The continuous Anderson hamiltonian in $d\le 3$ - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2019

The continuous Anderson hamiltonian in $d\le 3$

Résumé

We construct the continuous Anderson hamiltonian on $(-L,L)^d$ driven by a white noise and endowed with either Dirichlet or periodic boundary conditions. Our construction holds in any dimension $d\le 3$ and relies on the theory of regularity structures: it yields a self-adjoint operator in $L^2\big((-L,L)^d\big)$ with pure point spectrum. In $d\ge 2$, a renormalisation of the operator by means of infinite constants is required to compensate for ill-defined products involving functionals of the white noise. We also obtain left tail estimates on the distributions of the eigenvalues: in particular, for $d=3$ these estimates show that the eigenvalues do not have exponential moments.
Fichier principal
Vignette du fichier
S0022123619302034.pdf (562.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01898384 , version 1 (20-12-2021)

Licence

Identifiants

Citer

Cyril Labbé. The continuous Anderson hamiltonian in $d\le 3$. Journal of Functional Analysis, 2019, 277 (9), ⟨10.1016/j.jfa.2019.05.027⟩. ⟨hal-01898384⟩
87 Consultations
48 Téléchargements

Altmetric

Partager

More