Harmonic morphisms on $(\mathbb{S}^4 - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Harmonic morphisms on $(\mathbb{S}^4

Résumé

In this paper we study examples of harmonic morphisms due to Burel from $(\mathbb{S}^4,g_{k,l})$ into $\mathbb{S}^2$ where $(g_{k,l})$ is a family of conformal metrics on $\mathbb{S}^4$. To do this construction we define two maps, $F$ from $(\mathbb{S}^4,g_{k,l})$ to $(\mathbb{S}^3,\bar{g_{k,l}})$ and $\phi_{k,l}$ from $(\mathbb{S}^3,\bar{g_{k,l}})$ to $(\mathbb{S}^2,can)$; the two maps are both horizontally conformal and harmonic. Let $\Phi_{k,l}=\phi_{k,l} \circ F$. It follows from Baird-Eells that the regular fibres of $\Phi_{k,l}$ for every $k,l$ are minimal. If $|k|=|l|=1$, the set of critical points is given by the preimage of the north pole : it consists in two 2-spheres meeting transversally at 2 points. If $k,l\neq1$ the set of critical points are the preimages of the north pole (the same two spheres as for $k=l=1$ but with multiplicity $l$) together with the preimage of the south pole (a torus with multiplicity $k$).
Fichier principal
Vignette du fichier
article 2.pdf (410.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01912983 , version 1 (05-11-2018)

Identifiants

  • HAL Id : hal-01912983 , version 1

Citer

Ali Makki, Marc Soret, Marina Ville. Harmonic morphisms on $(\mathbb{S}^4. 2018. ⟨hal-01912983⟩
57 Consultations
41 Téléchargements

Partager

More