Efficient independent set approximation in unit disk graphs - Archive ouverte HAL
Article Dans Une Revue Discrete Applied Mathematics Année : 2018

Efficient independent set approximation in unit disk graphs

Efficient Independent Set Approximation in Unit Disk Graphs *

Résumé

We consider the maximum (weight) independent set problem in unit disk graphs. The high complexity of the existing polynomial-time approximation schemes motivated the development of faster constant-approximation algorithms. In this article, we present a 2.16-approximation algorithm that runs in O(n log^2 n) time and a 2-approximation algorithm that runs in O(n^2 log n) time for the unweighted version of the problem. In the weighted version, the running times increase by an O(log n) factor. Our algorithms are based on a classic strip decomposition, but we improve over previous algorithms by efficiently using geometric data structures. We also propose a PTAS for the unweighted version.
Fichier principal
Vignette du fichier
udg-is.pdf (262.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01893742 , version 1 (11-10-2018)

Identifiants

Citer

Gautam Das, Guilherme D. da Fonseca, Ramesh K Jallu. Efficient independent set approximation in unit disk graphs. Discrete Applied Mathematics, 2018, ⟨10.1016/j.dam.2018.05.049⟩. ⟨hal-01893742⟩
104 Consultations
219 Téléchargements

Altmetric

Partager

More