Content-Adaptive Steganography by Minimizing Statistical Detectability - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Information Forensics and Security Année : 2016

Content-Adaptive Steganography by Minimizing Statistical Detectability

Résumé

Most current steganographic schemes embed the secret payload by minimizing a heuristically defined distortion. Similarly, their security is evaluated empirically using classifiers equipped with rich image models. In this paper, we pursue an alternative approach based on a locally-estimated multivariate Gaussian cover image model that is sufficiently simple to derive a closed-form expression for the power of the most powerful detector of content-adaptive LSB matching but, at the same time, complex enough to capture the non-stationary character of natural images. We show that when the cover model estimator is properly chosen, state-of-the-art performance can be obtained. The closed-form expression for detectability within the chosen model is used to obtain new fundamental insight regarding the performance limits of empirical steganalysis detectors built as classifiers. In particular, we consider a novel detectability-limited sender and estimate the secure payload of individual images.
Fichier principal
Vignette du fichier
article.pdf (921.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01906608 , version 1 (27-10-2018)

Identifiants

Citer

Vahid Sedighi, Rémi Cogranne, Jessica Fridrich. Content-Adaptive Steganography by Minimizing Statistical Detectability. IEEE Transactions on Information Forensics and Security, 2016, 11 (2), pp.221-234. ⟨10.1109/tifs.2015.2486744⟩. ⟨hal-01906608⟩
85 Consultations
457 Téléchargements

Altmetric

Partager

More