Ergodic Poisson Splittings - Archive ouverte HAL
Article Dans Une Revue Annals of Probability Année : 2020

Ergodic Poisson Splittings

Résumé

In this paper we study splittings of a Poisson point process which are equivariant under a conservative transformation. We show that, if the Cartesian powers of this transformation are all ergodic, the only ergodic splitting is the obvious one, that is, a collection of independent Poisson processes. We apply this result to the case of a marked Poisson process: under the same hypothesis, the marks are necessarily independent of the point process and i.i.d. Under additional assumptions on the transformation, a further application is derived, giving a full description of the structure of a random measure invariant under the action of the transformation.
Fichier principal
Vignette du fichier
Poisson_Splittingspp01.pdf (277.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01912386 , version 1 (05-11-2018)

Identifiants

Citer

Elise Janvresse, Emmanuel Roy, Thierry de La Rue. Ergodic Poisson Splittings. Annals of Probability, 2020, 48 (3), pp.1266-1285. ⟨10.1214/19-AOP1390⟩. ⟨hal-01912386⟩
141 Consultations
246 Téléchargements

Altmetric

Partager

More