Weyl’s law for singular Riemannian manifolds - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Weyl’s law for singular Riemannian manifolds

Yacine Chitour
Dario Prandi
Luca Rizzi

Résumé

We study the asymptotic growth of the eigenvalues of the Laplace-Beltrami operator on singular Riemannian manifolds, where all geometrical invariants appearing in classical spectral asymptotics are unbounded, and the total volume can be infinite. Under suitable assumptions on the curvature blow-up, we show how the singularity influences the Weyl's asymptotics and the localization of the eigenfunctions for large frequencies. Our main motivation comes from the construction of singular Riemannian metrics with prescribed non-classical Weyl's law. Namely, for any non-decreasing slowly varying function $\upsilon$ (possibly unbounded) we construct a singular Riemannian structure whose spectrum is discrete and satisfies \[ N(\lambda) \sim \frac{\omega_n}{(2\pi)^n} \lambda^{n/2} \upsilon(\lambda). \] This result can be seen as the asymptotic counterpart of the celebrated result of Y. Colin de Verdière fixing a finite part of the spectrum. A key tool in our arguments is a universal estimate for the remainder of the heat trace on Riemannian manifolds, which is of independent interest.
Fichier principal
Vignette du fichier
Weyl-main.pdf (757.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01902740 , version 1 (23-10-2018)
hal-01902740 , version 2 (05-02-2019)
hal-01902740 , version 3 (08-03-2019)
hal-01902740 , version 4 (08-11-2019)
hal-01902740 , version 5 (18-08-2023)

Identifiants

  • HAL Id : hal-01902740 , version 4

Citer

Yacine Chitour, Dario Prandi, Luca Rizzi. Weyl’s law for singular Riemannian manifolds. 2019. ⟨hal-01902740v4⟩

Collections

GS-ENGINEERING
430 Consultations
763 Téléchargements

Partager

More