Bounding the Length of Iterated Integrals of the First Nonzero Melnikov Function - Archive ouverte HAL
Article Dans Une Revue Moscow Mathematical Journal Année : 2018

Bounding the Length of Iterated Integrals of the First Nonzero Melnikov Function

Résumé

We consider small polynomial deformations of integrable systems of the form $dF=0, F\in\mathbb{C}[x,y]$ and the first nonzero term $M_\mu$ of the displacement function $\Delta(t,\epsilon)=\sum_{i=\mu}M_i(t)\epsilon^i$ along a cycle $\gamma(t)\in F^{-1}(t)$. It is known that $M_\mu$ is an iterated integral of length at most $\mu$. The bound $\mu$ epends on the deformation of $dF$. In this paper we give a universal bound for the length of the iterated integral expressing the first nonzero term $\mu$ depending only on the geometry of the unperturbed system $dF=0$. The result generalizes the result of Gavrilov and Iliev providing a sufficient condition for $M_\mu$ to be given by an abelian integral, i.e., by an iterated integral of length 1. We conjecture that our bound is optimal.

Dates et versions

hal-01900091 , version 1 (20-10-2018)

Identifiants

Citer

Pavao Mardešić, Dmitry Novikov, Laura Ortiz-Bobadilla, Jessie Diana Pontigo-Herrera. Bounding the Length of Iterated Integrals of the First Nonzero Melnikov Function. Moscow Mathematical Journal, 2018, 18 (2), pp.367-386. ⟨10.17323/1609-4514-2018-18-2-367-386⟩. ⟨hal-01900091⟩
71 Consultations
0 Téléchargements

Altmetric

Partager

More