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Abstract

In this paper we study examples of harmonic morphisms due to Burel from (S4, gk,l) into S2

where (gk,l) is a family of conformal metrics on S4. To do this construction we define two maps, F
from (S4, gk,l) to (S3, ¯gk,l) and φk,l from (S3, ¯gk,l) to (S2, can); the two maps are both horizontally
conformal and harmonic. Let Φk,l = φk,l ◦ F . It follows from Baird-Eells that the regular fibres of
Φk,l for every k, l are minimal. If |k|= |l|= 1, the set of critical points is given by the preimage of
the north pole : it consists in two 2-spheres meeting transversally at 2 points. If k, l 6= 1 the set of
critical points are the preimages of the north pole (the same two spheres as for k = l = 1 but with
multiplicity l) together with the preimage of the south pole (a torus with multiplicity k).

1 Introduction

A harmonic morphism F : M −→ N between two Riemannian manifolds (M, g) and (N, g) is a
map which pulls back local harmonic functions on N to local harmonic functions on M . Although
harmonic morphisms can be traced back to Jacobi, their study in modern times was initiated by
Fuglede and Ishihara who characterized them using the notion of horizontal weak conformality, or
semiconformality:

Definition 1. (see [B-W] p.46)

Let F : (M, g) −→ (N,h) be a smooth map between Riemannian manifolds and let x ∈M . Then F
is called horizontally weakly conformal at x if either

1) dFx = 0

2) dFx maps the space Ker(dFx)⊥ conformally onto TF (x)N , i.e. there exists a number λ(x) called
the dilation of F at x such that

∀X,Y ∈ Ker(dFx)⊥, h(dFx(X), dFx(X)) = λ2(x)g(X,Y ).

The space Ker(dFx) (resp. Ker(dFx)⊥) is called the vertical (resp. horizontal) space at x.

Fuglede and Ishihara proved independently
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Theorem 1. ([Fu],[Is])
Let F : (M, g) −→ (N,h) be a smooth map between Riemannian manifolds. The following two
statements are equivalent:

1) For every harmonic function f : V −→ R defined on an open set V of N , the function f ◦ F
defined on the open set F−1(V ) of M is harmonic.

2) The map F is harmonic and horizontally weakly conformal.
Such a map is called a harmonic morphism

When the target is 2-dimensional, Baird and Eells proved.

Theorem 2. ([B-E])
Let F : (Mm, g) −→ (N2, h) be a smooth non constant horizontally weakly conformal map between a
Riemannian manifold (Mm, g) and a Riemannian 2-surface (N2, h). Then F is harmonic (hence a
harmonic morphism) if and only if the fibres of F at regular points are minimal submanifolds of M .

Remark 1. In Makki-Ville ([Ma-Vi]) we extend Th.2 to the singular fibres if M is compact.

Remark 2. There is no non constant harmonic morphisms from (S4, can) to S2 ([Wo,Vi]).

So Burel [Bu] endows S4 with metrics g conformal to the canonical metric σ, for which he constructed
many harmonic morphisms from (S4, g) to S2.

2 Motivation

Let C be a complex curve in a complex compact manifold M of complex dimension two. The
adjunction formula [G-H] which relates the tangent bundle, normal bundle and homology class of a
complex curve in CP 2 is given by

c1 (TC) + c1 (NC) = c1
(
TCP 2

)
|C

and c1 (TC) + c1 (NC) depends only on the homology class of C in CP 2.
In particular, let (Cn) be a family of complex curves in CP 2 such that, for n 6= 0, Cn is smooth and
Cn −→ C0 and C0 has one branch point. Then

c1 (TCn) + c1 (NCn) = c1 (TC0) + c1 (NC0) (2.1)

Exemple 1. Let (Cε) given by z1z2 = εz2
0 be a family of complex curves in CP 2 and (C0) given by

z1z2 = 0 the union of S1 = {z1 = 0} and S2 = {z2 = 0}. Then we have:

c1 (TCε) = 2

because Cε is defined by a polynomial of degree two (Cε is a sphere) , and

c1 (NCε) = [Cε] · [Cε] = 4.

because it is embedded and of degree two.
On the other hand, since C0 is the union of two spheres,

c1 (TC0) = 2 + 2 = 4,
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and since C0 has a positive self-intersection point :

c1 (NC0) = [C0] · [C0]− 2 = [Cε] [Cε]− 2 = 4− 2 = 2.

So that
c1 (TCε) + c1 (NCε) = 6

and
c1 (TC0) + c1 (NC0) = 6.

By contrast, let M4 be an oriented manifold.
We ask here what happens if (Σn) is a sequence of minimal surfaces which degenerates to (Σ0) with
a branch point ? Here (Σn) verify ([Vi2]),[C-T])

c1 (TΣn) + c1 (NΣn) ≤ c1 (TΣ0) + c1 (NΣ0) (2.2)

Remark 3. If we change the orientation on M4, but not on the Σ′ns, c1 (TΣn) is unchanged and
c1 (NΣn) becomes −c1 (NΣn). Hence (2.2) yields the following

c1 (TΣn)− c1 (NΣn) ≤ c1 (TΣ0)− c1 (NΣ0) . (2.3)

When a singularity appears, we cannot have equality both in (2.2) and (2.3) because c1(TΣ0) 6=
c1(TΣn).
In particular the complex curves Cn’s converging in CP 2 to C0 as above satisfy the strict inequality
(2.3):

c1 (TCn)− c1 (NCn) < c1 (TC0)− c1 (NC0) . (2.4)

Now if we change the orientation on CP 2, the (Cn) will still be minimal surfaces in CP 2 and they
will verify for the new orientation

c1 (TCn) + c1 (NCn) < c1 (TC0) + c1 (NC0) .

So we ask

Question 1. When do we have a strict inequality both in (2.2) or (2.3) for the same orientation ?

Exemple 2. Consider the Burel map Φ1,1 and let (Σn) be a family of regular fibres in S4 which
converges to the singular fibre Σ0. We shall see below that the Σn’s are embedded tori and that Σ0
is the union of two spheres S1 and S2 with two tranverse intersection points of opposite signs. We have

c1 (TΣn) = 0

and
c1 (NΣn) = [Σn] · [Σn] = 0.

On the other hand:
c1 (TΣ0) = 4,

and
c1 (NΣ0) = [Σn] · [Σn]− 2(1− 1) = 0.

Thus
c1 (TΣn)± c1 (NΣn) = 0

and
c1 (TΣ0)± c1 (NΣ0) = 4.
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3 Burel’s construction

Burel was building upon previous constructions on product of spheres by Baird and Ou ([B-O]). He
constructs a horizontally conformal map Φk,l with k, l ∈ N∗ from S4 into S2 by the composition of two
horizontally conformal maps F from S4 into S3 = S0 ∗ S2 and φk,l from S3 = S1 ∗ S1 into S2.
The key-point of this construction is the change of variable that allows to identify the joint S0 ∗ S2

and the joint S1 ∗ S1.
First we are going to define the Hopf fibration H from S3 into S2 and then use it to define the map F
from S4 into S3.

Definition 2. The Hopf fibration H : S3 −→ S2 of the 3-sphere over the 2-sphere is defined by

H(z0, z1) = (|z0|2−|z1|2, 2z0z1). (3.1)

Let x = (cos t eia, sin t eib) a point in S3 where t ∈ [0, π/2] and a, b ∈ [0, 2π] then

H(x) = (cos2 t− sin2 t, 2 cos t sin tei(a+b)) (3.2)
= (cos 2t, sin 2tei(a+b))

We define the map F : S4 → S3 for s ∈ [0, π], t ∈ [0, π/2] and a, b ∈ [0, 2π] by

F
(
cos s, sin s

(
cos t eia, sin t eib

))
= (cosα(s), sinα(s) H(x)) (3.3)

=
(
cosα(s), sinα(s) cos 2t, sinα(s) sin 2t ei(a+b)

)
.

where α is a increasing regular function such that α(0) = 0 and α(π) = π,
with α(s) chosen so that F is semi-conformal i.e.

α(s) = 2 arctan
(

tan2
(
s

2

))
.

Now for s fixed we have a geodesic sphere centred at the north pole of S4 of radius sin s. The map F
sends it to a geodesic sphere centered at the north pole of S3 of radius sinα(s). Between the 3-sphere
and the 2-sphere the map F is the Hopf map.
We now define the map ϕk,l from S3 to S2. We need to define a new coordinate system on an open
dense subset of S3 which allows us to go from S3 = S0 ∗ S2 into S3 = S1 ∗ S1, and this by supposing :

cosα(s) + i sinα(s) cos 2t = cosu(s, t) eiψ(s,t) (3.4)

sinα(s) sin 2t ei(a+b) = sin u(s, t) ei(a+b). (3.5)

By changing the variable the point now is of the form(
cosu(s, t) eiψ(s,t), sin u(s, t) ei(a+b)

)
in S3. (3.6)

For simplification we write u, ψ, α instead of u(s, t), ψ(s, t), α(s, t).
Now let β : [0, π2 ] −→ [0, π] be a regular function of u such that

β(0) = 0 and β
(
π

2

)
= π.
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Note that the domain of β is

[
0, π2

]
and not [0, π] as stated in [Bu].

In the new coordinate system, we define the application φk,l : S3 → S2 by:

φk,l
(
cosu eiψ, sin u ei(a+b)

)
=
(
cosβ(u), sin β(u) ei(kψ+l(a+b))

)
(3.7)

where β(u) is chosen so that φk,l is horizontally conformal.
For this, β must satisfy the following equation:

β
′
u

sin β =

√
k2

cos2 u
+ l2

sin2 u
.

This equation has an explicit solution given by ([B-O]) see next section

β(u) = 2 arctan


∣∣∣∣ l − p(u)
l + p(u)

∣∣∣∣
l
2
∣∣∣∣k + p(u)
k − p(u)

∣∣∣∣
k
2

 (3.8)

with p(u) =
√
k2 sin2 u+ l2 cos2 u.

Notice that the absolute value in the equation is missing in [Bu].

4 Computation of β

We now compute the function β and prove (3.8) following the hints of [B-O]. We begin by quoting a
result of [B-O].

Lemma 1. Let F : (r1S
1) × .... × (rpSp) −→ aS1 be the map from the product of p circles of radius

r1, ..., rp, respectively, into a circle of radius a, given by

F (r1e
iθ1 , ..., rpe

iθp) = aei(k1θ1+...+kpθp), for integers k1, ..., kp. (4.1)

Then F is a harmonic morphism with dilation λ given by

λ2 = a2
(
k2

1
r2

1
+ ...+

k2
p

r2
p

)
(4.2)

We define a map φ : S3 −→ S2 as follows:

S3 3
(
cosueiψ, sin ueiA

)
−→ (cosβ(u), sin β(u)ei(kψ+lA))

where ψ,A ∈ [0, 2π], k, l are non-zero integers and u ∈ [0, π/2].
We begin by solving the horizontal conformality condition for φ.
For fixed u0 ∈ (0, π/2), by lemma 1, the restriction of φ to the product of circles:

cosuS1 × sin uS1 −→ sin βS1

(cosueiψ, sin ueiA) −→ sin βei(kψ+lA)

is a harmonic morphism with dilation given by

λ2 = sin2 β

(
k2

cos2 u
+ l2

sin2 u

)
. (4.3)
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The metric on S3 is induced by the metric on R4. By taking derivatives along u, ψ and A, we get the
following orthonormal basis of tangent vectors to S3:

ε1 = (− sin u cosψ,− sin u sinψ, cosu cosA, cosu sinA)

ε2 = (− sinψ, cosψ, 0, 0)
ε3 = (0, 0,− sinA, cosA)

Note that ∂
∂u = ε1, ∂

∂ψ = cosuε2, ∂
∂A = sin uε3.

We compute ∂φ
∂ψ and ∂φ

∂A and we derive that

dφ(l cosuε2 − k sin uε3) = 0

hence the horizontal space H in S3 w.r.t. φ consists in the vectors tangent to S3 and orthogonal to
V = l cosuε2 − k sin uε3. It is generated by

H1 = ∂

∂u
= ε1, H2 = k sin uε2 + l cosuε3

We compute in R3 that < dφ(H1), dφ(H2) >= 0. So the horizontal conformality of φ reduces to
requiring that

‖dφ(H1)‖2= ‖∂φ
∂u
‖2= ‖dφ(H2)‖2

‖H2‖2
= λ2

where λ is given by (4.3).

∂φ

∂u
=
(
∂β

∂u

)
(− sin β, cosβei(kψ+lA)). (4.4)

Then the condition for φ to be horizontally conformal is(
∂β

∂u

)2
= sin2 β

(
k2

cos2 u
+ l2

sin2 u

)
(4.5)

Case 1: |k|= |l|. Then Eq. (4.5) takes the form

1
sin2 β

[(
∂β

∂u

)2]
= 4k2

sin2 2u
, (4.6)

which can be solved explicitly as follows. Set

v = ∂

∂u
.

We have that

v

(
log tan β2

)
= ∂

∂β

(
log tan β2

)
v(β)

= 1
tan β

2

1
2 cos2 β

2
v(β)

= 1
2 sin β

2 cos β2
v(β)

= 1
sin β v(β)

= 1
sin β

∂β

∂u
.
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Then the left-hand side of Eq. (4.6) is equal to

v

(
log tan β2

)
v

(
log tan β2

)
. (4.7)

On the other hand we have that

v
(
log tank u

)
= v (k log tan u)

= k

cos2 u tan u

= k

cosu sin u

= 2k
sin 2u.

Then the right-hand side of Eq. (4.6) is equal to

v
(
log tank u

)
v
(
log tank u

)
.

by the substitution in Eq. (4.6) we obtain

v

(
log tan β2

)
= v

(
log tank u

)
yielding the solution

β(u) = 2 arctan
(
tank u

)
(4.8)

Case 2: |k|6= |l|. Now the reduction equation for horizontal conformality becomes

1
sin2 β

[(
∂β

∂u

)2]
= k2

cos2 u
+ l2

sin2 u
. (4.9)

In order to proceed as before, we must write
√

k2

cos2 u + l2

sin2 u
as a derivative .

We pose √
k2

cos2 u
+ l2

sin2 u
= ∂I

∂u
, (4.10)

then we find an explicit formula for I. First we must evaluate the integral

I =
∫ √

k2

cos2 u
+ l2

sin2 u
du.

There are two cases:
(a)l2 > k2.
We have √

k2

cos2 u
+ l2

sin2 u
= l

cosu sin u

√
1− l2 − k2

l2
sin2 u

First make the substitution:
sin θ =

√
l2 − k2

l
sin u. (4.11)

For the derivative we obtain:
cos θdθ =

√
l2 − k2

l
cosudu. (4.12)



A. MAKKI , M. SORET AND M. VILLE 8
Then

sin2 θ = l2 − k2

l2
sin2 u

cos2 θ = 1− l2 − k2

l2
sin2 u

cos θ =

√
1− l2 − k2

l2
sin2 u

cos2 u = 1− l2

l2 − k2 sin2 θ = l2 − k2 − l2 sin2 θ

l2 − k2 (4.13)

Then by using (4.11),(4.12) and (4.13) we obtain the integral

I =
∫

l2 cos2 θ

cos2 u sin u
√
l2 − k2

dθ

=
∫

l cos2 θ

cos2 u sin θdθ

=
∫

l cos2 θ(l2 − k2)
sin θ(l2 − k2 − l2 sin2 θ)

dθ.

On the other hand we have the following equality

l

sin θ + lk2 sin θ
l2 − k2 − l2 sin2 θ

= l cos2 θ(l2 − k2)
sin θ(l2 − k2 − l2 sin2 θ)

then we obtain
I = l

∫ 1
sin θdθ + lk2

∫ sin θ
l2 − k2 − l2 sin2 θ

dθ.

The second of these integrals is easily evaluated after substituting φ = cos θ and we obtain

I = l

∫ −dφ
1− φ2 + lk2

∫ −dφ

l2
(
φ2 −

(
k
l

)2
) = 1

2 l log
∣∣∣∣1− φ1 + φ

∣∣∣∣+ 1
2k log

∣∣∣∣k + lφ

k − lφ

∣∣∣∣.
Let

p(u) =
√
l2 cos2 u+ k2 sin2 u,

then

p(u)2 = l2 cos2 u+ k2 sin2 u

= (k2 − l2) sin2 u+ l2

= −l2 sin2 θ + l2

= l2 cos2 θ

We thus obtain : ∣∣∣∣k + p

k − p

∣∣∣∣ =
∣∣∣∣k + l cos θ
k − l cos θ

∣∣∣∣ =
∣∣∣∣k + lφ

k − lφ

∣∣∣∣
and ∣∣∣∣ l + p

l − p

∣∣∣∣ =
∣∣∣∣1 + φ

1− φ

∣∣∣∣ .
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Hence

I = 1
2 l log

∣∣∣∣ l − pl + p

∣∣∣∣+ 1
2k log

∣∣∣∣k + p

k − p

∣∣∣∣
= log

∣∣∣∣ l − pl + p

∣∣∣∣ l
2

+ log
∣∣∣∣k + p

k − p

∣∣∣∣ k
2

= log
{∣∣∣∣ l − pl + p

∣∣∣∣ l
2
∣∣∣∣k + p

k − p

∣∣∣∣ k
2
}
.

By the substitution of the two side of the Eq. (4.9) and from (4.10) we obtain

v

(
log tan β2

)
= ∂I

∂u
= v

(
log

{∣∣∣∣ l − pl + p

∣∣∣∣ l
2
∣∣∣∣k + p

k − p

∣∣∣∣ k
2
})

yielding the solution

β(u) = 2 arctan
{∣∣∣∣ l − pl + p

∣∣∣∣ l
2
∣∣∣∣k + p

k − p

∣∣∣∣ k
2
}

(4.14)

(b)l2 < k2.
Similarly, we suppose

sinh θ =
√
k2 − l2
l

sin u

now involving hyperbolic functions, that gives us

I = l

∫ 1
sinh θdθ + lk2

∫ sinh θ
l2 − k2 − l2 sinh2 θ

dθ

= lI1 + lk2I2.

It is easily evaluated after substituting φ = cosh θ and we obtain

I1 =
∫

dφ

φ2 − 1

=
∫

dφ

2(φ− 1) −
∫

dφ

2(φ+ 1)

= 1
2 log|φ− 1|−1

2 log|φ+ 1|

= 1
2 log

∣∣∣∣φ− 1
φ+ 1

∣∣∣∣
and

I2 =
∫

dφ

l2
((

k
l

)2
− φ2

)
=
∫ 1

2lk log
∣∣∣∣k + lφ

k − lφ

∣∣∣∣
then

I = 1
2 l log

∣∣∣∣φ− 1
φ+ 1

∣∣∣∣+ 1
2k log

∣∣∣∣k + lφ

lφ− k

∣∣∣∣
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Using the following two equalities

φ− 1
φ+ 1 = p− l

p+ l

and
p+ k

p− k
= lφ+ k

lφ− k
with p = lφ,

we obtain

I = log
∣∣∣∣p− lp+ l

∣∣∣∣ l
2
∣∣∣∣k + p

p− k

∣∣∣∣ k
2

By Eq. (4.9) we obtain

v

(
log tan β2

)
= v

(
log

∣∣∣∣p− lp+ l

∣∣∣∣ l
2
∣∣∣∣k + p

p− k

∣∣∣∣ k
2
)

yielding the solution

β(u) = 2 arctan
{∣∣∣∣p− lp+ l

∣∣∣∣ l
2
∣∣∣∣k + p

p− k

∣∣∣∣ k
2
}
. (4.15)

5 The Preimages of Φk,l

In this section, we take a point P in S2 and we look for its preimage in S4 by Φk,l. First, we look
for the preimage of this point in S3 by the map φk,l and then we fix a point on this preimage and look
for its preimage in S4 by the map F .

5.1 The preimage of F

We recall definition of the map F in (3.3)
F : S4 → S3 for s ∈ [0, π], t ∈ [0, π/2] and a, b ∈ [0, 2π] and

F
(
cos s, sin s

(
cos t eia, sin t eib

))
=
(
cosα(s), sinα(s) cos 2t, sinα(s) sin 2t ei(a+b)

)
.

where α is a increasing regular function such that α(0) = 0 and α(π) = π

Proposition 1. Let P ∈ S3,

1) If P 6= (1, 0, 0, 0), then F−1(P ) is a closed loop.

2) F−1(±1, 0, 0, 0) = {(±1, 0, 0, 0, 0)}

Proof. We fix Z ∈ S2 and let P = (cosα0, sinα0Z) with Z ∈ S2 and α0 ∈ [0, π]. Now we look for its
preimage in S4. There exists a unique s0 such that α0 = α(s0).

1) If sinα0 6= 0,
F−1(π) = {(cos s0, sin s0x) : H(x) = Z} (5.1)

2) If sinα0 = 0, then P = (±1, 0, 0, 0). Moreover if α0 = 0 (resp. α0 = π) then s0 = 0 (resp.
s0 = π) and 2) follows.
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5.2 The preimage of φk,l

We denote by NS2 (resp SS2) the north pole (1, 0, 0) (resp. south pole (−1, 0, 0)).
We also recall definition of φk,l : S3 → S2 given in (3.7) :

φk,l
(
cosu eiψ, sin u ei(a+b)

)
=
(
cosβ(u), sin β(u) ei(kψ+l(a+b))

)
(5.2)

Proposition 2. The map φ1,1 is the Hopf map so φ−1
1,1(Q) is a great circle in S3. More generally,

φ−1
k,l ({Q}) is a (k, l) torus-knot if Q 6= NS2 , SS2 and φ−1

k,l ({NS2}) and φ−1
k,l ({SS2}) are great circles in

S3.

Proof. Let Q = (cos v0, sin v0 e
iµ0) with v0 ∈ [0, π] and µ0 ∈ [0, 2π].

There exists a unique u0 ∈
[
0, π2

]
such that v0 = β(u0).

If v0 = 0 (resp. v0 = π) i.e. Q = NS2 (resp. Q = SS2), then u0 = 0 (resp. u0 = π
2 ) and

φ−1
k,l ({NS2}) = {(eiΨ, 0) : Ψ ∈ [0, 2π]},

resp. φ−1
k,l ({SS2}) = {(0, eiA) : A ∈ [0, 2π]}.

Now assume Q = (cos v0, sin v0 e
iµ0) with v0 ∈]0, π[ and µ0 ∈ [0, 2π].

The preimage of Q is

φ−1
k,l (Q) =

{
(cosu0 e

iψ, sin u0e
iA) : µ0 = kψ + lA Ψ, A ∈ [0, 2π]

}
.

We obtain a torus knot of type (k, l); it is included in the torus on S3 given by

Tu0 =
{

(cos(u0) eiψ, sin(u0) eiA) : ψ ∈ [0, 2π] and A ∈ [0, 2π]
}
.

5.3 The preimage of the North pole NS2 = (1, 0, 0) of S2 by Φk,l

In this section, we find the preimage of the North pole NS2 = (1, 0, 0) by the map Φk,l. We also
recall the definition of Φk,l = φk,l ◦ F : where

φk,l
(
cosu eiψ, sin u ei(a+b)

)
=
(
cosβ(u), sin β(u) ei(kψ+l(a+b))

)
(5.3)

and

F
(
cos s, sin s

(
cos t eia, sin t eib

))
=
(
cosα(s), sinα(s) cos 2t sinα(s) sin 2t ei(a+b)

)
.

Proposition 3. The preimage of the north pole NS2 = (1, 0, 0) in S2 by the map Φk,l is the union of
the two totally geodesic 2-spheres

S1 = {(x1, x2, x3, x4, x5) ∈ R5 : x4 = x5 = 0}

and
S2 = {(x1, x2, x3, x4, x5) ∈ R5 : x2 = x3 = 0},

with S1, S2 ⊂ S4 ⊂ R5.
The spheres S1 and S2 intersect at each pole NS4 = (1, 0, 0, 0, 0) and SS4 = (−1, 0, 0, 0, 0) with opposite
signs of intersection.
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Proof. We look for a point of the form

(
cos s, sin s cos teia, sin s cos teib

)
∈ S4.

Let Q =
(
cosueiψ, sin ueiA

)
∈ S3 with φk,l(Q) = NS2 . Then β(u) = 0 hence u = 0. The preim-

age of NS2 in S3 is given for u = 0 by {(eiψ, 0)} ∈ S3 ⊂ C2.

We fix ψ and we look for the preimage of (eiψ, 0) in S4.
Looking at the two equations (3.4) and (3.5), we obtain by a small calculation the following

sinα(s) sin 2t = 0. (5.4)

cosα(s) + i sinα(s) cos 2t = eiψ(s,t) (5.5)
Then, sinα(s) = 0 or sin 2t = 0.

1) If sinα(s) = 0 then sin s = 0 therefore s = 0 or s = π. Using (5.5), we have eiψ(s,t) =
±1 then, ψ = 0 or ψ = π. Here, we obtain the two poles NS4 = (1, 0, 0, 0, 0) and SS4 =
(−1, 0, 0, 0, 0).

2) On the other hand, if sin 2t = 0 then t = 0 or t = π

2 . Using (5.5), we obtain for ψ 6= 0 and ψ 6= π

two cases :

a) If 0 < ψ < π, then α = ψ and t = 0, then, we obtain in S4, (cos s, sin s(eia, 0)) where
a ∈ [0, 2π] and s ∈]0, π[.
Here we have the sphere S1 punctured at the two poles.

b) If π < ψ < 2π, then α = 2π − ψ and t = π

2 therefore we obtain in S4, (cos s, sin s(0, eib))
where b ∈ [0, 2π] and s ∈]0, π[.
Here we have the sphere S2 punctured at the two poles.

In case one we obtain the two poles NS4 and SS4 .
In case two we obtain the two great spheres S1 and S2 minus the poles NS4 and SS4 .
Putting cases 1. and 2. together shows that the preimage of NS2 consists of two 2-spheres S1 and S2
intersecting transversally at the poles NS4 and SS4 .
Since, H2(S4,Z) = 0, S1 and S2 have a zero total number of intersection points (counted with sign).
Hence, NS4 and SS4 are intersection points of opposite signs.

Remark 4. In fact we can check by hand that the two intersection points have different signs. For
that we choose a positive orthonormal basis {e1, e2, e3, e4, e5} of R5 where e1 = NS4. We can see clearly
that S1 and S2 are the intersection of S4 with the two subspaces of R5 generated by {e1, e2, e3} (resp.
{e1, e4, e5}).
Let NS4 = (1, 0, 0, 0, 0) and SS4 = (−1, 0, 0, 0, 0) be the two intersection points of S1 and S2. First, for
NS4 ∈ S1 ∩ S2 we have :

- TNS1 and TNS2 are generated by the two positive bases {e2, e3} resp. {e4, e5} and TNS4 is
generated by the positive basis {e2, e3, e4, e5}. So the orientation at N is positive.

Now, we take SS4 ∈ S1 ∩ S2 we have :

- TPS1 and TPS2 are generated by the two positive bases {−e2, e3} resp. {−e4, e5} and TPS4 is
generated by the positive basis {−e2, e3, e4, e5}. So the orientation at this point P is negative.

Therefore, the two intersection points have opposite signs.
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5.4 The preimage of the South pole SS2 = (−1, 0, 0) in S2 by Φk,l

In this section we look for the preimage of the second pole SS2 = (−1, 0, 0) by the map Φk,l.

Proposition 4. The preimage of the pole south SS2 = (−1, 0, 0) in S2 is a Clifford torus in the equator
of S4.

Proof. If β(u) = π, we have
cosβ(u) = −1 and u = π/2.

The preimage of this pole in S3, is given for u = π

2 by

{(0, eiA)} ∈ S3 ⊂ C2.

We fix A and we look for the preimage of (0, eiA) in S4. Looking at (3.4) and (3.5), as above we get
the two equations:

cosα(s) + i sinα(s) cos 2t = 0 (5.6)

sinα(s) sin 2t = 1 (5.7)

Therefore,
α(s) = π/2 and 2t = π/4.

By a small computation α
(
π
4
)

= π
2 ; since α is strictly increasing we conclude that s = π

4 .
We conclude that the preimage in S4 of the south pole (−1, 0, 0) is a Clifford torus T in the equator
S3 of S4 :

T :=
{(

0,
√

2
2 eia,

√
2

2 eib
)

: (a, b) ∈ [0, 2π]× [0, 2π]
}

6 Critical points of Φk,l

In this section we are going to find the critical points of the map Φk,l. To do this, we need to prove
the following theorem:

Theorem 3. The set of critical points of Φk,l for k = l = 1 is given by two 2-spheres having the two
poles as intersection points. Otherwise, if k, l 6= 1 the set of critical points are the preimages of the
north pole (the same two spheres as for k = l = 1) together with the preimage of the south pole (a
torus).

6.1 Critical points of F

We investigate the map F from S4 into S3 given by (3.3). For 0 < s < π, α′(s) 6= 0. It follows that
all points of S4 are regular for F , outside of the poles. We now investigate what happens at the North
and South poles.
We look at a neighbourhood of the pole NS4 = (1, 0, 0, 0, 0). Near the pole NS4 = (1, 0, 0, 0, 0), the
parameter s is close to 0 so we identify a neighborhood of NS4 with a 4-ball centred at NS4 .

Bε =
{
sx : (s, x) ∈ [0, ε]× S3

}
,
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By projection on the last two coordinates we identify a neighborhood of the north pole NS2 in S2 to
a disc D of R2.
Now consider the regular function

α(s) = 2 arctan
(

tan2
(
s

2

))
.

For s ∼ 0, we have

α(s) ∼ 2 arctan s
2

4 .

Consequently,

α(s) ∼ s2

2 .

Hence
(cosα(s), sinα(s)H(x)) ∼

(
1− s4

4 ,
s2

2 H(x)
)
. (6.1)

Under the above identifications we write F as

sx −→ s2

2 H(x).

It follows that the North pole NS4 is a critical point for F .

In the second step we look at a neighbourhood of the pole SS4 = (−1, 0, 0, 0, 0), here we are go-
ing to use the same procedure that we use for the other pole.
So we identify a neighborhood of S with a 4-ball centred at SS4 .
Near the pole SS4 = (−1, 0, 0, 0, 0), the parameter s is close to π, for s ∼ π, we put s′ = π−s, now s′ ∼
0, then

sin s = sin(π − s′) = sin s′ ∼ s′ = π − s.

For a small ε > 0, the set
{
(π − s)x : (π − s, x) ∈ [0, ε]× S3} parametrizes a neighborhood of the south

pole SS4 .
The function

α(s) = α(π − s′) ∼ 2 arctan 4
s′2

(1 + o(s′)) ∼ 4
s′2

(1 + o(s′)) ∼ 4
(π − s)2 (1 + o(π − s))

or
α(s) ∼ 4

(π − s)2 (1 + o(π − s)).

We can write F in this neighborhood as

(cosα(s), sinα(s)H(x)) ∼
(

(1 + o(π − s), (s− π)2

2 H(x)
)
. (6.2)

Under the above identification we write F as

s′x −→ s′2

2 H(x).

It’s clear that the south pole is a critical point of the map F .
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6.2 Estimate of β near the endpoints of

[
0, π2

]
We recall that β :

[
0, π2

]
→ [0, π] is a regular function of u such that β(0) = 0 and β

(
π
2
)

= π.
Given by the formula for k 6= l

β(u) = 2 arctan


∣∣∣∣ l − p(u)
l + p(u)

∣∣∣∣
l
2
∣∣∣∣k + p(u)
k − p(u)

∣∣∣∣
k
2

 , (6.3)

with
p(u) =

√
l2 cos2 u+ k2 sin2 u. (6.4)

For k = l the formula is
β(u) = 2 arctan

(
tank u

)
. (6.5)

Lemma 2. Let β :
[
0, π2

]
→ [0, π] as above

1) For u ∼ 0 we have
β(u) = Cul + o(ul) with C ∈ R+. (6.6)

2) For u ∼ π
2 , let v = u− π

2 we have

β(u) = π − C
(
u− π

2

)k
+ o(vk) with C ∈ R+. (6.7)

Proof.

1) We shall examine its behavior near a critical point, for this we use Taylor’s Formula. We have

p2 = l2 cos2 u+ k2 sin2 u.

Then, in a neighborhood of 0 we have :

p2 = l2
(

1− u2

2

)2

+ k2u2 + o(u2)

= l2 + (k2 − l2)u2 + o(u2)

= l2
(

1 + k2 − l2

l2
u2
)

+ o(u2)

Then,

p = l

√
1 + k2 − l2

l2
u2 + o(u2)

= l

(
1 + k2 − l2

2l2 u2
)

+ o(u2)

We derive

l − p = l2 − k2

2l u2 + o(u2)

l + p = 2l + k2 − l2

2l u2 + o(u2)

l − p
l + p

= l2 − k2

4l2 u2 + o(u2)
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and

k − p = k − l − k2 − l2

2l u2 + o(u2)

k + p = l + k + k2 − l2

2l u2 + o(u2)

k + p

k − p
= k + l

k − l
+ o(u).

So, we get ∣∣∣∣ l − pl + p

∣∣∣∣ l
2

=
∣∣∣∣∣ l2 − k2

4l2

∣∣∣∣∣
l
2

ul = C1u
l + o(ul) (6.8)

and ∣∣∣∣k + p

k − p

∣∣∣∣ k
2

=
∣∣∣∣k + l

k − l

∣∣∣∣ k
2

= C2 + o(u). (6.9)

We put C3 = C1C2, then the product of the two estimates above (6.8) and (6.9) gives us the following

∣∣∣∣ l − pl + p

∣∣∣∣ l
2
∣∣∣∣k + p

k − p

∣∣∣∣ k
2

= C3u
l + o(ul). (6.10)

Finally, using (6.10) we obtain for β(u) the following

β(u) = 2 arctan(C3u
l) + o(ul)

= 2C3u
l + o(ul)

Consequently,
β(u) = Cul + o(ul) with C = 2C3. (6.11)

2) Now we are going to use the same procedure as in the proof of 1) but this time in a neighborhood
of π2 . Let v = π

2 − u ≥ 0. Then, using the trigonometric formulas, we obtain the following

p2 = l2 cos2 u+ k2 sin2 u

= l2 cos2(π2 − v) + k2 sin2(π2 − v)

= l2 sin2 v + k2 cos2 v. (6.12)

Then, for v in a neighborhood of 0, we have

p2 = l2v2 + k2
(

1− v2

2

)2

+ o(v2)

= k2 + (l2 − k2)v2 + o(v2)

= k2
(

1 + l2 − k2

k2 v2
)

+ o(v2).

Then,

p = k

√
1 + l2 − k2

k2 v2 + o(v2)

= k

(
1 + l2 − k2

2k2 v2
)

+ o(v2)
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We derive,

k − p = k2 − l2

2k v2 + o(v2)

k + p = 2k + l2 − k2

2k v2 + o(v2)

k + p

k − p
= 4k2

k2 − l2
1
v2 (1 + o(v))

and

l − p = l − k + k2 − l2

2k v2 + o(v2)

l + p = l + k + l2 − k2

2k v2 + o(v2)

l − p
l + p

= l − k
l + k

+ o(v2).

So, we get ∣∣∣∣ l − pl + p

∣∣∣∣ l
2

=
∣∣∣∣ l − kl + k

∣∣∣∣ l
2

= C1 + o(v2) (6.13)

and ∣∣∣∣k + p

k − p

∣∣∣∣ k
2

=
∣∣∣∣∣ 4k2

l2 − k2

∣∣∣∣∣
k
2 1
v2k (1 + o(v)) = C2(1 + o(v))

v2k . (6.14)

We put C3 = C1C2, then the product of the two estimates above (6.13) and (6.14) gives us the
following ∣∣∣∣ l − pl + p

∣∣∣∣ l
2
∣∣∣∣k + p

k − p

∣∣∣∣ k
2

= C3 (1 + o (v))
vk

. (6.15)

We let y = β(u)
2 be such that

LHS(6.15) = tan y.

We put z = y − π

2 , then
cos y
sin y ∼ −z 1

1− z2

2
∼ −z + o(z2).

Therefore,
β(v) ∼ π − 2C3v

k. (6.16)
Finally, using (6.16) we obtain for β(u) the following

β(u) = π − C
(
π

2 − u
)k

with C = 2C3. (6.17)

6.3 Critical points of φk,l

We go back to the map from S3 into S2 given by

φk,l(cosueiψ, sin ueiA) = (cosβ(u), sin β(u)ei(kψ+lA)),

where u ∈
[
0, π2

]
and ψ,A ∈ [0, 2π].

We know that the only critical values of φk,l are the south and north poles SS2 , NS2 .
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1) The North pole NS2 = (1, 0, 0): for u = 0, the corresponding points of S3 are of the form P =

(eiψ0 , 0, 0), with φk,l (P ) = (1, 0, 0). We now investigate the behaviour of φk,l in a neighborhood
of such a P .
We take η > 0 small. We identify a neighborhood of the point P ∈ S3 with [0, η]× [0, 2π]× [0, 2π]
by setting (

u, eiψ, eiA
)
7 −→

(
cosueiψ, sin ueiA

)
. (6.18)

Note that
(u,A) 7 −→ z = sin ueiA, (6.19)

parametrizes a disk in polar coordinates for 0 ≤ sin u ≤ η and 0 ≤ A ≤ 2π.
We write the point of S2 as

(
cos v, sin veiµ

)
and we identify a neighborhood of NS2 = (1, 0, 0)

with the disk {sin veiµ : v ∈ [0, η[ and eiµ ∈ S1}.

Lemma 3. In these two coordinates systems φk,l can be written in a neighborhood of the North
pole NS2 as

(eiψ, z) 7 −→ Czleikψ (6.20)

Proof. For u ∼ 0, the function
β(u) ∼ Cul.

Then,
sin β(u) ∼ Cul.

Now |z|= sin u, then
sin β(u) ∼ C|z|l.

Let eiψ ∈ S1, then we have

sin β(u)ei(kψ+lA) ∼ C|z|leilAeikψ.

Therefore, φk,l can be written as

φk,l : (eiψ, z) 7 −→ Czleikψ.

2) The South pole SS2 = (−1, 0, 0): now for u = π

2 we get points Q ∈ S3 of the form Q = (0, 0, eiA),
with φk,l (Q) = (−1, 0, 0). We now investigate the behavior of φk,l in a neighborhood of such a
Q. We proceed as above.
We identify a neighborhood of Q with [0, η]× S1 × [0, 2π] by setting(

u, eiA, eiψ
)
7 −→

(
cosueiψ, sin ueiA

)
. (6.21)

Note that
(u, ψ) 7 −→ z = cosueiψ, (6.22)

parametrizes a disk in polar coordinates for 0 ≤ cosu ≤ η and 0 ≤ ψ ≤ 2π .
We write the point of S2 as

(
cos v, sin veiµ

)
and we identify a neighborhood of S = (−1, 0, 0)

with the disk {sin veiµ with v ∈ [0, η[ and eiµ ∈ S1}.

Lemma 4. In these two coordinates system φk,l can be written in a neighborhood of the South
pole SS2 as

(eiA, z) 7 −→ CzkeilA (6.23)
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Proof. For u ∼ π

2 , we have

β(u) ∼ π − C
(
π

2 − u
)k

.

Then,
sin β(u) ∼ C(π2 − u)k.

Now |z|= cosu ∼ π
2 − u, then

sin β(u) ∼ C|z|k.

Let eiA ∈ S1, then we have

sin β(u)ei(kψ+lA) ∼ C|z|keikψeilA.

Therefore, φk,l can be written as

φk,l : (eiA, z) 7 −→ CzkeilA.

7 Multiple fibres

7.1 Smooth multiple fibres

We begin by defining a notion of multiple fibres for harmonic morphisms.

Definition 3. Let φ : Mm −→ Nn be a harmonic morphism and let p0 be a critical value of φ in Nn

such that Σ = φ−1(p0) is smooth, connected and closed. The fibre Σ = φ−1(p0) is a multiple fibre of
multiplicity µ if there exists

1) a neighbourhood U of p0 in Nn

2) a tubular neighbourhood T of Σ and a projection π : T −→ Σ such that

i) φ−1(U) ⊂ T

ii) for every p ∈ U , φ−1(p) is connected and compact

iii) for every X ∈ Σ and every p ∈ U , π−1(X) and φ−1(p) meet at µ points and these intersec-
tion points have the same sign.

We let [Σ] be the homology class of Σ in Hm−n(T ,Z). Then for p close enough to p0, and by iii),
the homology class of [φ−1(p)] verifies

[φ−1(p)] = ±µ[Σ] (7.1)
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8 Multiple fibres of φkl from S3 to S2

Proposition 5. We consider the harmonic morphism φkl : (S3, gkl) −→ S2.

1) The preimage of NS2 = (1, 0, 0) is a multiple fibre of multiplicity l.

2) The preimage of SS2 = (−1, 0, 0) is a multiple fibre of multiplicity k

Proof. We write the proof for NS2 and the proof for SS2 is identical. We let Σ = φ−1
kl (NS2) = {(eiψ, 0) ∈

S3}. We define a tubular neighbourhood T by

T = {(cosueiψ, sin ueiA) : Ψ, A ∈ [0, 2π], 0 ≤ sin u < η} (8.1)

We identify
T ' Σ× Dη = {(eiψ, z)} (8.2)

where
z = sin ueiA ∈ Dη = {z ∈ C : |z|< η} (8.3)

and the projection π becomes
(eiψ, z) 7→ z (8.4)

We identify a neighbourhood of NS2 in S2 with a disk D in C; under this identification, NS2 is identified
to 0. In the above identification of T , we write

φkl : T −→ D (8.5)

φkl : (eiψ, z) 7→ C(z)zleikψ (8.6)
where C(z) is of the form C(z) = C + o1(|z|), C being a non-zero complex number. Now let w ∈ D.
Using (8.6), we can write

φ−1
kl (w) = {(eiψ, z) : C(z)zleikψ = w}

If (eiψ0 , 0) ∈ Σ, a point (eiψ0 , z) belongs to π−1(eiψ0 , 0) ∩ φ−1
kl (w) if

C(z)zleikψ0 = w (8.7)

We derive

Lemma 5. The equation (8.7) has l preimages.

We now prove

Lemma 6. The intersections of φ−1
kl (w) with the disk π−1(eiψ0 , 0) all have the same signs.

Proof. We write the coordinate z in D as z = x + iy and we compute the derivative dφkl on D; it
verifies

∂φkl
∂x

= Clzl−1eikψ0 + o(|z|l) (8.8)

∂φkl
∂y

= i(Clzl−1eikψ0 + o(|z|l)) (8.9)

It follows from (8.8) and (8.9) that Ker(dφkl) does not contain vectors tangent to a fibre of the tubular
neighbourhood T . Hence φ−1

kl (w) is always transverse to the fibres of the tubular neighbourhood T :
since T \ φ−1

k,l (0) is connected, the sign of the intersections of φ−1
kl (w) with one of the fibres of π will

be of the same sign.
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9 Singular multiple fibres

We need to adapt Def.3 to fit the case of a singular multiple fibre. First, we replace the tubular
neighbourhood by the following object:

Definition 4. Let φ : Mm −→ Nn be a harmonic morphism and let p0 be a critical value of φ in Nn;
suppose that Σ = φ−1(p0) is smooth except at a singular set S of codimension at least 2. An open set
T together with a surjective map

π : T −→ Σ (9.1)

is called a singular tubular neighbourhood of Σ if there exists a sequence of open neighbourhoods Un of
S such that the following is true:
i) S=

⋂
Un

ii) for every n, the restriction of π to π−1(Σ\(Σ ∩ Un)) is a tubular neighbourhood of Σ\(Σ ∩ Un).

We now give a modified version of Def.3.

Definition 5. Let φ : Mm −→ Nn be a harmonic morphism and let p0 be a critical value of φ in Nn

such that Σ = φ−1(p0) is compact and smooth outside of a subset S of codimension at least 2.
The fibre Σ = φ−1(p0) is a multiple fibre of multiplicity µ if there exists a singular tubular neighbour-
hood π : T −→ Σ of Σ such that for every X ∈ Σ\S, there exists a neighbourhood VX of p0 such that
for every p ∈ VX , π−1(X) and φ−1(p) meet at µ points and these intersection points all have the same
sign.

10 Multiple fibres of Φkl from S4 to S2

Proposition 6. We consider the harmonic morphism Φkl : (S4, gkl) −→ S2.
1) The preimage of SS2 = (−1, 0, 0) is a multiple fibre of multiplicity l
2) The preimage of NS2 = (1, 0, 0) is a multiple fibre of multiplicity k.

Proof. Since the preimage of SS2 is smooth and the preimage of NS2 is not, we treat both cases
separately.
1) We recall the map F from the preimage of SS2 in S4 (which we denote ΣS) and S3

F

(
0,
√

2
2 cos a,

√
2

2 sin a,
√

2
2 cos b,

√
2

2 sin b
)

=
(
0, ei(a+b)

)
(10.1)

We introduce the tubular neighbourhood T of ΣS as ]− ε, ε[×]− ε, ε[×Σ; we parametrize it as
(cos s, y)×

(
0,
√

2
2 e

ia,
√

2
2 e

ib
)
7→ TS

(
cos s, y,

√
2

2 e
ia,
√

2
2 e

ib
)
with

TS

(
cos s, y,

√
2

2 eia,

√
2

2 eib
)

=
(

cos s, sin s
√

1− y
√

2
2 eia, sin s

√
1 + y

√
2

2 eib
)

(10.2)

Thus the fibre of an element of Σ in the tubular neighbourhood T is parametrized by

(cos s, y) ∈]− ε,+ε[×]− ε,+ε[.
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We fix w close to SS2 and we fix eia, eib: we look for cos s, y close to 0 such that

Φkl

(
TS

(
cos s, y,

√
2

2 eia,

√
2

2 eib
))

= w (10.3)

We compute F
(
TS
(
cos s, y,

√
2

2 e
ia,
√

2
2 e

ib
))

=
(

cosα(s), sinα(s)H
(√

1− y
√

2
2 eia, sin s

√
1 + y

√
2

2 eib
))

where H : S3 −→ S2 is the Hopf fibration; thus we translate (10.3) into

φkl

(
cosα(s),−y sinα(s), sinα(s)

√
1− y2ei(a+b)

)
= w (10.4)

Similarly to (8.7) or rather its equivalent for SS2 , we rewrite (10.4) as

C(cosα(s)− iy sinα(s))k(1 + o(‖(cos s, y)‖)eil(a+b) = w (10.5)

This gives us k values for the couple (cos s, y).
To see that they are all of the same sign, we proceed as in Lemma 6 and we take the partial derivatives
of (10.5) w.r.t. s and y. Using the fact that sinα(s) is close to 1, we see that these partial derivatives
are linearly independent. It follows that the fibres of the tubular neighbourhood TS are always trans-
verse to the preimages of points w close to S.
This concludes the proof of Lemma 6 1).

We now prove Lemma 6 2) using the definition above of singular multiple fibres. The preimage
of NS2 is

Φ−1
kl (N) = {(cos s, sin s(cos teia, sin teib)) with cos t sin t = 0} (10.6)

A singular tubular neighbourhood will be given by

TN = {(cos s, sin s(cos teia, sin teib)) with |cos t sin t|< η} (10.7)

for η small enough. Since cos2 t+ sin2 t = 1, TN will split into the union of T1 and T2 where

T1 ( resp. T2) = {(cos s, sin s(cos teia, sin teib)) with |cos t|< η (resp. |sin t|< η)}. (10.8)

Note that T1 and T2 intersect only at the two poles of S4.

Now fix p ∈ Φ−1
kl (NS2).

If p = (cos s, sin seia, 0) (resp. p = (cos s, 0, sin seib)), then

π−1(p) = {(cos s, sin s cos teia, sin s sin teiθ)/|sin t|< η} (10.9)

( resp. π−1(p) = {(cos s, sin s cos teiθ, sin s sin teib)/|cos t|< η}). (10.10)

The fibre π−1(p) is parametrized by

z = sin teiθ (resp. z = cos teiθ). (10.11)

We now show that if w is close to NS2 and p is of the form p = (cos s, sin seia, 0), with cos s 6= ±1,
then π−1(p) ∩ Φ−1

kl (w) contains k points and that these intersection points have the same sign. The
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proof of the same fact for p of the form p = (cos s, 0, sin seib) is identical.

We let q ∈ π−1(p) be a point of the type (10.9); we have

F (q) = (cosα(s), sinα(s) cos 2t, sinα(s) sin 2tei(θ+a)). (10.12)

Changing variables in S3, we have

sin uei(a+θ) = sinα(s0) sin 2tei(θ+a) = 2 sinα(s0) cos teia sin teiθ

= 2 sinα(s0) cos teiaz (10.13)
where z is given by (10.11). It follows that |sin u|< 2η. We also derive

β(u) = C(1 + o(t))[2 sinα(s0) cos t]l sinl t. (10.14)

On the other hand,
cosα(s) + i sinα(s) cos 2t = cosueiψ. (10.15)

Since t is very small, we derive
ψ = α(s0) + o(t). (10.16)

We can now write the restriction of Φkl = ϕkl ◦ F (q) to π−1(p). To do this, we continue using the
parameter z on π−1(p) (cf. (10.11)) and we identify a neighbourhood of NS2 with a small disk D in
C. Using (10.14) we get

z = sin teiθ 7→ C[2 sinα(s) cos t]l sinl t(1 + o(|z|))ei[kψ+l(a+θ)]. (10.17)

In other words, there exists a complex number Z0 (independent of s0) such that we can rewrite (10.17)
as

z 7→ Z0 sinl α(s0)(1 + o(|z|)zl. (10.18)
Hence, if w is a small enough non-zero complex number, more precisely, if

0 < |w|< 1
2η

l|Z0|sinl α(s0),

it has l preimages in π−1(p).

REMARK. We point out the contrast with the smooth multiple fibre case: the neighbourhood of
NS2 where we look for points with l preimages in π−1(X) depends on X and get smaller and smaller
as X approaches the singularities of the singular fibre.

This being said, we proceed as in the smooth case to show that the l preimages have the same
sign. The map given by (10.18) is a submersion and T1 \ S1 and T2 \ S2 are connected. Thus all the
preimages in T1 (resp. T2) have the same sign. Possibly after changing the orientation on one of the
2-spheres S1 and S2, we can ensure that these signs are all the same.

11 Appendix

To make this self contained we reproduce the computation of ([Bu]).
The metric (gk,l) is expressed explicitly in terms of s, t, a, b by

gk,l = 2
[
ds2 + sin s2 (dt2 + cos2 tda2 + sin2 tdb2

)]√(
k2 sin2 2t+ l2 cos2 2t

) (
sin4 s

)
/4 + l2 cos2 s

.
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For the map F to be horizontally conformal of dilation λ, the function α must satisfy the following
equation

α
′(s)2 = 4 sin2 α(s)

sin2 s
(11.1)

the equation (11.1) has an explicit solution, given by

α(s) = 2 arctan
(

tan2
(
s

2

))
.

The associated metric take the form :

ḡ =
√

2(
k2 sin2 s+ l2 cos2 s

)1/4 gS3 .
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