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ERGODIC POISSON SPLITTINGS

ÉLISE JANVRESSE, EMMANUEL ROY AND THIERRY DE LA RUE

Abstract. In this paper we study splittings of a Poisson point process which
are equivariant under a conservative transformation. We show that, if the
Cartesian powers of this transformation are all ergodic, the only ergodic split-
ting is the obvious one, that is, a collection of independent Poisson processes.
We apply this result to the case of a marked Poisson process: under the same
hypothesis, the marks are necessarily independent of the point process and
i.i.d. Under additional assumptions on the transformation, a further applica-
tion is derived, giving a full description of the structure of a random measure
invariant under the action of the transformation.

1. Introduction

Thinning and splitting are classical operations when studying point processes.
Thinning consists in removing points according to some rule, whereas the related
notion of splitting means decomposing the point process as the sum of several
other point processes. It is well known that thinning a Poisson point process by
choosing to remove points according to independent coin tosses yields a new Poisson
process of lower (but proportional) intensity. Moreover, this procedure gives rise
to a splitting of the original Poisson process into a sum of two independent Poisson
processes.

In recent years, some new results on thinnings of Poisson process have emerged.
In particular, it is shown in [2] that it is possible to deterministically choose points
from a homogeneous Poisson point process on R to get another homogeneous Pois-
son process of lower intensity. Moreover, it is possible to proceed in a translation
equivariant way. This result has been further refined in [8] by extending it to Rd

and replacing translation equivariance by isometry equivariance. Moreover, the
remaining points were also shown to form a homogeneous Poisson point process.

The isometry or translation equivariance plays a key role here as Meyerovitch
showed in [14] that it is not possible to deterministically thin a Poisson point process
in an equivariant way with respect to a transformation which is conservative ergodic
on the base space (the translations of Rd yields dissipativity).

In the present paper, we are also interested in thinnings and splittings of Poisson
processes which are equivariant under some dynamics. The difference with [2, 8] is
that we consider thinnings/splittings which are equivariant with respect to a con-
servative transformation. Moreover, contrary to the above-mentioned result of [14],
we allow additional randomness (yet keeping ergodicity) in the thinning/splitting
procedure. We get the following result, phrased in our terminology where equivari-
ance and homogeneity are expressed through the concepts of T -point processes and

Key words and phrases. Poisson point process, Random measure, Splitting, Thinning, Poisson
suspension, Joinings.
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T -splittings : If T is an infinite measure preserving map with infinite ergodic index

(i.e. all its Cartesian products are ergodic), then any ergodic T -splitting of a Pois-
son T -point process yields independent Poisson T -point processes (Theorem 2.6).

In the second part of the paper we derive some applications. In Section 3, we
show that, for T with infinite ergodic index, the only way to get an ergodic marked
T -point process out of a Poisson T -point process is to take i.i.d. marks, independent
of the underlying process (Theorem 3.1). Then we come back to the problem we
raised in [10]. In that paper we gave conditions on T under which an ergodic T -
point process with moments of all orders is necessarily a cluster-Poisson process
(see [3, p. 175]), best described as an independent superposition of shifted Poisson
processes (a so-called SuShi). We extend this result in Section 4 to general random
measures (Proposition 4.2 and Theorem 4.3). This more general framework allows
to simplify and improve some disjointness results from [10] in the last section.

1.1. T -random measures and T -point processes. Let X be a complete sep-

arable metric space and A be its Borel σ-algebra. Define X̃ to be the space of
boundedly finite measures (also called locally finite measures) on (X,A), that is to
say measures giving finite mass to any bounded Borel subset of X . We refer to [12]

for the topological properties of X̃ . In particular, X̃ can be turned into a complete

separable metric space, that we equip with its Borel σ-algebra Ã.

We denote by X∗ ⊂ X̃ the subspace of simple counting measures, i.e. whose
elements are of the form

ξ =
∑

i∈I

δxi
,

where I is at most countable, xi 6= xj whenever i 6= j, and any bounded subset
A ⊂ X contains finitely many points of the family {xi}i. We define A∗ as the

restriction of Ã to X∗.

Throughout the paper, we fix a boundedly finite and continuous measure µ on
X with µ(X) = ∞, and an invertible transformation T on X preserving µ. We set

Af := {A ∈ A, 0 < µ (A) < +∞} .

For any measure ξ on X , we define T∗(ξ) as the pushforward measure of ξ by T :
for any A ∈ A,

T∗(ξ)(A) := ξ(T−1A).

In particular, if ξ =
∑

i∈I δxi
, then T∗ (ξ) =

∑
i∈I δT (xi).

As we already noticed in [10], the property of bounded finiteness may be lost by

the action of T . Nevertheless, if m is a σ-finite measure on X̃ which is concentrated

on
⋂

n∈Z
T−n
∗ X̃, it makes sense to consider the T∗-invariance of m. In this case,

T∗(ξ) ∈ X̃ for m-almost all ξ ∈ X̃, and (X̃, Ã,m, T∗) is an invertible measure
preserving dynamical system.

The following definition generalizes the notion of T -point process introduced
in [10].

Definition 1.1. A T -random measure is a random variable N defined on some

probability space (Ω,F ,P) with values in
(
X̃, Ã

)
such that

• for any set A ∈ A, N (A) = 0 P-a-s. whenever µ (A) = 0;
• there exists a measure preserving invertible transformation S on (Ω,F ,P),
such that for any set A ∈ A, N (A) ◦ S = N

(
T−1A

)
.
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Thus, a T -random measure N implements a factor relationship between the

dynamical systems (Ω,F ,P, S) and
(
X̃, Ã,m, T∗

)
, where m is the pushforward

measure of P by N . We say that N is ergodic whenever
(
X̃, Ã,m, T∗

)
is ergodic.

In particular N is ergodic as soon as (Ω,F ,P, S) is itself ergodic.
The intensity of a T -random measure N is the T -invariant measure on X defined

by the formula A ∈ A 7→ E [N (A)]. It is absolutely continuous with respect to µ
and if it is σ-finite, it is a multiple of µ, by ergodicity of (X,A, µ, T ). In this case,
we say that N is integrable. More generally, the higher order moment measures can
be defined as follows.

Definition 1.2. Let n ≥ 1. A T -random measure N on (Ω,F ,P, S) is said to have
moments of order n if, for all bounded A ∈ A, E [(N (A))n] < +∞. In this case,
the formula

MN
n (A1 × · · · ×An) := E [N (A1)× · · · ×N (An)]

(A1, . . . , An ∈ A) defines a boundedly finite T×n-invariant measureMN
n on (Xn,A⊗n)

called the n-order moment measure.
A T -random measure with moments of order 2 is said to be square integrable.

A T -point process is a T -random measure taking values in X∗. In this case,
for ω ∈ Ω, we identify N(ω) with the corresponding set of points in X . The
most important T -point processes are Poisson point processes, let us recall their
definition.

Definition 1.3. A random variable N with values in (X∗,A∗) is a Poisson point
process of intensity µ if for any k ≥ 1, for any mutually disjoint sets A1, . . . , Ak ∈
Af , the random variables N (A1) , . . . , N (Ak) are independent and Poisson dis-
tributed with respective parameters µ (A1) , . . . , µ (Ak).

Such a process always exists, and its distribution µ∗ onX∗ is uniquely determined
by the preceding conditions.

Since T preserves µ, one easily checks that T∗ preserves µ∗. And defining N on
the probability space (X∗,A∗, µ∗) as the identity map provides an example of a
T -point process, the underlying measure-preserving transformation being S = T∗

in this case.

Definition 1.4. The probability-preserving dynamical system (X∗,A∗, µ∗, T∗) is
called the Poisson suspension over the base (X,A, µ, T ).

The basic result (see e.g. [15]) about Poisson suspensions states that (X∗,A∗, µ∗, T∗)
is ergodic (and then weakly mixing) if and only if there is no T -invariant set in Af .
In particular this is the case if (X,A, µ, T ) is ergodic and µ infinite.

We also recall the classical isometry formula that will be useful several times in
this paper: for f, g ∈ L1 (µ) ∩ L2 (µ),

(1) Eµ∗

[(∫

X

f(x)N(dx) −

∫

X

f(x)µ(dx)

)(∫

X

g(x)N(dx) −

∫

X

g(x)µ(dx)

)]

=

∫

X

f (x) g (x)µ (dx) .

Remark 1.5. The notion of T -random measure with intensity µ can be interpreted
in terms of quasifactors as introduced by Glasner and Meyerovitch. Glasner defined
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in [7] a quasifactor of a probability measure preserving system (X,A, µ, T ) as a

probability measure preserving system
(
X̃, Ã,m, T∗

)
where Em [N (A)] = µ (A).

(Here, N is the random variable defined by the identity on X̃, and in the case where
µ is a probability measure, m is in fact concentrated on the subset of probability
measures on X .) Meyerovitch in [13] extended this definition to the case where µ
is infinite (but m is still a probability measure). Thus

• Poisson suspensions appear as natural example of ergodic quasifactors.
• any T -random measure N with intensity µ on (Ω,F ,P, S) gives rise to the
quasifactor defined by m := N∗(P);

• any quasifactor
(
X̃, Ã,m, T∗

)
is associated to the T -random measure N :=

Id on the probability space
(
X̃, Ã,m, T∗

)
.

In Section 4.2.3, we will consider yet another case, namely when m is an infinite
measure, and use the terminology ∞-quasifactor in this case.

1.2. Splittings.

Definition 1.6. Let N be a T -point process defined on the dynamical system
(Ω,F ,P, S). For 1 ≤ k ≤ ∞, a T -splitting of order k of N is a finite or count-
able family of T -point processes {Ni}0≤i<k defined on (Ω,F ,P, S) so that N =∑

0≤i<k Ni.

We use the terminology “T -splitting” in the above definition to insist on the
equivariance of the splitting with respect to the underlying transformation T . In
this paper however, whenever we deal with T -point processes, the splittings are
always assumed to be T -splittings, and we will omit the “T ” in the sequel.

The splitting is said to be ergodic if the joining generated by {Ni}0≤i<k is ergodic.

In the situation N ′ ≤ N , the usual terminology considers N ′ as a thinning of N ,
and we get (N ′, N −N ′) as a splitting of order 2.

A Poisson splitting of order k is a splitting such that {Ni}0≤i<k are independent

Poisson processes. (In this case, N itself has to be a Poisson T -point process.)

As we mentioned in the introduction, under the assumption of conservativity and
ergodicity of T , Meyerovitch [14] proved that, in the canonical space (X∗,A∗, µ∗, T∗)
of the Poisson suspension, there exists no splitting of the canonical Poisson T -point
process. But of course a splitting can exist in a larger probability space (for example
a product space, in which we can find two independent Poisson T -point processes).

1.3. Properties of Cartesian powers of T . Let us end the introduction by say-
ing a few words about some properties of the Cartesian products of the underlying
infinite measure preserving transformation that we will be dealing with.

It is well known, in the finite measure setting, that a weak mixing transformation
has infinite ergodic index (all its Cartesian powers are ergodic). Moreover, if it is
not weak mixing then its Cartesian square is already not ergodic. The situation is
therefore pretty clear. In the infinite measure case however, the picture is definitely
not as simple. It was first observed in [11] that all intermediate situations may
occur: For any k ≥ 1, there is a transformation with first k Cartesian products
ergodic whereas the k + 1 Cartesian product is not. The same authors also give
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examples of infinite measure preserving transformations with infinite ergodic index.
All these examples fall into the Markov chain category.

Since then, as the zoo of infinite measure preserving transformations developed,
various examples of transformations having infinite ergodic index or not were built
(see [1] where the so-called infinite Chacon Transformation — an infinite measure
preserving version of the classical Chacon transformation— is shown to have infinite
ergodic index).

In the last part of the paper, we will assume a much stronger property of T ,
which can be viewed as a strong version of the Radon minimal self-joinings property
introduced by Danilenko in [4], and roughly saying that the Cartesian powers of
the transformation admit as few invariant measures as possible (see Definition 4.1).
An example of a transformation enjoying this property, the nearly finite Chacon

transformation, is described in [9].

2. Splitting of Poisson T -point processes

For each n ≥ 1, we denote by Pn the set of all partitions of {1, . . . , n}. Given
π ∈ Pn, we define a measure on Xn by

mπ (A1 × · · · × An) :=
∏

P∈π

µ (∩i∈PAi) .

For a given n, these measures are T×n-invariant and mutually singular. The mea-
sure corresponding to the trivial partition with a single atom is called the n-diagonal
measure, and is concentrated on Dn := {(x1, . . . , xn) ∈ Xn : x1 = · · · = xn}.

It is well known that the n-order moment measure of the Poisson process of
intensity µ takes the form ∑

π∈Pn

cπmπ.

for positive coefficients cπ, π ∈ Pn. Moreover, if N is a Poisson process of intensity
αµ, then the n-order moment measure equals

∑

π∈Pn

cπα
#πmπ.

In the context of a T -point process, it turns out that the existence for each
moment measure of a decomposition as a linear combination of the measures mπ

characterizes Poisson processes. This is the object of the following theorem, whose
proof is hidden in Theorem 3.2 in [10]. Although the argument is almost word-
for-word the same, we repeat the proof here since the assumptions are far more
general, and it would be cumbersome to explain the differences without giving all
the details.

Theorem 2.1. Let (X,A, µ, T ) be an infinite measure preserving dynamical system
with no invariant set of positive finite measure. Let N be a T -point process with
moments of all orders defined on (Ω,F ,P, S).

Then N is a Poisson process if and only if N is ergodic and for all n ≥ 1, there
exist nonnegative numbers απ such that

MN
n =

∑

π∈Pn

απmπ.
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Proof. Only one direction needs to be detailed.
We can assume that (Ω,F ,P, S) is ergodic. For n = 1, we obtain the intensity

of N as a multiple of µ, say αµ for some α ≥ 0.
We first point out that for each n ≥ 1, the weight of the n-diagonal measure is α

(this is valid for any point process of intensity αµ). Indeed, using a set A ∈ Af ,

and
((

Aℓ
i

)
1≤i≤pℓ

)

ℓ≥1
a generating sequence of partitions of A, we get

pℓ∑

i=1

MN
n

(
Aℓ

i × · · · ×Aℓ
i

)
= E

[
pℓ∑

i=1

N
(
Aℓ

i

)
· · ·N

(
Aℓ

i

)
]

−−−→
ℓ→∞

E [N (A)] = αµ (A) = αµ (A ∩ · · · ∩ A) .

On the other hand,

pℓ∑

i=1

MN
n

(
Aℓ

i × · · · ×Aℓ
i

)
= MN

n

(
pℓ⊔

i=1

Aℓ
i × · · · ×Aℓ

i

)

−−−→
ℓ→∞

MN
n (Dn ∩ A× · · · ×A) .

Therefore MN
n (Dn ∩A× · · · ×A) = αµ (A ∩ · · · ∩A). Since the n-diagonal mea-

sure is the only measure mπ charging Dn, this implies as claimed that the weight
of the n-diagonal measure is α.

We now want to prove by induction that, for all n ≥ 1,MN
n is the n-order moment

measure of a Poisson process of intensity αµ. The property is of course satisfied
for n = 1. Let us assume it is satisfied up to some n ≥ 1, and let A1, . . . , An+1 be
sets in Af . Pick a nonempty subset K ( {1, . . . , n+ 1}. By the ergodic theorem,
we get

(2)
1

ℓ

ℓ∑

k=1

E

[
∏

i∈K

N (Ai)

(
∏

i∈Kc

N (Ai) ◦ S
k

)]

−−−→
ℓ→∞

E

[
∏

i∈K

N (Ai)

]
E

[
∏

i∈Kc

N (Ai)

]

= MN
#K

(

×
i∈K

Ai

)
MN

(n+1−#K)

(

×
i∈Kc

Ai

)
.

On the other hand,

1

ℓ

ℓ∑

k=1

E

[
∏

i∈K

N (Ai)

(
∏

i∈Kc

N (Ai) ◦ S
k

)]
(3)

=
1

ℓ

ℓ∑

k=1

MN
n+1

(
T−ǫk(1)A1 × · · · × T−ǫk(n+1)An+1

)

=
∑

π∈Pn+1

απ

1

ℓ

ℓ∑

k=1

mπ

(
T−ǫk(1)A1 × · · · × T−ǫk(n+1)An+1

)
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where ǫk (i) := 0 if i ∈ K, and ǫk (i) := k otherwise. Coming back to the definition
of mπ, we write

mπ

(
T−ǫk(1)A1 × · · · × T−ǫk(n+1)An+1

)
=
∏

P∈π

µ

(
⋂

i∈P

T−ǫk(i)Ai

)
.

Observe that, if K is a union of atoms of π, we have for any 1 ≤ k ≤ ℓ

(4) mπ

(
T−ǫk(1)A1 × · · · × T−ǫk(n+1)An+1

)
= mπ (A1 × · · · ×An+1) .

Otherwise, there exists an atom P ∈ π containing indices i ∈ K and j /∈ K,
hence with ǫk (i) = 0 and ǫk(j) = k. We get that for some constant C,

mπ

(
T−ǫk(1)A1 × · · · × T−ǫk(n+1)An+1

)
≤ Cµ(T−kAj ∩ Ai).

But, since there is no T -invariant set of positive finite measure,

1

ℓ

ℓ∑

k=1

µ
(
T−kAj ∩ Ai

)
−−−→
ℓ→∞

0.

Let PK
n+1 be the set of partitions π ∈ Pn+1 where K is a union of atoms of π. The

above proves that, in the limit as ℓ → ∞, the contribution in (3) of all partitions
π ∈ Pn+1 \ PK

n+1 vanishes. Thus we get, using (2), (3) and (4),

MN
#K

(

×
i∈K

Ai

)
MN

(n+1−#K)

(

×
i∈Kc

Ai

)
=

∑

π∈PK
n+1

απmπ (A1 × · · · ×An+1) .

Since ∅ 6= K ( {1, . . . , n+ 1}, the decompositions of MN
#K and MN

(n+1−#K) only

involve the coefficients απ, π ∈ P1 ∪ · · · ∪ Pn. Using the mutual singularity of
the measures on both sides of the above equality, we see that all the coefficients
απ, π ∈ PK

n+1, are completely determined by the coefficients corresponding to
partitions in P1 ∪ · · · ∪ Pn. Moreover, the above argument is valid in particular
when N is the Poisson process of intensity αµ. By letting K run through all strict
subsets of {1, . . . , n+ 1}, and using the induction hypothesis, we identify all but
one coefficients of the decomposition of MN

n+1 as those of the Poisson point process
of intensity αµ. The only coefficient that cannot be determined by this method is
the one associated to the trivial partition of {1, . . . , n+ 1} into a single atom. But
this corresponds to the (n + 1)-diagonal measure, and we already know that this
coefficient is α.

We have proved that the moment measures of any order of N are those of a
Poisson point process of intensity αµ. Lemma 3.1 in [10] ensures then that N is a
Poisson point process of intensity αµ. �

Observe that the conclusion of the proof fails if one does not assume the ergod-
icity of the point process N : think of a mixture of two Poisson point processes with
different intensities.

The action of T×n on (Xn,A⊗n,mπ) is isomorphic to
(
X#π,A⊗#π, µ⊗#π, T×#π

)
.

It is therefore ergodic if we assume that T has infinite ergodic index. With this
assumption, we get the following easy consequence for a thinning of Poisson T -point
process.
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Proposition 2.2. Assume T has infinite ergodic index. Let N and N ′ be T -point
processes defined on the system (Ω,F ,P, S) such that N is Poisson of intensity µ
and N ′ ≤ N . If N ′ is ergodic, then it is Poisson of intensity αµ for some 0 ≤ α ≤ 1.

Proof. If T has infinite ergodic index, all the measures mπ, π ∈ Pn, n ≥ 1, are
ergodic with respect to T×n, therefore, the formula

∑
π∈Pn

cπmπ is precisely the

ergodic decomposition of the moment measure MN
n of the Poisson process N , with

respect to T×n.
Now, as N ′ ≤ N , we get for each n ≥ 1, N ′ ⊗ · · · ⊗N ′ ≤ N ⊗ · · · ⊗N , and thus

MN ′

n = E [N ′ ⊗ · · · ⊗N ′ (·)] ≤ E [N ⊗ · · · ⊗N (·)] = MN
n . We therefore obtain the

ergodic decomposition of MN ′

n in the form

MN ′

n =
∑

π∈Pn

απmπ

for some non negative numbers απ. We can now apply the preceding theorem to
the ergodic T -point process N ′ to get the result. �

Example 2.3. Let us describe an example where the conclusion of the Proposition
fails. Consider the so-called “homogeneous Poisson process”, that is, the classical
Poisson process on the real line with intensity equal to the Lebesgue measure. The
base transformation is the translation T : x 7→ x + 1 (in particular, the Poisson
T -point process is ergodic). Now we can form a thinning N ′ by keeping the points
of N that are separated by at least κ > 0 from every other points. It is easy to see
that N ′ is an ergodic T -point process but obviously not a Poisson process. Here
the proposition does not apply, not really because T is not ergodic (in fact T can
be embedded in an ergodic action of R), but because the Cartesian powers fail to
be ergodic (even if we consider the R-action).

For the proof of the next theorem, we shall need some definitions and the fol-
lowing lemma which is a particular case of Lemma 2.6 in [10].

Definition 2.4. We say that a T -point process N defined on (Ω,F ,P, S) is free if
for P-almost all ω, for all k ∈ Z∗, N(ω) ∩N

(
Skω

)
= ∅.

Two T -point processes N1 and N2 defined on (Ω,F ,P, S) are said to be disso-
ciated if, for P-almost all ω, for all k ∈ Z, N1(ω) ∩N2

(
Skω

)
= ∅.

Note that if N is a Poisson T -point process, then N is free (Proposition 2.7
in [10]).

Lemma 2.5. Let N1, . . . , Nn be n T -point processes defined on the ergodic system
(Ω,F ,P, S), having moments of all orders. Assume there exist a real number c > 0
and some π ∈ Pn such that for any sets A1, . . . , An in Af ,

E [N1 (A1) · · ·Nn (An)] ≥ cmπ(A1 × · · · ×An).

Then, for any atom P ∈ π, any A ∈ Af ,

P

(
A ∩

⋂

i∈P

Ni 6= ∅

)
> 0.

In particular, for i, j ∈ P , the processes Ni and Nj are not dissociated.

Theorem 2.6. If T has infinite ergodic index, then any ergodic splitting of a Pois-
son T -point process is Poisson.
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Proof. We start with a splitting of order k < ∞ of a Poisson T -point process N
defined on the ergodic dynamical system (Ω,F ,P, S), that is, we have k T -point
process N1, . . . , Nk so that N = N1 + · · ·+Nk.

From Proposition 2.2, the Nj’s are Poisson processes with respective intensities
α1µ, . . . , αkµ such that α1 + · · ·+ αk = 1

Let n1, . . . , nk be positive numbers, n := n1 + · · · + nk, and let {Q1, . . . , Qk}
be the partition of {1, . . . , n} in subsets of consecutive integers of respective size
n1, . . . , nk. For any {Ai}1≤i≤n in Af , set

(5) σ(A1 × · · · ×An) := E




k∏

j=1

∏

i∈Qj

Nj(Ai)



 .

This defines a T×n-invariant measure σ on (Xn,A⊗n), for which, as above, since
for all 1 ≤ j ≤ k we have Nj ≤ N , σ ≤ MN

n . Hence σ has at most countably many
ergodic components, of the form mπ for some π ∈ Pn. Observe that the processes
N1, . . . , Nk are mutually dissociated as, for all 1 ≤ j ≤ k, Nj ≤ N and N is free.
Therefore, by Lemma 2.5, if the measure mπ appears in the ergodic decomposition
of σ, then π refines the partition {Q1, . . . , Qk}. Hence, any ergodic component mπ

of σ has the form

mπ(A1 × · · · ×An) =
k∏

j=1

∏

P∈π,P⊂Qj

µ

(
⋂

i∈P

Ai

)
=

k∏

j=1

νj

(

×
i∈Qj

Ai

)
,

where each νj is a T×nj -invariant measure. In particular, any ergodic component
of σ is invariant by the transformation (x1, . . . , xn) 7→ (y1, . . . , yn), where yi :=
Txi if i ∈ Qk, and yi := xi otherwise. It follows that σ itself is invariant by
this transformation, hence the expression defining σ(A1 × · · · × An) on the right-
hand side of (5) is unchanged if we replace Nk(Ai) by Nk(T

−1Ai) for all i ∈ Qk

simultaneously. Therefore, we can write for any {Ai}1≤i≤n in Af and any L ≥ 1

E




k∏

j=1

∏

i∈Qj

Nj(Ai)



 =
1

L

∑

1≤ℓ≤L

E








k−1∏

j=1

∏

i∈Qj

Nj(Ai)




∏

i∈Qk

Nk(T
−ℓAi)





= E








k−1∏

j=1

∏

i∈Qj

Nj(Ai)







 1

L

∑

1≤ℓ≤L

∏

i∈Qk

Nk ◦ S
ℓ(Ai)







 .

By the ergodic theorem, this converges as L → ∞ to

E




k−1∏

j=1

∏

i∈Qj

Nj(Ai)



E




∏

i∈Qk

Nk(Ai)



 .

A straightforward induction on k then yields the equality

E




k∏

j=1

∏

i∈Qj

Nj(Ai)


 =

k∏

j=1

E



∏

i∈Qj

Nj(Ai)


 ,

and this is sufficient to obtain the independence between the Poisson processes.
The case k = ∞ is easily deduced from the finite order case. �
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Remark 2.7. For the conclusion of Theorem 2.6 to hold, it is in fact enough to as-
sume only that (with the notations of the proof) all but one of the T -point processes
Nj are ergodic. Indeed, we can then apply the proof in any ergodic component of
the joining (N1, . . . , Nk), and see that in each of these ergodic components we have
the same structure of independent Poisson processes. A posteriori we see that
there is only one ergodic component. In particular, with the assumptions of Propo-
sition 2.2, we get that N ′ and (N − N ′) are independent Poisson processes and
thus form a Poisson splitting. Moreover, if we remove the assumption of ergodicity
of N ′ in Proposition 2.2, we get that the ergodic components of (N ′, N − N ′) are
necessarily Poisson splittings.

3. Application to marked Poisson point processes

Here, we deal with so-called marked point processes. Roughly speaking a marked
point process on X with marks in some measurable space (K,K) is a point process
on X whose points carry some information, a mark, taking values in K. For a
T -point process, we require the mark to have the shadowing property, meaning that
it follows the point when the dynamics on the point process is applied. We thus
consider a marked T -point process as a (T × Id)-point process on the bigger space
(X ×K,A⊗K) with intensity measure µ̃ that projects on µ.

Theorem 3.1. Let (X,A, µ, T ) be an infinite measure preserving dynamical system
with infinite ergodic index. Let N be an ergodic (T × Id)-point process on X ×K.
Assume that N0 := N (· ×K) is a Poisson point process with intensity µ. Then N
is a Poisson point process with intensity µ⊗ ρ where ρ is some probability measure
on K.

Remark 3.2. It is well known that when a Poisson point process is independently
endowed with i.i.d. marks, then the resulting point process on the product space
is a Poisson process whose intensity is the product measure of the original inten-
sity and the distribution of the marks. The above result means that, for T with
infinite ergodic index, the only way to get an ergodic marked T -point process out
of a Poisson T -point process is precisely to take i.i.d. marks, independent of the
underlying process.

Proof. Let us denote by µ̃ the intensity of N on X ×K. Let E =
⊔

i∈I Ai × Bi ⊂
X ×K be a finite union of pairwise disjoint product sets of finite µ̃-measure. Let
(B̃j)j∈J be the finite partition of K into nonempty subsets generated by the sets

Bi. For each j ∈ J , denote by Ij the subset of i ∈ I such that B̃j ⊂ Bi, then
observe that the sets Ai, i ∈ Ij are pairwise disjoint. Therefore, E can be also
written as the disjoint union

E =
⊔

j∈J

⊔

i∈Ij

Ai × B̃j ,

and this refines the original partition of E into product sets Ai × Bi. Since the

ergodic T -point processes NB̃j
:= N

(
· × B̃j

)
, j ∈ J , form an ergodic splitting of

N0, we get by Theorem 2.6 that they are independent Poisson T -point processes.
Since for each j ∈ J the sets Ai, i ∈ Ij , are pairwise disjoint, the random variables

N(Ai × B̃j), j ∈ J , i ∈ Ij are independent Poisson random variables. Finally, the
random variables N(Ai×Bi), i ∈ I are also independent Poisson random variables.
This is enough to prove that N is a Poisson point process.
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To get the intensity, observe that, for each B ∈ K, N (· ×B) is a thinning of N0

whose intensity is µ. By ergodicity of (X,A, µ, T ), there exists 0 ≤ ρ (B) ≤ 1 such
that ρ (B)µ is the intensity of N (· ×B). It is now clear that the map B 7→ ρ (B)
defines a probability measure on (K,K). Finally µ̃ = µ⊗ ρ. �

4. Extended SuShis: From simple point processes to general random

measures

In this section, we aim to extend the “rigidity” result obtained in [10] for simple
point processes to general random measures. The hypothesis on (X,A, µ, T ) will
be the same as in [10] but rephrased with the notation introduced earlier.

Definition 4.1. We say that the infinite measure preserving system (X,A, µ, T ) has
the (P) property if, for each n ≥ 1 the following is true: whenever σ is a boundedly
finite, T×n-invariant measure on Xn, with marginals absolutely continuous with
respect to µ, then σ is conservative, and its ergodic components are all of the form(
T k1 × · · · × T kn

)
∗
mπ for some π ∈ Pn and integers k1, . . . , kn.

Note that the (P) property implies in particular that T has infinite ergodic index
(otherwise the ergodic components of some product measure µ⊗n would not satisfy
the required assumption).

Let X̃c ⊂ X̃ and X̃d ⊂ X̃ be respectively the spaces of continuous and discrete
boundedly finite measures on (X,A).

If N is an integrable T -random measure, we can write N as Nc + Nd where

Nc ∈ X̃c and Nd ∈ X̃d (both Nc and Nd can be obtained deterministically from
N). Of course Nc and Nd are still integrable T -random measures whose respective
intensities are multiples of µ (by ergodicity of T ). Thanks to this decomposition, we
can study separately the case of a.s. continuous T -random measures, and the case
of a.s. discrete T -random measures, which will be the objects of the two following
sections.

4.1. The continuous case.

Proposition 4.2. Assume that T has the (P) property.
If N is a square integrable T -random measure defined on some ergodic system

(Ω,F ,P, S), whose realizations are a.s. continuous, then there exists α ≥ 0 such
that N is constant and a.s. equal to αµ.

If the realizations are a.s. absolutely continuous with respect to µ, no hypothesis
on moments are required to get the same conclusion, although we might have α =
+∞.

Proof. First assume N is square integrable. We know that its intensity is of the
form αµ for some α ≥ 0, and the moment measure of order two, defined on A⊗A
by

MN
2 (A×B) := E [N (A)N (B)] = E [N ⊗N (A×B)]

is boundedly finite. This measure is T×T -invariant, and its marginals are absolutely
continuous with respect to µ. Moreover, as N is a.s. continuous, N ⊗N gives zero
measure to the graphs of T k, for all k ∈ Z. Thanks to property (P), MN

2 = βµ⊗µ
for some β ≥ 0. Applying the ergodic theorem, we get for all A ∈ Af

1

n

n∑

k=1

E
[
N (A)N (A) ◦ Sk

]
−−−−→
n→∞

E [N (A)]
2
= α2µ (A)

2
.
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On the other hand,

1

n

n∑

k=1

E
[
N (A)N (A) ◦ Sk

]
=

1

n

n∑

k=1

MN
2 (A× T−kA) =

1

n

n∑

k=1

βµ (A)µ
(
T−kA

)
,

which by invariance of µ is equal to βµ (A)
2
. Therefore β = α2 and

E

[(
N (A)− αµ (A)

)2]
= MN

2 (A×A)− α2µ (A)2 = 0,

which implies the result.
If we assume that the realizations are a.s. absolutely continuous, then we can

write for all set A ∈ A

N (ω) (A) =

∫

A

f (ω, x)µ (dx) .

We can therefore define Nn by

Nn (ω) (A) =

∫

A

(f ∧ n) (ω, x)µ (dx) .

Nn is still a continuous ergodic T -random measure but is now square integrable.
From the first part of the proof, Nn = αnµ a.s. Since Nn increases to N , we get
N = αµ a.s. where α is the increasing limit of αn. �

4.2. The discrete case. We consider the set of sequences

ℓ+1 (Z) :=

{
(ak)k∈Z : ∀k ∈ Z, ak ≥ 0 and

∑

k∈Z

ak < ∞

}
.

The ℓ1 norm turns ℓ+1 (Z) into a complete separable metric space. The goal of this
section is to obtain the following result:

Theorem 4.3. Assume T has the (P) property. Let N be a nonzero T -random
measure with moments of all orders defined on some ergodic system (Ω,F ,P, S)
and whose realizations are almost-surely discrete. Then there exists a probability
distribution κ on ℓ+1 (Z) and a positive number c such that N is distributed as

A 7→

∫

X×ℓ
+

1
(Z)

∑

k∈Z

ak1A
(
T kx

)
N
(
dx, d {ak}k∈Z

)

where N is a Poisson point process on X × ℓ+1 (Z) with intensity cµ⊗ κ.

This result says that N has a cluster form which can be obtained in the following
way: start from a Poisson point process of intensity cµ, then replace independently
each point x output by this Poisson point process with a random measure (the
cluster) of the form ∑

k∈Z

akδTkx

where {ak}k∈Z
is chosen according to κ.

In the following, replacing if necessary µ by the intensity of N which is of the
form αµ for some α > 0 by ergodicity of T , we assume that the intensity of N is µ.
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4.2.1. Removing points with small weights. Consider N as in the statement of The-
orem 4.3. For ǫ > 0, we define Nǫ from N by removing points with weights less
than ǫ. We also define Nǫ,1 as the simple point process obtained from Nǫ with all
weights set to 1. We have for all A ∈ Af

Nǫ,1 (A) ≤
1

ǫ
Nǫ (A) ≤

1

ǫ
N (A) ,

therefore Nǫ and Nǫ,1 are both T -random measures with moments of all orders.
In particular, thanks to Proposition 2.1 in [10], Nǫ,1 almost surely belongs to the

subset X̃d,f ⊂ X̃d of measures ν satisfying the following property:

∀x ∈ X, # {n ∈ Z : ν(T nx) > 0} < ∞.

Of course, Nǫ ∈ X̃d,f almost surely as well.

We construct an injective map Φ from X̃d,f to
(
X × ℓ+1 (Z)

)∗
. For ν ∈ X̃d,f , Φ(ν)

is the simple counting measures supported on the following collection of points in
X × ℓ+1 (Z): we select in each orbit seen by ν the first element x in the orbit with
maximal weight, and consider the point

(
x, (ν(T nx))n∈Z

)
. In other words, a point(

x, (βn)n∈Z

)
belongs to Φ (ν) if and only if

• β0 > βn for each n < 0;
• β0 ≥ βn for each n ≥ 0;
• ν ({T nx}) = βn for each n ∈ Z.

Observe that we can recover ν from Φ (ν) by the formula

(6) ν (A) =

∫

X×ℓ+
1
(Z)

∑

k∈N

βk1A

(
T kx

)
Φ (ν)

(
dx, d {βk}k∈N

)
.

Now, Φ (Nǫ) is P-a.s. well defined as a (T × Id)-point process on X × ℓ+1 (Z).
Its projection on the first coordinate (Φ (Nǫ))0 := Φ (Nǫ)

(
· × ℓ+1 (Z)

)
is a T -point

process on X with moments of all orders (since Φ (Nǫ)
(
· × ℓ+1 (Z)

)
≤ Nǫ,1 (·)). By

construction, this T -point process is free since we have selected one point in each
orbit seen by Nǫ.

Applying Theorem 3.2 in [10] (and this is where we need the assumptions of
moments of all orders), we get that (Φ (Nǫ))0 is a Poisson process. Then by Theo-

rem 3.1, we obtain that Φ (Nǫ) is a Poisson process on
(
X × ℓ+1 (Z)

)
. Applying (6),

we almost surely have

Nǫ (A) =

∫

X×RZ

+

∑

k∈N

αk1A

(
T kx

)
Φ (Nǫ)

(
dx, d {αk}k∈N

)
,

and thus we get the theorem for Nǫ, for any ǫ > 0.

To get the result for N , we need to take advantage of the infinite divisibility
character of Nǫ, that N will inherit in the limit. We therefore have to recall some
general results about infinite divisibility.

4.2.2. Infinitely divisible random measures. The notion of infinite divisibility can
be defined on any measurable semi-group although we only give it in the context
we are interested in.
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Definition 4.4. let (Z,Z) be complete separable metric space. A probability dis-

tribution σ on
(
Z̃, Z̃

)
is infinitely divisible (ID) if , for any k ∈ N, there exists a

probability distribution σk such that

σ = σk ⋆ · · · ⋆ σk︸ ︷︷ ︸
k times

,

where ⋆ is the convolution of measures induced by the addition on Z̃. By extension,
we say that a random measure on Z is ID if its distribution is.

The first examples of ID random measures are Poisson measures, their ID char-
acter comes directly from the well known fact that the sum of two independent
Poisson processes on the same space with intensities µ1 and µ2 is again a Poisson
process, but with intensity µ1 + µ2.

We recall the fundamental representation result that can be found in [12, Theo-
rem 3.20].

Theorem 4.5. A probability measure m on X̃ is ID if and only if there exist a

measure γ ∈ X̃ and a σ-finite measure ρ on X̃ \ {0} satisfying, for all bounded
B ⊂ X

∫

X̃

(ξ(B) ∧ 1) dρ(ξ) < ∞,

such that m is the distribution of the following random measure:

γ +

∫

X̃

ξ(·) dω(ξ),

where ω is a random element of
(
X̃
)∗

chosen according to the Poisson measure ρ∗

on X̃ with intensity ρ.
The measures γ and ρ are uniquely determined by m, and ρ is called the Lévy

measure of m.

Here we summarize useful properties about the case we are interested in.

Proposition 4.6. Let (X,A, µ, T ) be a conservative ergodic infinite measure pre-
serving system, and let m be the distribution of an ergodic square integrable ID
random measure with intensity µ, and whose realizations are almost surely discrete.
Assume that m corresponds to (γ, ρ) as in Theorem 4.5, then:

• γ = 0,

• ρ is T∗-invariant and supported by X̃d,
•
∫
X̃
ξ (A) ρ (dξ) = µ (A) for all A ∈ Af ,

•
∫
X̃
ξ (A)

2
ρ (dξ) =

∫
X̃
(ξ (A)− µ (A))

2
m (dξ) for all A ∈ Af ,

•
(
X̃, Ã, ρ, T∗

)
has no T∗-invariant sets of finite, non zero measure.

Proof. If m corresponds to (γ, ρ), then (T∗)∗(m) is ID too and corresponds to(
T∗(γ), (T∗)∗ (ρ)

)
. Therefore if m is T∗-invariant then γ is T -invariant and ρ is
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T∗-invariant. For all A ∈ Af ,

µ (A) =

∫

X̃

ξ(A)m(dξ)

= γ (A) +

∫

X̃∗

∫

X̃

ξ(A)ω(dξ) ρ∗(dω),

= γ (A) +

∫

X̃

ξ (A) ρ (dξ) .

In particular, γ ≪ µ, and by ergodicity of µ, γ is some multiple of µ. But then m
could not be the distribution of a point process as it would possess a continuous part,
unless γ vanishes. From the Poisson construction, we also get that ρ is supported

on X̃d.
Next, the second formula is an application of the isometry formula (1).
The last fact should come as no surprise for anyone familiar with ergodic prop-

erties of ID systems, however there is no available proof for this particular case.
We give one here:

Assume
(
X̃, Ã,m, T∗

)
is ergodic and

(
X̃, Ã, ρ, T∗

)
possesses a T∗-invariant set

K with ρ (K) < ∞. Let
((

X̃
)∗

,
(
Ã
)∗

, ρ∗, (T∗)∗

)
be the Poisson suspension over

(
X̃, Ã, ρ, T∗

)
. The map

ω 7→

∫

X̃

ξ (·) ω (dξ)

is a factor map between the suspension and the ergodic system
(
X̃, Ã,m, T∗

)
.

Moreover we have another factor in the suspension, generated by the stationary
process

ω 7→
{
(T∗)

k
∗ (ω) (K)

}

k∈Z

.

But as K is T∗-invariant, (T∗)
k
∗ (ω) (K) = ω(K) for all k ∈ Z, therefore (T∗)∗ acts

as the identity on this factor. By disjointness between the identity map and any
ergodic map [5], we obtain that these two factors are independent inside the Poisson
suspension. In particular, for any A ∈ Af , ω 7→

∫
X̃
ξ (A) ω (dξ) and ω 7→ ω(K) are

independent. It follows that
∫

(X̃)
∗

(∫

X̃

ξ (A)ω(dξ)− µ(A)

)(
ω(K)− ρ(K)

)
ρ∗(dω) = 0.

By the isometry formula (1), we get:
∫

X̃

ξ (A) 1K (ξ) ρ (dξ) = 0

By monotone convergence, we can replace A by X in the preceding integral and,
as ξ (X) > 0 ρ-a.e., we get that 1K = 0 ρ-a.e., i.e. ρ(K) = 0. �

Now, let us explain how N inherits the ID character of Nǫ in the limit. We have
Nǫ ≪ N , thus we can introduce the random density gǫ := dNǫ

dN
. Almost surely,

gǫ increases to 1 as ǫ → 0. Let f be a bounded continuous function on X with
bounded support. Then by the dominated convergence theorem,

∫

X

f dNǫ =

∫

X

fgǫ dN −−−→
ǫ→0

∫

X

f dN a.s.
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Let also h be a bounded continuous function on R. Again by the dominated con-
vergence theorem, we get

E

[
h

(∫

X

f dNǫ

)]
−−−→
ǫ→0

E

[
h

(∫

X

f dN

)]
.

By [12, Theorem 4.11], this characterizes the weak convergence of the distribution
of Nǫ to the distribution of N . Using [12, Lemma 4.24], we can conclude that N is
ID as a limit of ID random measures.

N is thus square integrable and ID, hence admits a Lévy measure ρ which

is σ-finite measure on X̃d, and is T∗-invariant. By ergodicity of N , the system(
X̃, Ã, ρ, T∗

)
enjoys all the properties stated in Proposition 4.6.

When T has the (P) property, this system has a very simple structure that we
fully describe below.

4.2.3. Infinite quasifactors. We start by extending the notion of quasifactor of Glas-

ner and Meyerovitch to the case of an infinite measure on X̃.

Definition 4.7. An∞-quasifactor of (X,A, µ, T ) is a dynamical system
(
X̃, Ã, ρ, T∗

)

where ρ is an infinite, σ-finite, T∗-invariant measure, and

∀A ∈ Af ,

∫

X̃

ξ(A) ρ(dξ) = µ(A).

The ∞-quasifactor
(
X̃, Ã, ρ, T∗

)
is said to be square integrable if

∀A ∈ Af ,

∫

X̃

(ξ(A))2 ρ(dξ) < ∞.

As a simple example of ∞-quasifactor, we can consider the infinite measure
preserving system (X∗, ρ, T∗), where ρ is the pushforward of µ by x 7→ δx. It
is actually the Lévy measure of the Poisson point process of intensity µ. More
generally, from Proposition 4.6, any ergodic infinitely divisible and square integrable
T -random measure with intensity µ gives rise to a square integrable ∞-quasifactor
through its Lévy measure.

Let us first consider the case of a simple ∞-quasifactor, i.e. a measure ρ con-
centrated on the set X∗ of simple counting measures on X .

Proposition 4.8. If T has the (P) property and (X∗,A∗, ρ, T∗) is a simple square
integrable∞-quasifactor without T∗-invariant set of non-zero finite ρ-measure, then
ρ-a.e. ξ ∈ X∗ is concentrated on a finite subset of a single T -orbit.

Proof. As (X∗,A∗, ρ, T∗) is square integrable, the formula

m (A×B) :=

∫

X∗

ξ (A) ξ (B) ρ (dξ)

defines a boundedly finite T × T -invariant measure on X × X . Thanks to por-
perty (P), it can be written as

m = α∞µ⊗ µ+
∑

k∈Z

αk∆k,
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where ∆k is the measure supported on the graph of T k defined by ∆k(A × B) :=
µ(A ∩ T−kB). Observe that, as there is no T∗-invariant set of non-zero finite ρ-
measure,

1

n

n∑

ℓ=1

m
(
A× T−ℓB

)
=

1

n

n∑

ℓ=1

∫

X∗

ξ (A) T ℓ
∗ξ (B) ρ (dξ) → 0.

However,

1

n

n∑

ℓ=1

α∞µ⊗ µ
(
A× T−ℓB

)
= α∞µ⊗ µ (A×B)

therefore α∞ = 0.
This means thatm is concentrated on the graphs of the maps T k, k ∈ Z, therefore

for ρ-a.e. ξ ∈ X∗ the product ξ⊗ ξ is concentrated on these graphs. It follows that
ρ-a.e. ξ ∈ X∗ is concentrated on a single T -orbit. It remains to verify that ρ is
almost surely concentrated on a finite number of points in this orbit. For this, we
observe that Proposition 2.1 in [10] can be generalized to the case of an infinite
measure ρ on X∗. Indeed, the Palm measures of ρ are probability measures since∫
X∗

ξ (A) ρ (dξ) = µ (A) < +∞. Since ρ has moments of order 2, the proposition
yields that ρ-a.e. ξ ∈ X∗ is concentrated on a finite subset of a single T -orbit. �

Proposition 4.9. If T has the (P) property and if
(
X̃d, Ã, ρ, T∗

)
is a square in-

tegrable ∞-quasifactor without T∗-invariant set of non-zero finite ρ-measure, then

there exists c > 0 and a factor map ϕ from
(
X̃d, Ã, ρ, T∗

)
to (X,A, cµ, T ) and some

T∗-invariant maps ξ 7→ ak (ξ) ≥ 0, k ∈ Z, such that

ξ =
∑

k∈Z

ak (ξ) δTkϕ(ξ).

Proof. First observe that {0} is a T∗-invariant set. It cannot have infinite ρ measure
because ρ is σ-finite, hence ρ({0}) = 0 from the hypotheses.

Let ξ ∈ X̃d and set ξ|ε, ε > 0 to be ξ where we have forgotten points with weights
less than ε and set the other weights to be 1. Then ξ 7→ ξ|ε is a factor map and ξ|ε
turns out to induce on X̃d \

{
ξ|ε = {0}

}
a simple square integrable ∞-quasifactor

without T∗-invariant set of non-zero finite measure. Therefore by Proposition 4.8,
ξ|ε has a finite number of points on its support, which all lie on a single T -orbit.

It follows that all the points of the support of ξ are ρ-a.s. on a single T -orbit,
and only a finite number of them have a weight greater than any fixed positive
constant. We can therefore see that the map ϕ : ξ 7→ ϕ (ξ) where ϕ (ξ) is the point
of the support with the highest weight and the lowest place in the orbit is well
defined. It satisfies

ϕ (T∗ξ) = Tϕ (ξ) .

Now with this “origin” ϕ (ξ), we can define maps ξ 7→ ak (ξ) ≥ 0 so that

ξ :=
∑

k∈Z

ak (ξ) δTkϕ(ξ).

We have

T∗ξ =
∑

k∈Z

ak (ξ) δTk+1ϕ(ξ) =
∑

k∈Z

ak (ξ) δTkϕ(T∗ξ)
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in the one hand, and in the other hand

T∗ξ :=
∑

k∈Z

ak (T∗ξ) δTkϕ(T∗ξ).

Therefore the maps ak are T∗-invariant.
We have for all A

µ(A) =

∫

X̃d

ξ (A) ρ (dξ)

=
∑

k∈Z

∫

X̃d

ak (ξ) δTkϕ(ξ) (A) ρ (dξ)

=
∑

k∈Z

∫

X̃d

ak
(
T k
∗ ξ
)
δϕ(Tk

∗
(ξ)) (A) ρ (dξ) by T∗-invariance of ak

=
∑

k∈Z

∫

X̃d

δϕ(ξ) (A) ak (ξ) ρ (dξ) by T∗-invariance of ρ.

Let us define for each k ∈ Z the measure ρk by dρk

dρ
:= ak. Then we get

µ(A) =
∑

k∈Z

ϕ∗ρk (A) ,

and in particular ϕ∗ρ0 ≪ µ. But, as a0 > 0 ρ-a.e., ρ0 ∼ ρ and we also have
ϕ∗ρ ≪ µ. By ergodicity ϕ∗ρ = cµ for some c > 0.

Therefore ϕ induces a factor map between
(
X̃d, Ã, ρ, T∗

)
and (X,A, cµ, T ). �

Corollary 4.10. Assume that T has the (P) property. Let
(
X̃d, Ã, ρ, T∗

)
be an

infinite measure-preserving square integrable ∞-quasifactor without T∗-invariant
set of non-zero finite ρ-measure. Then there exists a probability measure κ on

RZ
+ such that

(
X̃d, Ã, ρ, T∗

)
is isomorphic to

(
X × RZ

+,A⊗ B⊗Z, µ⊗ (cκ), T × Id
)

(where c is given in Proposition 4.9).
Moreover, we have

1

c
=

∫

RZ

+

(
∑

k∈Z

ak

)
κ (d{ak}k∈Z) .

In particular, {ak}k∈Z ∈ ℓ+1 (Z) κ-a.s.

Proof. Define Φ from X̃d to X × RZ
+ by

Φ (ξ) :=
(
ϕ (ξ) , (ak (ξ))k∈Z

)
.

Then T × Id preserves m := Φ∗ρ and Φ is an isomorphism between
(
X̃d, Ã, ρ, T∗

)

and
(
X × RZ

+,A⊗ B⊗Z,m, T × Id
)
. Since the σ-algebra generated by ϕ(ξ) is σ-

finite by the preceding proposition, we can disintegrate m with respect to the first
coordinate: we get a family (κx)x∈X of probability measures on RZ

+, such that

m(A×B) =

∫

A

κx(B)c dµ(x),
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where c is given in the preceding proposition. By invariance of m under T × Id, we
get κx = κTx for µ-almost every x, and by ergodicity of T we conclude that there
exists κ such that κx = κ µ-almost everywhere. This yields m = µ⊗ (cκ).

Now, for each A ∈ Af , we have

µ(A) =

∫

X̃d

ξ(A) ρ(dξ)

= c

∫

RZ

+

(∫

X

∑

k∈Z

ak1A(T
kx)µ(dx)

)
κ (d{ak}k∈Z)

= c µ(A)

∫

RZ

+

(
∑

k∈Z

ak

)
κ (d{ak}k∈Z) .

�

4.2.4. End of the proof of Theorem 4.3. We come back to the end of the proof of the
main theorem of this section. Recall that under the assumptions of this theorem,
we were left with the following situation: N is a T -random measure with moments
of all orders, we showed it is infinitely divisible. Hence the conclusion follows from
the next proposition.

Proposition 4.11. Assume that T has the (P) property. Let N be a square in-
tegrable ID T -random measure defined on some ergodic system (Ω,F ,P, S) whose
realizations are almost surely discrete. Then there exists a probability distribution
κ on

(
ℓ+1 (Z),B

⊗Z
)
and c > 0 such that N is distributed as

A 7→

∫

X×ℓ
+

1
(Z)

∑

k∈Z

ak1A
(
T kx

)
N
(
dx, d {ak}k∈Z

)

where N is a Poisson point process on X × ℓ+1 (Z) with intensity cµ⊗ κ.

Proof. By Theorem 4.5 and Proposition 4.6, the ID square integrable T-random
measure N can be described by its Lévy measure ρ. The latter is nothing else
than a square integrable ∞-quasifactor, whose structure is completely given in

Corollary 4.10: the measure space
(
X̃d, ρ

)
is isomorphic to (X × ℓ+1 (Z), cµ ⊗ κ).

In this context, the representation of N as an integral with respect to a Poisson
random measure takes the more concrete form explicited in the statement of the
proposition. �

Remark 4.12. Note that the assumption that N has moments of all orders has
only been used to obtain the ID character of the random measure. Once this is
established, square integrability of N is sufficient to conclude. We do not know if
square integrability alone implies the conclusion of Theorem 4.3.

5. Improved disjointness results

This last, short, section deals with joinings and disjointness. The notion of
joinings in Ergodic Theory is the dynamical counterpart of couplings in Probability
Theory. It is particularly relevant for the classification of dynamical systems as we
do below. For the reader unfamiliar with this notion, we refer to the seminal
paper [5] and the book [6], that present modern ergodic theory through joinings
and disjointness.
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In [10], we obtained a series of disjointness results for Poisson suspensions over
transformations satisfying the (P) property with the additional assumption that
the base transformation should have a measurable law of large numbers, which is a
very particular property. We were already convinced that this assumption was not
necessary. The results proved in the present paper allow to get rid of it.

The following proposition is an example of how the simplification occurs.

Proposition 5.1. Assume T has the (P) property. If an ergodic probability pre-
serving system (Ω,F ,P, S) is not disjoint from (X∗,A∗, µ∗, T∗) then it possesses(
X∗,A∗, (αµ)

∗
, T∗

)
as a factor for some α > 0.

Proof. Consider a non-trivial joining λ of (Ω,F ,P, S) with the Poisson suspension
(X∗,A∗, µ∗, T∗), and denote by Ψ : L2(µ∗) → L2(P) the associated Markov opera-
tor. Denote by N the canonical Poisson T -point process defined on (X∗,A∗, µ∗, T∗).
By positivity of Ψ, the map A ∈ Af 7→ Ψ(N(A)) extends to a T -random measure
on (Ω,F ,P, S). Indeed, for A ∈ Af we have

Ψ(N(T−1(A))) = Ψ(N(A) ◦ T∗)

= Ψ(UT∗
N(A))

= USΨ(N(A))

= Ψ(N(A)) ◦ S,

and EP [Ψ(N(A))] = Eµ∗ [N(A)] = µ(A).
Moreover, this T -random measure has moments of all orders, as for any A ∈ Af

and any n ≥ 1, since Ψ can be interpreted as a conditional expectation, we have

EP [(Ψ(N(A))
n
] ≤ EP [Ψ (N(A)n)] = Eµ∗ [N(A)n] < ∞.

From Proposition 4.2, there exists 0 ≤ c ≤ 1 and a T -random measure M of
intensity µ defined on (Ω,F ,P), supported on discrete measures, such that

Ψ (N (·)) = cµ+ (1− c)M

If c = 1, then for all A ∈ Af , Ψ (N (A)− µ (A)) = 0, which means that Ψ vanishes
on the first chaos. Let Ψ∗ : L2 (P) → L2 (µ∗) be the adjoint Markov operator, we
get that Ψ∗Ψ is a Markov operator on L2 (µ∗) that vanishes on the first chaos. It
can be written as an integral of indecomposable operators

Ψ∗Ψ =

∫

W

Ψwρ (dw) ,

where (W,W , ρ) is an auxilliary probability space. Now the proof follows the same
lines as Proposition 4.11 in [10]. We get that Ψ∗Ψ is the projection on constants
and this implies in turn that the initial joining is trivial, hence a contradiction.

Therefore c < 1. We deduce that M is a factor of (Ω,F ,P, S), and much as
in Section 4.2.1, we obtain a further factor which is a Poisson point process of
intensity αµ for some α > 0. (In Section 4.2.1, we got such a factor by considering
(Φ (Nǫ))0.) �

In particular, following the same proof as in Theorem 5.14 in [10], we obtain:

Theorem 5.2. If T has the (P) property then (X∗,A∗, µ∗, T∗) is disjoint from any
rank one transformation and any Gaussian dynamical system.
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