A, [|A||us = 1 and

JANE = e((trA)? + > (s - a50)?) + Al
i<j
But then A = A* and trA = 0, and so, ||A|> > ||A||}g. This contradicts the already

known inequality. U

We now state and prove the main theorem of Section 6, which is the analog in the
Dunkl setting of a Euclidean subharmonicity property (see [34, Chapter VII, Section
3.1]) and which was proved in the product case in [12, Proposition 4.1]. Recall (2.3)
that £ =T¢ + A,

Theorem 6.12. There is an exponent 0 < q < 1 which depends on k such that if u =
(g, uy, ..., uy) € C? satisfies the Cauchy-Riemann equations (2.4), then the function
|F|? is L-subharmonic, that is, L(|F|?)(t,x) > 0 on the set where |F| > 0.

Proof. Observe that |F|? is C* on the set where |F| > 0. Let - denote the inner product
in RVHIGT For j =0,1,..., N, we have

0u, [P = gl F|"2((0,,F) - F)

2
OLIFI" = ala = DIFI"((0,F) - F) +alFI2((82 F) - F + |0, FI).
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Recall that |F(xg,x)| = |F(zo,0(x))|. Hence,

LIFI" = qlq = 2)| P~ 4{(i(aeJF ) !

=0
8]F+2Z aF) F+Z|8 F|}

Since T;1; = T,T;, we conclude from (2.4) applied to u, that for £ = 0,1,..., N, we
have

(6.13)

Mz

+qIFIq‘2{(

7

Il
=)

J

Za U g :L,O’ +2 Z a uaé To, X Z k’ |2UUZ($Oa ) UU,Z(I’OaO_a(X)).

6R+ X acR+ (o, x)?
Thus,
(Z&2 F 42 Z ) r
erR+ a, X
N N
ZZ <Zagjucr£ Lo, X _'_2 Z 8 alll xO?X))UU,f(x()?X)
oc€eG f= o, X
o (0, %) — U (0, 00 (X))
(6.14) =SSN k(o) |apiefte X~ B0 0e R (20, x)

(o, x)?

_ Z k ||Oé|| ZZ (umg(l'o,x) — ume(l’o,UQ(X)))UU,Z($OaX)

acR+ ceG (=0
1 k)]af? e & i
=5 2 T 23 (el ) (o, ()
aERt ) oeG (=0

Thanks to (6.13) and (6.14), it suffices to prove that there is 0 < ¢ < 1 such that

N 2
(2—g¢q ; ( (O, F'(20,x F(:):O,x)>

(6.15) —\F 20, %)[? ZZ Z 'O‘” (umg(xo,x)—umg(ajg,aa(x)))z

ce€G /=0 aeRt

+ | F(xo,x (Z\@eJF Zg, X )
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Set
aeoucr,(] 860“0’,1 s 8eoucr,N
B . 861u070 aelug,l P 861u(,7N
- =
aeNua,O aeNua,l s aeNua,N

Let B = {B,}se¢ be matrix with N + 1 rows and (N + 1) - |G| columns. It represents
a linear operator (denoted by B) from RW+11Gl into RV, Let ||B|| be its norm.
Observe that for 0 < ¢ < 1, we have

C-0Y (@,F) F) < - qlFFIBI

N
PP 10, FP = |FPBls:
=0

Clearly,

IBII* < D IBA 1% IBlifis =D IBollis.

ceG oeG

Therefore the inequality (6.15) will be proven if we show that

(2=a) ) IB:l* <D 11Bslliis

oceG oeG

T 3) 3) DL L RIER AN §

UEG {=0 acR*

(6.16)

Recall that

al ko) (a,e))? k(a){a,e;)?
”:Zzﬁ; | ﬁivn? | :ZZ ( |)|iv||2 |

(see (3.1)). By applying first the Cauchy-Riemann equations (2.4) and next the Cauchy-
Schwarz inequality, we obtain

(6.17)
tI‘B ( Z Z k‘ a ej uU’j(IO’X) Zau;;(xovaa(x))>
j=1 a€R* ’
al (a, ej Ua,j(ifo,x) - Ua,j(ifo,aa(x)))2
= (;g{; e X;g,; lod*k(a (@, x)? )

<7 2 llalPk@) (0,4 (@0, %) = 0,y (@0, 7a(x)))"

(o, x)?



HARMONIC FUNCTIONS AND THE HARDY SPACE H' IN THE DUNKL SETTING 27

Utilizing again the Cauchy-Riemann equations (2.4), we get

(6.18)
Z (Dstto j (0, %) — ot (0, %))
- U 0(T0, X) — U p(T0, 0a (X)) 2
=y (3 Ke)ae;) o )

+ Z < Z —k(a){a, €;) Ug,j(l’o,X) — qu,j(xoaUa(X))

(@, %)

' Ugi(T0, X) — Uy i (T0, 00 (X)) 2
) {@x) )

<2<ZZ e >(ZZ ol k(e 222 ><_a?§§5xo’%(x))) )

Jj=0 aeR* Jj=0 acR*

Using the auxiliary Lemma 6.11 together with (6.17) and (6.18) we have that for every
e > 0 there is 0 < § < 1 such that

DB P < (1=6) ) 1Bl

oceG ceG
2
uo‘ (,’,Uo, ) —U0—7'($0,UQ(X)>
F3er 0 3 etk et sl ).
0€G j=0 acRt ’

Taking ¢ > 0 such that 3ey < 7 and utilizing (6.19) we deduce that (6.16) holds for ¢
such that (1 —4§) < (2 —¢q)7". O

(6.19)

7. HARMONIC FUNCTIONS IN THE DUNKL SETTING.

In this section we characterize certain £-harmonic functions in the half-space R
by adapting the classical proofs (see, e.g., [18], [34] and [36]). Let us first construct an
auxiliary barrier function.

7.1. Barrier function. For fixed § > 0, let vy,...,v, € RY be a set of vectors of the
unit sphere in SV = {x € RV : ||x| = 1} which forms a d-net on SN1. Let M, e > 0.
Define

(7.1) Vu(To,x) = 2Mexg +5E< X vm> cos (%xo), m=1,...,s,

(cf. [34, Chapter VII, Section 1.2] in the classical setting). The function V,, is L-
harmonic and strictly positive on [0,e71] x RY. Set

an E V x0>
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By Corollary 4.22,

(7.2) lim V(zp,x) = oo uniformly in zo € [0,e7"].

lIx[[=o0

7.2. Maximum principle and the mean value property. As we have already re-
marked in Section 2, the operator £ is the Dunkl-Laplace operator associated with
the root system R as a subset of R'"™ = R x RY. We shall denote the element
of R"™Y by & = (z9,x). The associated measure will be denoted by w. Clearly,
dw(x) = w(x)dx dzg. Moreover, E(x,y) = e E(x,y). We shall slightly abuse no-
tation and use the same letter o for the action of the group G in R so o(x) =

o (2o, x) = (20, 0(x)).
The following weak maximum principle for L£-subharmonic functions was actually
proved in Theorem 4.2 of Résler [27].

Theorem 7.3. Let Q C RN be open, bounded, and Q C (0,00) x RN. Assume
that Q is G-invariant, that is, (zo,0(x)) € Q for (xo,x) € Q and all 0 € G. Let
feC*(Q)nNC(Q) be real-valued and L-subharmonic. Then

max j = max jJ.
i f = max f

Let fU"}(z) = xp(or)(x) be the characteristic function of the ball in R*V. Set
flrzy) =1 f" (~y).

Clearly, 0 < f(r,z,y) < 1. The following mean value theorem was proved in [20,

Theorem 3.2].

Theorem 7.4. Let Q C R be an open and G-invariant set and let u be a C? function
in Q. Then u s L-harmonic if and only if u has the following mean value property: for
alla:EQandp>Osuch that B(x, p) C ), we have

u(x) = w(BO.) /fra:y y)dw(y) for0<r<p/3.

7.3. Characterizations of £-harmonic functions in the upper half-space.

Theorem 7.5. Suppose that u is a C? function on RXN. Then u is a Poisson integral
of a bounded function on RY if and only if u is L-harmonic and bounded.

Proof. The proof is identical to that of Stein [34]. Clearly, the Poisson integral of a
bounded function is bounded and £-harmonic. To prove the converse assume that u is
L-harmonic and bounded, so |u| < M. Set f,(x) = u(%,x) and wu,(z0,x) = Py, f(x).
Then U, (o, x) = u(xo + 2,X) — (w9, %) is L-harmonic, |U,| < 2M, continuous on
[0,00) x RN and U,(0,x) = 0. We shall prove that U,, = 0. Fix (yo,y) € Rf:’N. Set

U(xg,x) = Up(xg,x) + V(x0,X)

and consider the function U on the closure of the set Q = (0,e7") x B(0, R), with € > 0
small and R large enough. Then U is L-harmonic in €2, continuous on €2, and positive
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on the boundary of the 9. Thus, by the maximum principle, U is positive in , so

u ET ET
Un(yo,y) > —2Meyo — ) €E<Zy, vm) cos (Zyo)-

m=

Letting ¢ — 0 we obtain U,(yo,y) > 0. The same argument applied to —u gives
—Un(Y0,y) > 0, so U, =0, which can be written as

(76) ulon +5x) = Pofu) = [ pas(x.3)50ly) duly)

Clearly |f,| < M, so by the *-weak compactness, there is a subsequence n; and f €
L>*(RY) such that for ¢ € L(dw), we have

lim [ o(y)fp,;(y) dw(y) = / e(y)f(y) dw(y).

Jj—o0

So,

a3 = tim u(an + ) = im [ (x.3) o, ) du(y)

Jj—00 n;

:/m@ymwmm-
]

Corollary 7.7. If u is L-harmonic and bounded in R}:’N then u has a nontangential
limit at almost every point of the boundary.

Theorem 7.8. Suppose that u is a C*-function on RPN, If 1 < p < oo then u is a
Poisson integral of an LP(dw) function if and only if u is L-harmonic and
(7.9) sup [[u(zo, )| Lr(aw) < o0

xo>0
If p = 1 then u is a Poisson integral of a bounded measure w if and only if u is L-
harmonic and
(7.10) sup ||u(zo, )| L1 (dw) < 00-

zo>0
Moreover, if u* € L*(dw) (see (2.6)), then dw(x) = f(x)dw(x), where f € L'(dw).
Proof. Assume that either (7.9) or (7.10) holds. Then, by Theorem 7.4, for every € > 0,
(7.11) sup sup |u(zy +¢,x)| < C: < 0.

20>0 xeRN

Set fo(x) = u(%,x). From Theorem 7.5 we conclude that u(: + zg,x) = P, fu(x).
Moreover, there is a subsequence n; such that f,,, converges weakly-* to f € LP(dw) (if
1 < p < o0) or to a measure w (if p = 1). In both cases u is the Poisson integral either
of f or w. If additionally u* € L!(dw), then the measure w is absolutely continuous

with respect to dw. l
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7.4. Proof of a part of Theorem 2.5. We are now in a position to prove a part of
Theorem 2.5, which is stated in the following proposition. The converse is proven at
the very end of Section 11 (see Proposition 11.19).

Proposition 7.12. Assume that u € H'. Then
(7.13) 0|21 dw) < Cllull

Proof. Fix € > 0. Set u;.(zo,x) = u;(e + zo,x), fj(x) = uj(e,x). Then, by Theorem
7.4, the L£-harmonic function u;.(x¢,x) is bounded and continuous on the closed set
[0,00) x RY. In particular, f;. € L> N L'(dw) N C?. By Theorem 7.5,

Ujo(x0,X) = Py, fe(x).
It is not difficult to conclude using (5.8) (with m = 0) that limj|z, x)[—c |%j,(€0, X)| = 0.
Thus also lim|—eo fj(x) = 0. Set u. = (uge, t1, ..., un,). Clearly, u. € H'. Let
F.(x9,x) = F(e + x9,%x), where F(xg,x) is defined by (6.9). Set f_(x) = |F(e,x)|.
Let 0 < ¢ < 1 be as in Theorem 6.12 and p = ¢~' > 1. Observe that the function
|F. (2, x)|? — Py, (F)(x) vanishes for zy = 0 and

lim (\Fe(:co,x)\q . Pxo(fg)(x)) —0.

l|(zo,3)]| =00
So, by Theorem 6.12 and the maximum principle (see Theorem 7.3),
(7.14) u(e + o, x)|* < [Fz(m0,x)|? < Poy (£3) (%).
Set uf(x) = SUP|x_y|<z, |1(E + T0,y)|. Then, by (7.14) and (5.10),
[l @y < Coll P ) = Coll Fellr(awy < Collullze

Since uf(x) — u*(x) as ¢ — 0 and the convergence is monotone, we use the Lebesgue
monotone convergence theorem and get (7.13). O

From Theorem 7.8 and Proposition 7.12 we obtain the following corollary.

Corollary 7.15. If u € H', then there are f; € L'(dw), j = 0,1,...,N, such that
|fj(x)] <u*(x) and u;(zo,x) = Py, f;(x). Moreover, the limit lim,,_ou;j(xo, x) = f;(x)
exists in L'(dw).

8. RIESZ TRANSFORM CHARACTERIZATION OF HJ

8.1. Riesz transforms. The Riesz transforms in the Dunkl setting are defined by

FURE) =~ (FANE), 5= 1.2,
They are bounded operators on L?(dw). Clearly,
Rif =T, (-A)2f=— 1 MT Ay at
if =T, == _Jm e[ Tt

and the convergence is in L?(dw) for f € L*(dw). It follows from [3] that R; are bounded
operators on LP(dw) for 1 < p < oc.
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Our task is to define R; f for f € L'(dw). To this end we set
= {p € L*(dw) : (F)(§)(L + [I€IN" € L*(dw), n=0,1,2,...}.

It is not difficult to check that if p € Tx, then ¢ € Co(RY) and Rjp € Co(RN)N L*(dw).
Moreover, for fixed y € RY the function p;(x,y) belongs to T;. Now R, f, for f €
L'(dw), is defined in a weak sense as a functional on Ty, by

(R, /f Ry (x) dw(x).

8.2. Proof of Theorem 2.14. Assume that f € L'(dw) is such that R;f belong to

LY(dw) for j = 1,2,..,N. Set fo(x) = f(x), fi(x) = R;f(X), uo(z0,Xx) = Py, f(x),
uj(xg,%x) = Py, fj(x). Then u = (ug, uy, ..., u,) satisfies (2.4). Moreover,

sup /N 4y (0, 5)| dw(x) < ||l 1@y for j = 0,1,..., N.
R

x>0

Thus u € H' and

N
1 ey = lallse < 1F ) + D 1Rl -

j=1
We turn to prove the converse. Assume that fy € HA. By the definition of HX
there is a system u = (ug, uy, ...,uy) € H' such that fo(x) = lim,, 0 uo(xo,x) (con-
vergence in L'(dw)). Set f;j(x) = lim,, o u;(xo, ), where limits exist in L'(dw) (see
Corollary 7.15). We have u;(xg,x) = Py, fj(x). It suffices to prove that R;fy = f;.
To this end, for e > 0, let f;.(x) = u;(e,x), u;(2o,x) = u;(xo + €,x). Then f;. €
LY(dw) N Co(RYN). In particular, f;. € L*(dw). Set g; = R;foe, vj(20,X) = Prygi(x).

Then v = (uge,v1,...,vy) satisfies the Cauchy-Riemann equations (2.4). Therefore,
Tiuge(xo,x) = Touje(xo,x) = Tovj(xe,x). Hence, u; (xo,x) — vj(z0,x) = ¢j(x).
But limgy oo tje(T0,X) = 0 = limy, 0o v(z9,x) for every x € RY. Consequently,

u; (20, %) = v;(29,x). Thus, fj. = Rjfoe. Since lim.o f;. = f; in L'(dw) and
R;fo. — Rfo in the sense of distributions, we have f; = R; f.

9. INCLUSION H{, , ) C H)

In this section we show that the atomic space H(qu’ M) with M > N is contained in
the Hardy space HA and there exists C' = Cj, ., such that

(9-1) 1y < Cllf Nl

Let f € H} (1.g.M)- Accordlng to Theorem 2.14, it is enough to show that R;f € L'(dw)

and || R; f||L1(dw C’||f||H(11 y By the definition of the atomic space, there is a

sequence a; of (1,q, M) atoms and \; € C, (\;) € ¢!, such that f = Y, \ja; and
YoMl < 20 fll g Observe that the series converges in L'(dw), hence R;f =

(1,q,M)
> AjRja; in the sense of distributions. Therefore it suffices to prove that there is a

constant C' > 0 such ||R;al/z1aw)y < C for every a being a (1, ¢, M)-atom. Our proof

(1,q,M)"



32 J-PH. ANKER, J. DZIUBANSKI, AND A. HEJNA

follows ideas of [23]. Let b € D(AM) and B(yg,r) be as in the definition of (1,q, M)
atom. Since R; is bounded on L(dw), by the Hélder inequality, we have

I1RjallLr o(B(yo.ar)) < C-

In order to estimate R;a on the set O(B(yo,4r))¢ we write

o dt
Ri.a = c"/ T, e a—
2
" dt e dt
= c”/ T;xe®a— + c”/ T e (A)YMp—
k 0 Js \/TT k 7,,2 Js ( ) \/{
2
" dt o dt
= c”/ T xe®a— + c”/ T;xOM et 2 b—
k 0 Js \/TT k 7,,2 Js t \/{

= j70a + ijoa.

Further, using (4.6) with m = 0 together with (3.2), we get

Rl <C [ [ By, Vi) e 0 aly)| duty)ds
(9.2) o RT
r +1

<C

d(x, y)N+1w(B(yo, 7))
To estimate R;..a we recall that ||b]| 11w < r*". Using (4.6) with m = M, we obtain

|Rja(x)| < C ) M (B(y, Vt)) Tt O b(y) | dw(y)dt
(9.3) / /RNT
C

2M

<
—d(x,y)*Mw(B(yo, 7))
Obviously, (9.2) and (9.3) combined with (3.2) imply ||R;al/z1(o(B(year)e) < C.

10. MAXIMAL FUNCTIONS

Let ®(x) be a radial continuous function such that |®(x)| < C(1 + [|x||)™" " with
k > N. Let ®;(x) =t V(¢ 'x) and &;(x,y) = 7xP:(—y). Then, by Corollary 3.12,

d(xt, y) > -

[@ix,3) < OV y, 7 (1+

Set M@,af(x) = SU'p||x—y||<at |(I>tf(y)|> where

Bof(x) = By x f(x) = / Bu(x,y) f(y) du(y).

RN
If a = 1, then we simply write Mg. We say that an L'(dw)-function f belongs to H&laxﬂ)
if Mg f € L'(dw). Then we set [|fllg1 = [Mafll1(aw)- Recall that if &(x) = p1(x)
(see (5.3)), then we write Mp, H, p and || - |1, for the corresponding maximal

function, space, and norm respectively (see (2.7) and (2.8)).



HARMONIC FUNCTIONS AND THE HARDY SPACE H' IN THE DUNKL SETTING 33

10.1. The space N. The space Hy,, 4 is related with the tent space N.

Definition 10.1. For a > 0, A > N, and a function u(t,x) denote

t A
i) = s fut,y)l, wrx) = s Julty)l(——)
Ix—yll<at yERN >0 ly —x[| +1

The tent space N, is defined by
N = {ult,) ¢ Jullxg, = a2l cr(aw) < o0}
If a = 1, then we write NV, ||ul|x, and u* (cf. (2.6)).
Obviously, if u(t, x) = @, f(x), then |f|lu,_ , = Jullx-

Lemma 10.2. There are constants C,Cy, cy > 0 such that

a+b\"
(103 fule < ()l
(10.4) allully < uxllzr@w) < Callulln-
Proof. The proofs are the same as those in [35, Chapter II] and [19, page 114] . O

If O C RY is an open set, then the tent over Q is given by
Q= ((O, 00) X RN) \ U [(x), where I'(x) = {(t,y) : [|[x — y| < 4t}.
xeQe

The space N admits the following atomic decomposition (see [35]).

Definition 10.5. A function A(t,x) is an atom for A if there is a ball B such that

e supp A C B,

o A~ < w(B).

Clearly, ||A|lx < 1 for every atom A for M. Moreover, every v € N can be written
as u =), \;jA;, where A; are atoms for N, \; € C, and >~ |\ < Cllufla-
Proposition 10.6. Let u(t,x) = P,f(x), v(t,x) = t"9-P, f(x). Then for f € L'(dw)
we have

[olly < Callulla

Proof. Assume that |ully < co. Clearly, v(t,x) = 2"Qy2 Pijo f(x), where Q; = t" LD,
Set ut!(t,x) = u(%,x). Then

[t ln < Cllullar

By the atomic decomposition we write u{l} = Zj cjAj, where A; are atoms for N,
¢; € C,and )’ |¢j| S |Julla, (see Definition 10.5). Thus, by Lemma 10.2, we have

'U(t> X) =2" Z Cth/2Aj(t> X),
J

Qt/2Aj(taX) = /N Qt/2(xa Y)Aj(t>Y)dw(Y)~
R
From Proposition 5.4 and Definition 10.5 we conclude that ||Q;A;(t,x)|[x < C. O
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10.2. Calderon reproducing formula. Fix a positive integer m sufficiently large. Let
© € C™(R) be an even function such that ||O]|sm < 0o (see (3.13)). Set O(x) = O(||x|]).
Assume that [,y ©(x)dw(x) = 0. The Plancherel theorem for the Dunkl transform
implies

(10.7) 19: % F) L2+ n ity < ClIF Il 22(aw)-

By duality,

(10.8) e P GOl 2t < CIE () 12 uoe
where

mF(x)=/Ooo(@t*F dt //RN@txy (t,y) dw(y )dt

Let ®(x) > 0 be a radial C* real-valued function on RY supported by B(0,1/4),
®(x) =1 on B(0,1/8). Let x be a positive integer, k > N /2. Set

U(x) = AM(D x B)(x) = (A"®) * (A"D)(x).

Then W is radial and real-valued,
supp ¥ C B(0,1/2), / U(x)dw(x) =0,
RN

FU(€) = cill€]|*™(F2)*(€) = exll€]| | FP (&)
Clearly, from (3.6) and (3.7) we get
(10.9) O, (x,y) =0 ifd(x,y)>t/4 and Vu(x,y)=0 if d(x,y)>t/2.

Further, for every t > 0, we have

/RN Uy (x,y) dw(y) = /RN U, (x,y) dw(x) = 0.

Moreover, for n = 0,1,2,..., and f € L?(dw), we have the Calderén reproducing
formulae:

e dt e dt
f = C;L/ \I]ttn(M)ne_tme = C// t2\IltA6t2Af7
0 0
and the integrals converge in the L?*(dw)-norm. )
_ Fix a positive integer m (large enough). Let Pl (x) = dU(||x|), 7 = 1,2, where
dU} are even C™-functions such that

(10.10) &V gm < 00

and

(10.11) / VN x)dw(x) =1, j=1,2
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Taking instead of ®4} their dilations ®¥ }(X) = s Noll}(x/s) if necessary, we may
assume that

o0 Lt
(10.12) f:c;.’/ \Iftcbt“}f?, feLldw), j=1,2,
0

where the integrals converge in the L?-norm. Moreover, by Lemma 10.2, there is a con-
stant Cy > 0 such that if «l}(¢,x) = @Y f(x) and v} (£, x) = & f(x) = uli}(st,x),
then

O oWy < MlulH |y < Col ot L.

We are in a position to state the main results of this section.
Proposition 10.13. For ®% and 12} as above and every f € L*(dw), we have
19 £l = IMaaf i) < Com o aulMate wfllz )
= Copt1 a2t ae |91 Fllng,

Proof. Let Ui} = ®{1} — 12 Then WM is radial and thanks to (10.11), we have
FU (&) = O(]|€)?) for ||€] < 1. Tt suffices to prove that
1 2
o flla < Clof £l

Using the Calderén reproducing formula (10.12), we obtain

o d

\Dil}f _ 6/2/ Wil}‘l’s@?}ff
0

According to Proposition 3.14, for any 7,¢ > 0 such that ¢ < 4k, the integral kernel
K s(y,z) of the operator \Iffl}‘lfs satisfies

2)27 (f)é> V(y, zl, s+t) (1 * dibjii?>_N_n'

We take N < A < n < £. Then for ||x —y|| < ¢, we have

(10.14) /RN K,,(y,2)] (1 + d(xs’z)ydw(z) < ' min ((%)H, (3)2>.

S

|Kts(y,2z)| < C,pmin ((

Therefore, using (10.14), we obtain

ds

s (W=, sw | [0 K208 @) o)
0 R

[x—yll<t l[x—yll<t

d —A
< cysup o 12| 1+ “22)

sup / /RN|KtSy, 1+d( ))Adw(z)%

||x yli<t

< Csp 102 f(z )|(1 + d(xs Z))

(10.15)

The proof is complete, by applymg (10.4). O
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Remark 10.16. It follows from the proof of Proposition 10.13 that if © € S(RY) is
radial and [,y ©(x) dw(x) = 0, and ®# is as above, then for f € L?(dw), we have

16:flx < C1 O £l

Proposition 10.17. For a function ®'} as above and o > 0 there is a constant
Cot1y o > 0 such that

Moty o flliaw < Coms olIMpflliiw, for f e L (dw) N L?(dw).
Proof. For a positive integer n (large), set ¢(¢&) = e~ liéll ( Z?:o ”T) Then

$(§) =1 =0([lg|I"*") for [i&]l < 1.
So ¢ is a C"(RY) function such that |9°¢(¢)| < Cyexp(—|€]|/2), |8] < n. Put 1% =
¢, ' F~1¢. Applying Proposition 10.13, we have
195 Flla S 12 £l

Notice that j; Pif(x) = FL(|jtg| e tIIF£(€))(x). Hence, from Proposition 10.6 we

conclude,
n+1

f, < 1B sl

t

dtﬂ

Lemma 10.18. H),, y C H}\ .. p and there is a constant C' > 0 such that

(10.19) IMpfllrr@w) < CliMufllri@e for fe L (dw).
Proof. The proof is standard. Let f € L'(dw). Set u(t,x) = "2 f(x). By the subordi-
nation formula (2.2) for fixed ¢ > 0, we have
1 ds
sup |Bf(x)] < / sup |u(ts,x’)|e” %2
boxli<t 2\/7 I’ x||<t 52

ts Alx =X +ts\A __ds
sup |u(ts X)|< - ) ( ) e~ 12
Qf I x||<t lx —x'|| + s

/ 1+S) L ds
(& 452
_Qf 2

< Cuy
Now the lemma follows from (10.4). O
Note that Propositions 10.13 and 10.17 together with Lemma 10.18 imply that
Hilax’q){l} N L*(dw) = Hélax N L2 (dw) = Hélax p N L (dw)

and for f € L?(dw), we have

(10.20) Mooy fll Lt @w) ~ Mafllzr@e) ~ IMpfllLaw)-
Our task is to remove the assumption f € L*(dw) from (10.20).
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Lemma 10.21. Assume that f € Hy,,. p. Then P.f € L*(dw) for everyt >0 and

(10.22) lim |P.f = £l =0

Proof. Proposition 5.4 implies that P,f € L*(dw). To prove (10.22) we follow, e.g., [14,
proof of (6.5)].

First observe that there is a constant C' > 0 such that for every A > 0 and t > 0, we
have

(10.23) < CA™ fll s an.

L (dw(x))

s |Piaf(y) = RS

s> At, Ix—yl|<s

To see (10.23) fix z € RY. For s > At, thanks to (5.5), we have

|ps+t(Ya Z) — Ds (y’ Z)| = ups-i-u(Ya Z) du

IN
Q

t 1 y
/0 u+S+d(y’z)w(B(Z,s%—u%—d(y,z))) du

IN

t 1 )
/0 mw(B(z, s+d(y,z)))  du

W w(B(z,s +d(y,z))) "

Since s +d(x,z) < s +d(x,y) +d(y,z) < s+ ||x —y| + d(y,z) < 2(s +d(y,z)), we
obtain

IA
D>|Q Q

(10.24) sup  |psii(y,2) — ps(y,2)| < w(B(z,s +d(x,2))) ",

[x—yll<s

which implies (10.23).
In order to finish the proof of (10.22) assume that f € H

1P =l <[] s 1Paafy) - Psf<y>|)

<O s
As+d(x,2)

p- Using (10.23), we get

max,

s>AL, |x—yll<s L1 (dw(x))
+ sup Pof P f(y ‘
s<At, |x—y||<s | " ( ) ‘ L1 (dw(x))

< CA™Y fllpr(aw) +

s |Pef(y) - F)|

s<At, |x—yl/<s L (dw(x))
| s o) =16,
< CAflan +2| s [PF) - F)) .
s<(A+1)E, || x—y||<s L (dw(x))
Fix € > 0 and take A = Ce~!. Corollary 5.14 implies
lim sup |P.f(y) — f(x)] =0 for almost every x € R.

20 s<(at 1), x—yl<s
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Since Sup < a1y, x_yl<s [P/ (¥) = f(X)] < 2Mpf(x) € L'(dw(x)), the proof is com-
plete by applying the Lebesgue dominated convergence theorem. O

Lemma 10.25. Let ¢ € S(RY) be a radial function. There is a constant C' > 0 such
that for all e > 0 and u(t,x) € N if u.(t,x) = u(t,-) * p(x), then

[uella < Cllulla
Proof. Let A > N and M > 0 be large enough. For fixed x € R" we have

we<c s [ o) (1492297 (10 LYY v o) duta

e, IIx-yll<t JrN t t

+C sup sup /RN \u(t,z)|<1 + @)MV(y,z,a) (1 + dix, Z)> de(z)

0<i<e d(x,y)<t €

< O uxt(o(x) + Cly /RN w*(z)w(B(z, 5))_1(1 + @)_M dw(z).

ceG

Integrating the inequality with respect to dw(x) and applying (10.4) we obtain the

lemma. U
Theorem 10.26. Let ®1} satisfies (10.10) and (10.11). Then the spaces H! oo
H) ens and HY . p coincide and the corresponding norms are equivalent (cf. (10.20)).

Proof. Assume that f € H max’ p- Using Lemma 10.21 we take a sequence t,, — 0, n =
0717"'7 such that ||Plfof|H1 < 2Hf|H1 ||Ptn+1f Ptnf|H1 <2 anHHl

max,P T max, P’ max, P max, P’

Then f = By f+> or (P f =P, . f) =t go+ Y o) gn, with the convergence in LY (dw).
The functions g, € L*(dw) N H} so, by (10.20),

max, P>

Mot fllrawy € D IMamrgillziaw < C D IIMpgjll@e < 3CIfllm

j=0 7=0

We now turn to prove the converse. Suppose that f & H oy~ Then using

Lemma 10.25 and the fact that ||f * he||r2aw) < || S|t (dw) | Pe HLz dw) " we conclude that
f-=fxh.€ HmaX oy N L*(dw) and sup,- Hf€||H1 . < C||f]|H1 . Applying

(10.20) we get sup.-q || f<]l g2 C”||f]|Hr1mx s Observe that lim. o Mg f.(x) =

max,H T

My f(x) for almost all x € RY and the convergence is monotone. Hence, by the

Lebesgue monotone convergence theorem, we get || f|| 1 < ' fll e o Finally,
max, P

max, H

m < C|fllz W is obtained from Lemma 10.18. O
max,® 1

max,P —

the inequality || f|

11. ATOMIC DECOMPOSITIONS; INCLUSION H .. » C H(l1 00, M)

In the next theorem we show that all elements in H},, ;N L*(dw) = H),,, pNL*(dw)
admit atomic decompositions into (1,00, M)-atoms. The L?(dw) condition is removed
afterwards in Theorem 11.18.
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Theorem 11.1. For every positive integer M there is a constant Cyy > 0 such that
every element f € HY, u N L*(dw) = H},,. p N L*(dw) can be written as

f=2_ N
where a; are (1,00, M)-atoms, Y |\;| < Cy|[MpfllL1(aw). Moreover, the convergence
is in L*(dw).

Proof. The theorem is known for Hardy spaces associated with semigroups with Gauss-
ian bounds on spaces of homogeneous type (see [10] and [37]). The proof we present
here is a straightforward adaptation of that of [37] with the difference that tents are
now constructed with respect to the orbit distance d(x,y). We include details for the

convenience of readers unfamiliar with [10] and [37]. More experienced readers may skip
the proof and jump to Theorem 11.18.

Without loss of generality, we may assume that M is an even integer > 2IN.

Step 1. Reproducing formulae. Let &, U be as in the Calderén reproducing
formula with k = M/2 (see Section 10). Set

p(&) = F(®)(&) = (Il
Y(€) = F(U)() = cull€l™ o) = & (lgl) = cllel™ (€l

Then there is a constant ¢ such that

-1

c dt
f=lme / U2 A2 F—
e—0 - t
with the convergence in L?(dw). We have

- 2112 d
Fi©) = lmac [ ClPElEDe T E O

For £ # 0, set
06) = e [ AT P Y e [ it

1. Then n is a Schwartz class radial real-valued function. Set Z(x) =
¢ ' F~n(x). Then = € S(RY), [=(x)dw(x) =1, and

b N
(11.2) c/ U, t2 Aet Af7 = Eof — Suf.

Step 2. Space of orbits. Let X = RY /G be the space of orbits equipped with
the metric d(O(x),O(y)) = d(x,y) and the measure m(A) = w(UO(x)EA O(x)). So

(X, d,m) is the space of homogeneous type in the sense of Coifman—Weiss. The space
X can be identified with a positive Weyl chamber. Any open set in X of finite measure
admits the following easily proved Whitney type covering lemma.
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Lemma 11.3. Suppose that & C X is an open set with finite measure. Then there is
a sequence of balls Bx(O(Xn}), T{n}) such that rg,y = d(O(x{n}), Q°),

U BX X{n} T’{n}/2)
neN

the balls Bx (O(Xx{n}), 7(ny/10) are disjoint.

Step 3. Decomposition of RY ™. Assume that f € H} ;N L*(dw). Let

max,

F(t,x) = (1122 f(x)] + |Etf<x>|),
F(t,x) = sup F(t,o(x)),

oeG
and

Mf(x)= sup F(t,y)= sup F(ty).
d(x,y)<5t [[x—y||<5t

Then, by Proposition 10.13 and Remark 10.16, we have [|[Mf{[riaw)y < C|[fllm

Observe that M f(o(x)) = Mf(x). Therefore M f(x) can be identified with the func-
tion M f(O(x)) on X. Moreover, ||[Mf(x)||r1(gw) = [[MF(O(X))||L1(m)- For an open
set 2 C X, let

Q = {(t,0(x)) : Bx(O(x),4t) C Q}
be the tent over 2. For j € Z define
Q; ={0(x) € X : Mf(O(x)) > 27}, Qj={xeR": Mf(x)>2}.
Then €; is open in X, ; = Up Jen O(x), m(§2;) = w(Q;),

S 2u) ~ 1Ml ~ 11

maxH
Clearly, (Alj ={(t,x) € Rf“ ((t,0(x)) € ﬁ]} Set T; = €, \ Q1. Then,
(11.4) suppF(t,x)CUQj:UQ Q UT

jEz jEZ JET

Let Bx(O(Xgn, 1), Tin,1/2))s X, 3 € RN, n =1,2,..., be a Whitney covering of ;.
Set

Q{n,j} = {X - RN . O(X) - Bx(O(X{n,j}),T{nJ}/Q))} = O(B(X{mj},’l“{n’j}/Q)).
ObViOU.Sly, w(B(X{mj},’f‘{mj}/Q)) < w(Q{n,j}) < ‘G|w(B(X{n7j},T{n’j}/2)). We define

a cone over a G-invariant set E as

R(E) ={(t,y) - d(y, E) < 2t}.
Forn=1,2,..., let

n—1
T =T;0N (R(Q{nva‘}) \J R(Q{i,j})>’ R(Qqo,53) =
=0
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Clearly, Q; C Unen R(Qn, 11)s Tin,j3y N T, iy = 0 if (j,n) # (j',n'). Thus we have
(11.5) supp F(t,%) € J |J Tpn.sy-
JEZ neN
Step 4. Decomposition of f and L?(dw)-convergence. Write
> dt
(11.6) f= > C/ 2 (XT{H,J-}tQAetZAf); = Y Aw g
jez,nen V0 jE€Z,nEN

where A\, ;3 = 2jw(Q{n7]~}),
L[ Y
agn, 5y = (An,j}) 10/0 ‘I’t(XT{n,j}tQ(‘A)et Af);

T 2a ) At
= i) e [ B0 0 (. P20 )
0

and, thanks to (10.8), the convergence is in L*(dw), because Ty, ;3 are pairwise disjoint.
Step 5. What remains to prove. Our task is to prove that the functions ay, j
are proportional to (1,00, M)-atoms. If this is done then

Yo Pal= Y Yw@py) S 2w() ~ [ fla

JEZ,neN JEZ,neN JEZ

max H’

which proves the atomic decomposition.
Step 6. Functions by, j;. Support of A™by, j, for m = 0,1,..., M. Observe
that

_ {n. 3} 2 dt
g,y = A, jy) 10/0 ‘I’t<XT{n,j}t2(—A)6t Af);

_ "n. 3} 2 dt
= O e [0 0 (v, P20 )

Indeed, if t > 7y, ;1 and (t,y) € R(Qn,,3) then

(11.7)

1 7
57y T dXp gy, ()°) <26+ St 1 = St

(11.8)  d(y, (€)) < d(y, Qn,jy) + : 2

2
Hence (t,y) ¢ Ty, j3, which gives (11.7).
As a consequence of (10.9) and (11.7), we have
7 7
(119) Supp @4n, ;3 C {X eRY: d(X, X{mj}) < 57”{”7”} = O(B (X{n,j}7 57”{”7”)).
Let

3 T{n. i} )
b 3 = Mniy) 1c/ t*Mp, 0, (XT{W_}R(—A)J Af)?
0

Then by, 4 € D(AM),

t
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form=1,2,...M, and, by the same arguments,
7
(11.10) supp A"bg, 5y C O(B(Xguiy 370 ) )
Note also that A™by, ;(x) 7é 0 implies that there is (t,y) € €, such that d(x,y) < t.
Then O(x) € Bx(O(y),t) C Bx(O(y),4t) C Q;. Hence,
(11.11) supp A™bgy, ;3 C €25,

Step 7. Size of A™by, ;3 for m =0,1,...,M — 1. Suppose that (¢,y) is such that
XTqn (6 y) = 1. Then (t,y) € (£;41)¢, so [2Aet2 f(y)| < 27+, Consequently,

c "n. 3} 2 dt

A%y (] = 57— P (2 (= A)) "Ry (X, (= A)e" 2 ) (%)
n?]

- ) OM—2m 1-m 2 2A dt

= (M j}) RNt K (%,y) Ocr, 5y (6 y)E (= 8)e" 2 f(y))dw(y) —

where K["(x,y) is the integral kernel of the operator (—t*A)™®,®,. Recall that
K7 (x,y)| < Cw(B(x,t)) ™

and
K'(x,y) =0 ford(x,y)>1t/2
(see (10.9) and Corollary 3.12). Thus,

" o o dt
87853001 < OO 2 [ [ eyt
. {n, 3} dt
(11.12) < C(A{n,j})*?”l/ g &
. 0 t

= O\ n.jy) "2 (rg y)*M 2"
= Cw(Qpn,jy) (. gy) M 2"

Step 8. Key lemma. It remains to estimate
dt

— e 2
afn, 4 (%) = (An, ) 10/0 /RN Uy(%,¥)XT,, (8 y) (P (=A)e" 2 F)(y) dw(y)—
Let E{mj} = U?:l Q{i,j}' Then
XT{n,j} (t, Y) = XQJ. (ta y)X( Qj41)¢ (t, y)xR(E{n’j}) (t, y)X(R(E{nij}))C (t, y)
= x1(t, y)x2(t, y)xs(t y)xa(t,y).

The following lemma (see [37, Lemma 4.2]) plays a crucial role in the remaining part of
the proof of Theorem 11.1.

(11.13)

Lemma 11.14. For every x € Q; and every function xs, s = 1,2, 3,4, there are numbers
0 <0y < w,g such that wy, < 30, and
either Wy(x,y)xs(t,y) =0 for every 0 <t < 65 or V(x,y)xs(t,y) = Vi(x,y) for every
0<t<ds

and
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either Wy(x,y)xs(t,y) = 0 for every t > ws or Vy(x,y)xs(t,y) = Vi(x,y) for every
t > ws.

Proof. For the reader’s convenience, we include a short proof along the lines of [37].
Fix ¢ > 0 and define x3(y) = Xfar.o0) (d(y, 29)), X2(¥) = X(-o0,a0) (d(y: 25:1)), x3(y) =

X(—o020)(A(Y, Epn,3))s Xa(¥Y) = Xp2too)(d(Y, En-1,51)).  Clearly, X((y) = xs(t,y) for
s =1,2,3,4. If d(x,y) > t, then VU, (x,y) = Vi(x,y)xs(t,y) = 0. Therefore, to finish
the proof, we assume that d(x,y) < t. Then

—t 4+ d(A, X) < d(A, y) <t+ d(A, X) for A = QC Q;-ﬁ-l’ E{n,j}7 E{n—l,j}-

We are in a position to define consecutively d, and ws.

(1) If d(x,Q5) < 3t or d(x,€5) > 5t, then x/(y) = 0 and x}(y) = 1 respectively, so we
put 0 = 1d(x, Q) and w; = 3d(x, Q).

(2) If d(x,95,,) < 3t or d(x, QjH) > 5t, then x5(y) = 1 and x5(y) = 0 respectively.
Hence we set 6, = $d(x,Q5,,) and wy = 3d(x,Q5,,) if d(x,9Q5,,) # 0, 6 = wo = 03
otherwise.

(3) If d(x, By, jy) <t ord(x, Ey, ;1) > 3t, then x45(y) = 1 and x4(y) = 0 respectively.
Thus we put 83 = 3d(x, Ef,, j3) and ws = d(x, By, j}) if d(x, Efn,j3) # 0, 03 = wy =
07 otherwise.

(4) If d(x, En—1,53) < tor d(x, Eg,—1,j3) > 3t, then x}(y) = 0 and x}(y) = 1 respec-
tively, so we put 64 = 5d(x, Ey,—1,53) and wy = d(x, By, y) if d(x, Ego1,5y) # 0,
04 = wy = 07 otherwise.

U

We finish Step 8 by the remark (see Case 1 of the proof of the lemma) that if £ > w; > 0
then

\Ilt(x> Y)XT{n,j} (ta y) = 0.
Step 9. Estimates for ay, ;;. We shall prove that

(11.15) |agn, 3 (%) < Cw(Qpm,j3) "

Fix x € ;. Recall that supp ag, ;3 C Q;. Let J = Ui [0s,ws], T = (0,00) \ J, where
ds, ws are from Lemma 11.14. Obviously, I = (a1,b1) U ... U (am, by), where m < 5,
a; =0, b, = 0o, and (a;, b;) are connected disjoint components of I. Clearly,

dt

()" / [ im0 )| du)

‘a{n px ’ t

[ ny, s AP ) () duwly) L]

>\n
{J} t

Consider the integral over [5S,w5]. Take t € [0s,ws] and y such that the integrant
U, (x, y)XT{nyj}(t,y)(tz(—A)eﬂAf)(y)’ #0. Then (t,y) ¢ €,,1. Thus, there is x’ such
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that d(y,x’) < 4t and x’ ¢ Q;;1, which means that M f(x’) < 277!, Consequently,
©2(~A)P f(y)] < 241, Henee,

e [ oeyen, (0@ )] do)

t
< O 2%e [ ey dun T
(11.16) ’ 5, JRN t

- “s dt
< Cl()\{n,j})_12j+16/ —

ds
>~ Cw(Q{n,j})_17

because 0 < wy < 30;.
We turn to estimate the integrals over [as, bs]. Assume that

bs
C/ /RN \Ift(x,y)XT{n,j}(t,y)(tQ(—A)et2Af)(y)dw(y)% >0

By Lemma 11.14 for fixed x € Q; and s € {1,2,...,m}, either xr,, ,,(¢,y) =0 for all
t € las,bs] and d(x,y) <t or xr(, ,(ty) =1 for all t € [ay,bs] and d(x,y) < t. So
the letter holds. This gives that for every t € [as, bs] and y such that d(x,y) < t, we
have (t,y) ¢ Qj41. So there is x' (which depends on (t,y)) such that d(y,x') < 4t and
Mf(x') < 271 Note that d(x,x’) < d(x,y) + d(y,x’) < 5t. Consequently, for every
t € [as, bs], we have

P >Mf(X) = sup |Eif(2)] = |Zf(x)]-

d(x’,z)<5t

A, 3)”

Finally, in our case
bs

2 d
Qo) e| [ [ ey () B2 ) duy) T
bs
(11.17) = (Anjy)” W) )(t(— )et“f)(y)dw(y)%

()‘{n j}) c |‘_‘(1.5f(x) ‘—‘bsf(x)|
< Cw(@{n,j}) 17

where in the last equality we have used (11.2). The estimates (11.16) and (11.17) give
(11.15). Recall that w(Qg, ;1) ~ w(B (X3 1Tin,;3/2)). Hence, from (11.15), (11.12),
(11.9), and (11.10) we deduce Step 5. The proof of Theorem 11.1 is complete. O

Having Lemma 10.21 together with Theorems 11.1 and 10.26 we are in a position to
complete the proof of the atomic decomposition of Hp,. , functions. This is stated in
the theorem below.

Theorem 11.18. There is a constant C > 0 such that every function f € HY, y can

be written as
f=2_ X,
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where a; are (1,00, M)-atoms, Y |N;| < C|| Mg f|l 11 (aw)-

Proof. Recall that | fl[g:  ~ [[fllm_, (see Theorem 10.26). Take a sequence gy,

n = 0,1,..., as in the proof of Theorem 10.26. Then g, € H}, p N L*(dw), f =
Dm0 Gns and 320 Nl gnllgr . < Cllfllg . By Theorem 11.1 the functions g, admit

max, P

atomic decompositions into (1,00, M)-atoms with the required control of their atomic
norms. 0

We are in a position to complete the proof of Theorem 2.5, by proving the following
proposition, which is the converse to Proposition 7.12.

Proposition 11.19. Assume that uy is L-harmonic and satisfies ufy € L*(dw). Then
there is a system u = (ug, uy, ..., uy) € H' such that ||ullzn < Cllug| L1 (aw)-

Proof. By Theorem 7.8 we have uy(t,x) = P, fo(x), where fo € L'(dw). So fo € H) . p
and || fol i = |lugll1(@w)- Using Theorem 11.18 and then (9.1) we obtain that

max, P

fo € Hy and || foll gy, < Cllugl zt (duw)- O

12. INCLUSION H}, .\ C Hyo iy

In this section we shall prove that for every integer M > 1 and every 1 < ¢ < oo, we
have H, , 1) C Hypo g and

max,

[ 1]z

max, H

< Curgll fllm
It suffices to establish that there is a constant Cj;4 > 0 such that

S C’M,qu

1 .
(1,q,M)

H1

max,H

lal

for every a being (1,q, M)-atom. Since every (1,q, M)-atom is automatically (1,q,1)-
atom, it is enough to consider M = 1 only.

Assume that a is a (1,¢, 1)-atom associated with a set B = |J, . B(c(yo),r). Then
there is a function b € D(A) such that a = Ab, suppAb C B, [|AD| pa(aw) <

r22w(B)a~", j = 0,1. Set u(t,x) = e”2a(x). Observe that
1
[ | zagawy < Collall Lagawy < w(B)a™"

(see (2.6) for the definition of w*). Thus, by the doubling property of the measure
dw(x) dx and the Holder inequality,

/ u*(x) dw(x) < C7.
d(x,y0)<8r

We turn to estimate u*(x) on d(x,yq) > 8r. Clearly,

u*(x) < sup e 2 Ab(X)| + sup "2 Ab(x')|

(12.1) 0<t<d(x,y0)/4, d(x' x)<t t>d(x,y0)/4, d(x’,x)<t
= Jl(X) + JQ(X).
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Recall that [|b]|11(4e) < r? and note that

etQAA — A€t2A — iesA‘
ds
To deal with J; we note that if d(x/, x) < t < d(x,%¢)/4, d(x,y0) > 4r, and d(y,yo) < r
then d(x',y) ~ d(x,yo). So, using (4.4), we have

s=t2"

C —cd 2 /42
X < e c (y07X) /t .
‘d Y) ‘sztz - tzw(B(Y()ad(yOaX)))
Hence,
2
< w(B(vo.d T
JI(X) Nw( (YO7 (vao))) d(X, y0)2

In order to estimate Jo, we observe from (4.4) that for t > d(x,y) and d(y,yo) < r < t,
we have

C
< .
’d y) ‘S:t2 B t2w(B(y07 d(Y()vX)))
Consequently,
2
< -1
Ja2(x) S w(B(yo, d(x,¥0))) d(x,y0)2
Now
00 2
r
u(x) dw(x) < / dw(x
A(x,yo)>8r ( ) ( ) jz:; 2ir<d(x,y0)<2i+1r w(B(YO> d(X, yo)))d(x, y0)2 ( )

< i 274 =C
j=3

13. SQUARE FUNCTION CHARACTERIZATION

In this section we prove Theorem 2.12. More precisely we show that the atomic Hardy
space H (11727 M) coincides with the Hardy space defined by the square function (2.11) with
Q, = tv/—Ae V=2, This is achieved by mimicking arguments in [23]. The proof for
Q, = t2(—A) e is similar.

13.1. Tent spaces T3 on spaces of homogeneous type. The square function char-
acterization of the Hardy space H, (11 2,1y CALl be related with the so called tent space Ty .

The tent spaces on Euclidean spaces were introduced in [8] and then extended on spaces
of homogeneous type (see, e.g. [3° ]) For more details we refer the reader to [35].
For a measurable function F(¢,x) on (0,00) x RY, let

)2 dw(y) dt\1/2
//WXHQ'F VW oEma )

Definition 13.1. For 1 < p < oo the tent space T% is defined to be
={F || Fllzg = [[AF| Lo (aw) < 00}



HARMONIC FUNCTIONS AND THE HARDY SPACE H' IN THE DUNKL SETTING 47

Clearly, by the doubling property,

> dw(y)dt
(132) 1P = A o ~ [ [ 1P 5P 2
0 RN

Remark 13.3. By (10.8) and (13.2) the operator my maps continuously the space Ty
into L?(dw).
Furthermore, by (10.7), if F(t,x) = Q;f(x) for f € L*(dw), then

1F N7z = 1S fllz2@w) ~ [1flz2(dw)-
and f = cmg(F).

The tent space T, on the space of homogeneous type admits the following atomic
decomposition (see, e.g., [33]).

Definition 13.4. A measurable function A(t,x) is a T} -atom if there is a ball B C RY
such that N
esuppACB

o [ gy 1A X) 2 dw(x) & < w(B).

A function F' belongs to Ty if and only if there are sequences A; of Ty-atoms and
Aj € C such that
D oNA=F Y I~ Fllay,
J J

where the convergence is in T3} norm and a.e.
The Holder inequality immediately gives that there is a constant C' > 0 such that for
every function A(t,x) being a Ty-atom one has

Al <C.

Observe that for f € L'(dw), the function F(t,x) = Q;f(x) is well defined. Moreover,
AF(x) = 5f(x) and [[Sfl 1wy = 1 F |73

Remark 13.5. According to the proof of atomic decomposition of Ty presented in [33],
the function A;A; can be taken of the form \;A;(t,x) = xs,(t, x)F(t,x), where S; are

disjoint, ]Rf“ =(JS;, and S; is contained in a tent LA?]-.
So, if F € Ty NT%, then F can be decomposed into atoms such that F(¢,x) =

>, AjA;(t,x) and the convergence is in Ty, T3, and pointwise.

Lemma 13.6. The map (PsF)(t,x) = [ ps(x,y)F(t,y) dw(y) is bounded on Ty .
Moreover, there is a constant C' > 0 independent of s > 0 such that | PsF||r3 < C|[F||qz.

Proof. Let F(t,x) = >, A\;A;(t,x) be an atomic decomposition of F' € T3 as described
above. Since p;s(x,y) > 0, it suffices to prove that there is a constant C' > 0 such that

Pl A

<C
7y



48 J-PH. ANKER, J. DZIUBANSKI, AND A. HEJNA

for every atom A of Ty. To this end let B = B(xg,r) be a ball associated with A.
Obviously, Ps|A|(t,x") =0 for t > r.
Case 1: s > r. Then, by (5.5) and the Hélder inequality,

Cs w(B(xg,7))"? )2 1/2
P, A|(t Alt d
At x) < s + d(xg, x )w(B(xo,s+dx0, /| Lyl dw( )>

If |[x —x'|| <t <, then s+d(xo,Xx') ~ s+d(x0,X), because, by our assumption, s > r.

Hence,
/ w(B(xo,7))"/?
<C
s+d (x0, %) w(B(Xo, s + d(xX0,X%)))

X)
/ /|x x’||<t/‘Aty Fdu(y) OEB(( )d)t)t>l/2dw(x)

dw(x)
= C/ s+d(x0,x)w(B(xO,s+d(X0,x))) =G

where to get the second to last inequality we first integrated with respect to dw(x’) and
then used the definition of 7} -atom.
Case 2: s <r. Recall that P, is a contraction on L*(dw). Hence,

AP Al L1 (0B o ar)), duw) < Cw(B(x0, )2 (| APy Al|| 12 (4
(13.7) < Cw(B(xq, 7)) || Ps| Al 12
< Cw(B(xO,r))WIHAHITg <C.

If d(x,xq) > 4r, [|x' —x|| <t <r,and ||xg —y|| < r, then s +d(X',y) ~ s+ d(x,Xo).
Now we proceed as in Case 1 to get the required bound on O(B(xo,4r))°. O

Lemma 13.8. The family P, forms approximate of identity in Ty, that is,
lim ||PsF — F||lq = 0.
s—0 2
Proof. According to Lemma 13.6, it suffices to establish that for every A being a T3-
atom, we have
(139 iy | P.A — Allzy = Ty | ACPA = )20y =0,
Let A be such an atom and let B = B(xq, ) be its associated ball. To prove (13.9) it

suffices to consider 0 < s < r.
If d(x,%q) > 4r, ||y — Xo|| <7, and ||x —X/|| <t < r, then s+ d(x/,y) ~ d(x,Xg), S0

, Cs w(B(xg,7))"?
P,A(t, < Alt, d
| ( X)| 5+d(X0>X)w(B(X0>S+dX0, /| Y ‘ w ))

Since supp AN{(t,x) : ||x' —x|| <t <r} =10, we have

Cs 1
APA = A = ABA X < S Bes + dx %))
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Hence,

lim |JA(PsA — A)(x)| dw(x) = 0.

s—0 d(x,x0)>4r

We now turn to estimate ||A(PsA — A)||11(0(B(xo,ar)),dw)- Observe that
|(PsA—A)(t,x)] < 2MpA(t,x") and |[MpA(t,xX)| 2wy < CllAE X)) 2(@wx)-

Moreover, lim,_,q || P;A(t,x') — A(t,X')|| 12(aw(x)) = 0 for almost every ¢ > 0. Therefore,
applying the Holder inequality and (13.2), we have

lim S(l]lpHA(PsA — A1 0B x0,ar)))
s—

< lim sup Cw(B)"?(| A(PA — A)|| 12(0(B(xo4r)))

s—0

1/2
< limsup Cw(B 1/2 //|PAtX Alt, )|2d wix )dt> =0,

s—0 t

where in the last equality we have used the Lebesgue dominated convergence theorem.
O

13.2. Proof of Theorem 2.12. The inclusion H(11,2,M) C Hgyyare Will be established if
we prove the following lemma.

Lemma 13.10. For every positive integer M there is a constant Cyy > 0 such that for
every a(x) being a (1,2, M)-atom if F(t,x) = Q.a(x), then

1E(E %)y < Cur

Proof. Let a be a (1,2, M)-atom, M > 1, associated with a ball B = B(xg,7). By
definition a = AMb with A% (for £ = 0,1, ..., M) satisfying relevant support and size
conditions (see Definition 2.15). By the Holder inequality,

1Sal|pros) S 11Sallzoss)w(@8B)Y? S 1.

If d(x,%¢) > 8 then choose n > 3 such that 2"r < d(x,%xg) < 2""!'r and split the
integral as below
2 -1 dt
= |Qua(y)[Fw(B(y, 1) dw(y)
t>|x=yl

2"r /4 ()
0 t>|x—yl 2nr /4 Jt>[lx—y|

Define a; = AM~1b. Then by the definition of the atom ||a;|| 1) < r*. Note that

Qi(a) = Qi(Aar) = (AQy)(a1) = t(atQt)s(al).
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Estimation for [;. If z € O(B) and ||x —y| < t < 2" /4, then 2"r < d(z,y).
Therefore, thanks to (5.5) and (5.8) with m = 3, we have

|Qealy ‘/ t(97) (pe(y, 2))ar(2) dw(z )2

ot . ?
S [y Ve dy) @) dutz)

n,.\— t2 n -
S (2') 4(2nr)2w(B(Xo,2 )l )2 -

Consequently,
2"r
S </ tdt) w(B(xo,2"7)) " [lal|7s gu) (2"r) ~H(2") 7 S 27w (B (%0, 2"r)) .
0
Estimation for [5. In this case t > 2"r /4, so thanks to (5.8) with m = 3 we have

QuP = ( [ 1@ty 20 <>dw<z>)2

AN

( t—i—d )V(Za}’,t—i-d(z,y))_l\al(z)|dw(z))

t~*w(B(xo,2" 7“)) 2l |7 -

AN

Consequently,
I 5 </ £ dt) w(B(xo, 2n7"))_2||01“%1(dw) < 27w (B(x0,2"r)) 7
2nr /4

Finally,

|SallLros)ye) S / 2_2"w(B(X0,2"r))_1dw(x) < 1
3 r<d(x,xp)<2nt1r

n>

U

The opposite inclusion quuam C H (11727 Ay 18 contained in the following proposition.

Proposition 13.11. Let M be a positive integer. Assume that for f € L'(dw) the
function F(t,x) = Q,f(x) belongs to Ty. Then there are \; € C and a; being (1,2, M)-

atoms such that
F=3 Na; and Y N < C|Flg.
J J

The constant C' depends on M but it is independent of f.

Proof. We start our proof under the additional assumption f € L?(dw). Then F(t,x) =
Q:f(x) € Ty NTZ. The proof in this case is the same as that of [23, Theorem 4.1]. The
only difference is to control support of functions A®b;. For the convenience of the reader
we provide its sketch.
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Let F = Zj N\jA; be a Ty atomic decomposition of the function Q,f(x) as it is
described in Remark 13.5. In particular, > |A;| < C|[Sf||L1(aw)- Let ¥ be chosen such
that [ ¥,Q;% forms a Calderén reproducing formula, with ¥ = AMP U where
¥ is a radial C* function supported by B(0,1/4). By Remark 13.3 we have
(13.12) f=mF =) Mmyd,

J
and the series converges in L?(dw). Let B; = B(y;,r;) be a ball associated with A;.
Then supp A; C B;.
Set a; = my(A;) = AMb;, where

e dt
b, = / t2M(t2Axy§1}A)7.
0
Clearly, suppb; C O(B(yj,2r;)). The same argument as in the proof of Lemma 4.11.
in [23] shows that for every s =0, 1,2,..., M, the function

dt
t
is supported by O(B(y;, 2r;)) and its L*(w)-norm is bounded by 2" ~25u(B;)~Y/2. Thus
a; are proportional to (1,2, M)-atoms. In particular, ||a;|| 114w < C and, consequently,
the series (13.12) converges in L' (dw).

To remove the additional assumption f € L?(dw) we use Lemma 13.8 together with
the fact that P,f € L*(dw) for f € L'(dw), and apply the same arguments as those in
the proofs of Theorems 10.26 and 11.18. 0

bis = A°b; = /0 £2M (AP LT A)
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