On a class of spaces of skew-symmetric forms related to Hamiltonian systems of conservation laws - Archive ouverte HAL
Article Dans Une Revue Manuscripta mathematica Année : 2023

On a class of spaces of skew-symmetric forms related to Hamiltonian systems of conservation laws

Résumé

It was shown in \cite{FPV} that the classification of $n$-component systems of conservation laws possessing a third-order Hamiltonian structure reduces to the following algebraic problem: classify $n$-planes $H$ in $\wedge^2(V_{n+2})$ such that the induced map $Sym^2H\longrightarrow \wedge^4V_{n+2}$ has 1-dimensional kernel generated by a non-degenerate quadratic form on $H^*$. This problem is trivial for $n=2, 3$ and apparently wild for $n\geq 5$. In this paper we address the most interesting borderline case $n=4$. We prove that the variety $\mathcal{V}$ parametrizing those 4-planes $H$ is an irreducible 38-dimensional $PGL(V_6)$-invariant subvariety of the Grassmannian $G(4, \wedge^2V_6)$. With every $H\in\mathcal{V}$ we associate a {\it characteristic} cubic surface $S_H\subset \mathbf{P}(H)$, the locus of rank 4 two-forms in $ H$. We demonstrate that the induced characteristic map $\sigma: \mathcal{V} / PGL(V_6) \dashrightarrow \mathcal{M}_c,$ where $\mathcal{M}_c$ denotes the moduli space of cubic surfaces in $\mathbf{P}^3$, is dominant, hence generically finite. A complete classification of 4-planes $H\in\mathcal{V}$ with the reducible characteristic surface $S_H$ is given.
Fichier principal
Vignette du fichier
main0918.pdf (187.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01906520 , version 1 (26-10-2018)

Identifiants

Citer

L. Manivel, E V Ferapontov. On a class of spaces of skew-symmetric forms related to Hamiltonian systems of conservation laws. Manuscripta mathematica, 2023, 172 (1-2), pp.599-620. ⟨10.1007/s00229-022-01425-8⟩. ⟨hal-01906520⟩
51 Consultations
68 Téléchargements

Altmetric

Partager

More