
HAL Id: hal-01893742
https://hal.science/hal-01893742v1

Submitted on 11 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient independent set approximation in unit disk
graphs

Gautam Das, Guilherme D. da Fonseca, Ramesh K Jallu

To cite this version:
Gautam Das, Guilherme D. da Fonseca, Ramesh K Jallu. Efficient independent set approximation in
unit disk graphs. Discrete Applied Mathematics, 2018, �10.1016/j.dam.2018.05.049�. �hal-01893742�

https://hal.science/hal-01893742v1
https://hal.archives-ouvertes.fr

Efficient Independent Set Approximation in Unit Disk
Graphs∗

Gautam K. Das†1, Guilherme D. da Fonseca2, and Ramesh K. Jallu1

1Department of Mathematics, Indian Institute of Technology Guwahati
2Université d’Auvergne and LIMOS, Clermont-Ferrand, France

May 27, 2016

Abstract

We consider the maximum (weight) independent set problem in unit disk graphs.
The high complexity of the existing polynomial-time approximation schemes moti-
vated the development of faster constant-approximation algorithms. In this article,
we present a 2.16-approximation algorithm that runs in O(n log2 n) time and a 2-
approximation algorithm that runs in O(n2 log n) time for the unweighted version
of the problem. In the weighted version, the running times increase by an O(log n)
factor. Our algorithms are based on a classic strip decomposition, but we improve
over previous algorithms by efficiently using geometric data structures. We also
propose a PTAS for the unweighted version.

Keywords : Maximum Independent Set, Unit Disk Graph, Approximation
Algorithms, Polynomial Time Approximation Scheme

1 Introduction

Given a set P of n points in the plane, a unit disk graph (UDG) has vertices P and an
edge pq corresponds to a pair of points p, q ∈ P , if ‖pq‖ ≤ 1, where ‖pq‖ denotes the
Euclidean distance between p and q. Equivalently, a unit disk graph is the intersection
graph of disks of unit diameter centered at the points in P . In this geometric setting, an
independent set consists of a subset of P with minimum distance greater than 1. In the
unweighted version, a maximum independent set (MIS) is an independent set of maximum
cardinality. In the weighted version, we are given a weight function w : P → R+ and
we want to find a maximum weight independent set (MWIS), that is, an independent
set that maximizes the sum of the weights of its points. The M(W)IS problem is well
studied due to its wide range of applications, including but not limited to map labeling,
clustering, wireless ad-hoc networks, and coding theory.

∗A preliminary version of this paper appeared in CALDAM, 2016.
E-mail addresses: gkd@iitg.ernet.in, guilherme.dias da fonseca@udamail.fr, j.ramesh@iitg.ernet.in
†corresponding author

1

The MIS problem on UDGs is known to be NP-hard [11]. There are polynomial-
time approximation schemes (PTASs) for several optimization problems on unit disk
graphs [10, 14, 17, 18, 22, 23], including maximum (weight) independent set. How-
ever, the high complexities of the PTASs motivated the recent study of faster constant-
approximation algorithms, notably for minimum dominating set [5, 12, 13, 15] and max-
imum (weight) independent set [13, 14].

The history of constant-approximation algorithms for M(W)IS in unit disk graphs
is rich. We begin by reviewing some constant-approximation algorithms. The following
algorithms receive the point coordinates as input and execute on the Real RAM and
the O(n)-time algorithms use constant-time hashing and floor function (otherwise, their
running times increase to O(n log n)).

In their seminal work, Marathe et al. [20] presented greedy algorithms which attain
a 3-approximation algorithm for the unweighted version, and a 5-approximation for the
weighted version. Using efficient data structures, their algorithms can be implemented
to run in O(n) time. Using a strip decompositon, Matsui [22] presented an O(n2)-time
algorithm with approximation ratio (1 + (2/

√
3) + ε) < 2.16 for the weighted version.

A different strip decomposition yields an O(n3)-time 2-approximation algorithm for the
weighted version [14]. The use of coresets give an O(n)-time (4 + ε)-approximation
algorithm for the weighted version [13].

Decomposing the problem into strips and using the shifting strategy [17], Matsui [22]
proposed the first PTAS for the problem. For any positive integer k ≥ 2, it gives a

solution of weight at least (1 − 1/k)OPT in O(n4d2(k−1)/√3e) time, where OPT is the
weight of an optimal solution. For any positive integer k > 1, another PTAS based on a
similar strategy [14] gives a ((1 + 1

k
)2)-approximation in O(nσk log k) time and O(n) space,

where σk ≤ 7k
3

+ 2. The complexity of the PTASs [18, 23] based on different strategies
tend to be even higher.

The problem is also studied in the context of fixed parameter tractable algorithms.
Van Leeuwen [25] proposed a fixed parameter tractable algorithm which runs in O(t222tn)
time, where the parameter t is called the thickness of the UDG. A UDG is said to have
thickness t, if each strip in the slab decomposition (of width 1) of the UDG contains at
most t disk centers.

The study of independent sets in geometric intersection graphs is not limited to UDGs,
but studied also for other objects such as rectangles, pseudo disks, etc. For a given set R
of rectangles of fixed size, Agarwal et al. [1] proposed a 2-factor approximation algorithm
for the MIS problem that runs in O(n log n) time, as well as a PTAS. For a given set
of arbitrary rectangles of bounded aspect ratio (or, more generally arbitrary fat convex
bodies) in Rd, Chan [6] proposed a PTAS that computes an (1 + ε)-approximation in
O(nO(1/εd−1)) time and space. Chan et al. [9] considered the same problem for pseudo
disks in the plane.

Our results In this paper, we present four new approximation algorithms that im-
prove the best running time for the same approximation ratios. Table 1 summarizes the
constant-approximation algorithms for the problem, including our results. Next, we de-
scribe the techniques that allowed such improvements. We also present a PTAS for the
unweighted version.

Given two real numbers h and r, a strip of width h rooted at r is the unbounded planar

2

Maximum Cardinality IS Maximum Weight IS
Ratio Time Space Ref. Ratio Time Space Ref.
3 O(n) O(n) [20] 4 + ε O(n) O(n) [13]
2.16 O(n log2 n) O(n) Sec. 3 2.16 O(n log3 n) O(n log n) Sec. 3
2 O(n2 log n) O(n2) Sec. 4 2 O(n2 log2 n) O(n2 log n) Sec. 4

Table 1: Approximation ratios and complexities of several constant-approximation algo-
rithms for maximum (weight) independent set in unit disk graphs.

region R× [r, r + h]. The algorithms from [14, 22] are based on a procedure to solve the
problem optimally when all points lie inside a sufficiently small strip. Strips of width

√
3/2

are used in the 2.16-approximation algorithm [22], while strips of width 1 are used in the
2-approximation algorithm [14]. The algorithms presented in this paper are based on the
same strategy and strip widths. However, several geometric data structures are used to
speed-up the algorithms. The data structures we use are presented in Section 2, followed
by the 2.16-approximation algorithm in Section 3, and the 2-approximation algorithm in
Section 4. The proposed PTAS is discussed in Section 5.

2 Data Structures

Given a set P of n data points in d-dimensional space, an emptiness query consists of
determining whether a given query range R contains no data point, that is, whether
P∩R = ∅, returning an arbitrary point in P∩R if it exists. A maximum query is defined
similarly, but the data points have real weights and the query finds a point of maximum
weight in P ∩ R if it exists. In an anti-disk query, the range R is the complement of
a disk of arbitrary radius r centered at q, that is, the region formed by all points with
Euclidean distance greater than r from q.

Maximum queries reduce to emptiness queries as follows. As far as we know, this
reduction has never been published, but it is likely that other researchers independently
noticed the same construction.

Lemma 2.1. Consider a set of n data points with weights and a query range. A
data structure for answering emptiness queries with storage S(n) = Ω(n), preprocess-
ing time B(n) = Ω(n), and query time Q(n) yields a data structure for answering
maximum queries for the same range with preprocessing time O(B(n) log n), query time
O(Q(n) log n), and storage O(S(n) log n).

Proof. We assume that all weights are distinct, otherwise we break the ties arbitrarily.
We build a binary tree where each node contains a data structure for emptiness queries
as follows. The root contains the emptiness data structure for all data points. Consider
a node which stores the data structure for a set of points P . Let µ be the median weight
among the points in P . The left subtree is defined recursively for the points in P with
weight at most µ, and the right subtree is defined analogously for the remaining points
of P . The recursion stops when P has only 1 point.

3

Notice that the tree has dlg ne+ 1 levels, and exactly n data points at each level. The
total storage is therefore

S ′(n) =

dlgne+1∑
`=0

2`S
(n

2`

)
≤
dlgne+1∑
`=0

S(n) = O(S(n) log n),

where the first inequality uses that S(n) = Ω(n). The preprocessing time is calculated
the same way.

To answer a maximum query, we verify at the root node whether the query range is
empty. If not, we verify if the query range is empty for the right subtree. If it is empty,
we recurse on the left subtree. Otherwise, we recurse on the right subtree. The procedure
ends when we reach a leaf. The leaf reached contains the point of maximum weight inside
the query range, which we return. The bound on the query time follows from the fact
that we performed O(log n) emptiness queries, one per level of the tree.

The previous lemma deserves two remarks. (i) It follows from the proof that the log n
factors in the storage, preprocessing time, and query time disappear if the respective
complexities are Ω(n1+ε), Ω(n1+ε), and Ω(nε). (ii) Using known data structures for half-
space emptiness queries such as [8, 21], we beat the lower bounds in [2, 4] for half-space
maximum queries. This is possible because the set of generators depends on the point
weights, which is forbidden by the semi-group arithmetic model in which the lower bounds
are stated.

Many techniques yield efficient data structures for anti-disk emptiness searching. For
example, one can use a farthest-point Voronoi diagram [16, Ch. 7] and point location [16,
Ch. 6]. Alternatively, one can use lifting (called inversion in [16, Ch. 8]), duality [16,
Ch. 8], and point location [16, Ch. 6].

Lemma 2.2. Given a set of n planar points, there exists a data structure that answers
anti-disk emptiness queries in O(log n) time with O(n) storage and O(n log n) prepro-
cessing time.

Combining Lemmas 2.1 and 2.2, we have:

Lemma 2.3. Given a set of n weighted planar points, there exists a data structure
that answers anti-disk maximum queries in O(log2 n) time with O(n log n) storage and
O(n log2 n) preprocessing time.

Sometimes, the reduction from Lemma 2.1 is an overkill, and a logarithmic factor can
be avoided by a simpler approach.

Lemma 2.4. Given a set of n planar points with integer weights in {1, . . . , n}, there
exists a data structure that answers anti-disk maximum queries in O((wmax−wret) log n)
time with O(n) storage and O(n log n) preprocessing time, where wmax is the maximum
weight among the points in the data structure and wret is the weight of the point returned
by the query, or 0 if the query is empty.

Proof. We keep an array of n data structures D1, . . . , Dn from Lemma 2.2 where Di stores
the points of weight i. To answer a query, we start from the maximum i that corresponds
to a non-empty Di, decrementing i until the query returns non-empty. Analyzing the
data structure is trivial.

4

A search problem is decomposable if for any set S and S ′ ⊆ S, the answer to a query
q(S) can be calculated in constant time from the results of q(S ′) and q(S \ S ′). The
following Lemma is due to Overmars and Leeuwen [24] (see also [3]).

Lemma 2.5. A static data structure for a composable problem storing n elements with
preprocessing time B(n), query time Q(n), and storage S(n) yields a semi-dynamic data
structure supporting insertions for the same problem with insertion time O(B(n) log n/n),
query time O(Q(n) log n), and storage O(S(n) + log n).

The log n factor in the query and insertion times disappear if the query and prepro-
cessing times are respectively Ω(nε) and Ω(n1+ε). Sometimes, dynamic data structures
specifically designed for a particular problem are more efficient than the dynamized ver-
sion, but this is not known to be the case for half-space emptiness. A specific data
structure supporting insertions and deletions is presented in [7].

Combining Lemma 2.5 with Lemmas 2.3 and 2.4 we have the following lemmas.

Lemma 2.6. Given a set of n weighted planar points, there exists a semi-dynamic data
structure that answers anti-disk maximum queries in O(log3 n) time with O(n log n) stor-
age and O(log3 n) insertion time.

Lemma 2.7. Given a set of n planar points with integer weights in {1, . . . , n}, there exists
a semi-dynamic data structure that answers anti-disk maximum queries in O((wmax −
wret) log2 n) time with O(n) storage and O(log2 n) insertion time, where wmax is the
maximum weight among the points in the data structure and wret is the weight of the
point returned by the query, or 0 if the query is empty.

3 Small strips

In this section, we present a 2.16-approximation algorithm for the maximum (weight)
independent set problem on unit disk graphs. Recall that an unit disk graph is represented
as a set P of n points where an edge pq corresponds to a pair of points p, q ∈ P with
‖pq‖ ≤ 1. We use x(pi) and y(pi) to represent the x and y coordinates respectively of
pi ∈ P . In order to describe multiple results with a unified treatment, we assume that a
weight function with w(p) = 1 for all p ∈ P is provided in the unweighted version. Our
approximation algorithms uses a decomposition of the unit disk graph into strips.

The following lemma shows why determining the maximum independent set within
a strip is useful for approximating the unrestricted problem. The proof is a simple
application of the shifting strategy [17], paying attention to the fact that the width h
must be a constant rational number for the proof to work (the running time depends on
the denominator of h).

Lemma 3.1. An exact algorithm for the maximum (weight) independent set for a set of
m points inside a strip of rational width h with running time T (m) yields an approxilation
algorithm for maximum (weight) independent set of n points in arbitrary locations with
approximation ratio 1 + 1/h and running time O(T (n) + n log n).

Matsui [22] showed that a unit disk graph inside a strip of width
√

3/2 is a co-
comparability graph, and therefore the maximum weight independent set can be deter-
mined exactly in time linear on the size of the input graph [19]. Since a complete graph

5

is a unit disk graph within an arbitrarily small strip, building the graph takes quadratic
time in the worst case. The crucial property shown by Matsui and used by our algorithm
is the following.

Lemma 3.2. Let H be a strip of width
√

3/2. Consider pa, pb, pc ∈ H with x(pa) <
x(pb) < x(pc). If ‖papb‖ > 1 and ‖pbpc‖ > 1, then ‖papc‖ > 1.

To obtain a logarithmic improvement for the unweighted version, we use an additional
property of unit disk graphs from [20]. The left neighborhood of a point p is the set of
points q with ‖pq‖ ≤ 1 and x(q) ≤ x(p).

Lemma 3.3. The left neighborhood of a point p has at most 3 independent vertices.

Let Q = {p1, p2, . . . , pm} be the set of points lying in a strip H with p1, p2, . . . , pm in
increasing order of their x-coordinates. Given 1 ≤ i ≤ m, we define the set Si ⊆ Q is as
follows: (i) Si is an independent set, (ii) pi is the rightmost point of Si, and (iii) Si is a
maximum weight set satisfying the previous two properties. Let Wi denote the sum of
the weights of the points in Si. For simplicity, the sets Si can be viewed as x-monotone
polygonal chains formed by connecting the points of Si from left to right (see Figure 1).
The objective of our algorithm is to extend these chains as long as possible. A chain
containing maximum number of points is reported.

H

√
3/2

Figure 1: Pictorial representation of the sets Si in the form of chains, with the maximum
independent set marked.

Our algorithm uses dynamic programming to compute Si for i = 1, . . . ,m as follows.
We calculate Si using Sj for j < i iteratively as Si = Sj ∪ {pi} where j is the index
` < i that satisfies ‖pip`‖ > 1 and maximizes W`. In case there is no point p`, satisfying
‖pip`‖ > 1 and ` < i, the algorithm sets Si = {pi}. To efficiently determine the index j,
we use the data structure from Lemma 2.6 (weighted) or 2.7 (unweighted). The pseudo-
code is presented in Algorithm 1.

Theorem 3.4. Algorithm 1 correctly computes a MWIS for the set Q = {p1, p2, . . . , pm}
inside a strip of width

√
3/2 in O(m log3m) time using O(m logm) space. In the un-

weighted version, the complexities decrease to O(m log2m) time and O(m) space.

Proof. To see that Si is calculated correctly by the procedure, notice that by Lemma 3.2,
‖pipj‖ > 1 for j < i implies that a point pk to the left of pj with ‖pjpk‖ > 1 satisfies
‖pipk‖ > 1. By construction, Si contains pi and its weight is maximum.

To execute the algorithm in O(m log3m) time, we use the data structure for anti-disk
maximum queries supporting insertions from Lemma 2.6 to store pj for j < i. The weight
of pj in the data structure is Wj. The O(m) insertions (line 10) and queries (line 7) take
together O(m log3m) time, and the space is O(m logm) due to the storage of the data

6

Algorithm 1 Maximum (weight) independent set inside a strip of width
√

3/2

Input: The set Q of m points p1, . . . , pm ordered by x coordinate inside a strip of width√
3/2.

Output: A maximum weight independent set of Q.
1: D = data structure from Lemma 2.6 (weighted) or 2.7 (unweighted)
2: S = array [1 . . .m] of integers
3: W = array [0 . . .m] of reals (weighted) or integers (unweighted)
4: W [0] = 0, max = 1
5: for i = 1, . . . ,m do
6: A = complement of a disk of radius 1 centered at pi
7: j = maxQuery(D,A) . Returns 0 if no point is found
8: S[i] = j . Represents Si = Sj ∪ {pi} with S0 = ∅
9: W [i] = W [j] + w(pi)

10: insert(D, i, pi,W [i]) . Insert point pi with label i and weight W [i] into D
11: if W [i] > W [max] then
12: max = i
13: end if
14: end for
15: i = max, IS = {}
16: while i 6= 0 do
17: IS = IS ∪ {pi}
18: i = S[i]
19: end while
20: return IS

structure. The algorithm stores Si as a linked list from right to left. Part of the linked
lists are shared by different sets Si, forming a DAG.

To reduce the running time to O(m log2m) for the unweighted version, we use the
data structure from Lemma 2.7. In the unweighted version, Wi = |Si| and therefore the
weight Wi is an integer between 1 and m. Let max be the index of the point of maximum
weight in the data structure at the time when a point of index j is returned by the query.
We use Lemma 3.3 to show that Wmax −Wj ≤ 3. If |Smax| ≤ 3, the statement follows
trivially. Otherwise, let pa, pb, pc, pmax be the four rightmost elements in Smax from left
to right. We have Wmax = 1 + Wc = 2 + Wb = 3 + Wa. By Lemma 3.3, pa, pb, pc, pmax
cannot be all adjacent to pi, which shows that wmax−wret ≤ 3. Therefore, using the data
structure from Lemma 2.7, the O(m) insertions and queries take together O(m log2m)
time, and the space is O(m).

Combining Lemma 3.1 and Theorem 3.4, we obtain the following theorem.

Theorem 3.5. Given a set P of n weighted points, we can compute an approximation
to the maximum weight independent set in O(n log3 n) time and O(n log n) space with
approximation ratio (1 + (2/

√
3) + ε) < 2.16. In the unweighted version, the complexities

decrease to O(n log2 n) time and O(n) space.

7

4 Large Strips

In this section, we present a 2-approximation algorithm for the maximum (weight) in-
dependent set problem on unit disk graphs. The algorithm uses a decomposition of the
region containing the disk centers into strips of width 1. Das et al. [14] proved the
following lemma which is similar to Lemma 3.2 for these larger strips.

Lemma 4.1. Let H be a strip of width 1. Consider pa, pb, pc, pd ∈ H with x(pa) < x(pb) <
x(pc) < x(pd). If both {pa, pb, pc} and {pb, pc, pd} are independent sets, then ‖papd‖ > 1.

Let Q = {p1, p2, . . . , pm} be the set of points lying in the strip H with p1, p2, . . . , pm
in increasing order of their x-coordinates. Given 1 ≤ j < i ≤ m with ‖pipj‖ > 1, we
define the set Si,j ⊆ Q as follows: (i) Si,j is an independent set, (ii) pj and pi are the two
rightmost points of Si,j, and (iii) Si,j is a maximum weight set satisfying the previous two
properties. Furthermore, we define Si,0 = {pi}.

Let Wi,j denote the sum of the weights of the points in Si,j. Let Si = {Si,j | 1 ≤ j <
i and ‖pipj‖ > 1} denote the collections of sets Si,j for fixed i.

Our algorithm uses dynamic programming to compute Si,j for i = 2, . . . ,m and j =
1, . . . , i − 1 with ‖pipj‖ > 1 as follows. We calculate Si,j using Sj,k for k < j < i
iteratively as Si,j = Sj,k ∪ {pi} where k is the index ` < j maximizing Wj,` and satisfying
the constraint that {pi, pj, p`} is an independent set. In case there is no point p` satisfying
the previous constraint, the algorithm sets Si,j = {pi, pj}. To efficiently determine the
index ` < j that satisfies the previous constraint and maximizes W` we use an array of
data structures D1, . . . , Dm from Lemma 2.3 (weighted) or 2.4 (unweighted). The data
structure Di stores a point pj with weight Wi,j for each set Si,j ∈ Si. Note that the data
structure Dj only stores points pk such that ‖pjpk‖ > 1. The pseudo-code is presented
in Algorithm 2.

Theorem 4.2. Algorithm 2 correctly computes a MWIS for the set Q = {p1, p2, . . . , pm}
inside a strip of width 1 in O(m2 log2m) time using O(m2 logm) space. In the unweighted
version, the complexities decrease to O(m2 logm) time and O(m2) space.

Proof. To see that Si,j calculated by the procedure is indeed an independent set, notice
that by Lemma 4.1, {pi, pj, pk} be independent implies that a point ps to the left of pk
with {pj, pk, ps} independent satisfies ‖pips‖ > 1. By construction, Si,j contains pi, pj as
the points with maximum x coordinates and its weight is maximum.

To execute the algorithm in O(m2 log2m) time, we use m data structures for anti-
disk maximum queries from Lemma 2.3. For each point pi, the data structure Di stores
the point pj for each set Si,j ∈ Si. The weight associated with pj is Wi,j. The data
structure Di is static, preprocessed (line 26) with points collected in the set T . The
time to preprocess all O(m) data structures from the corresponding sets T is therefore
O(m) · O(m log2m). The point pk of maximum weight satisfying k < j and {pi, pj, pk}
independent is determined with a single anti-disk maximum query (line 17) on the data
structure Dj associated with Sj. All the O(m2) queries take together O(m2)·O(log2m) =
O(m2 log2m) time. Space is dominated by the O(m) data structures with O(m logm)
storage each.

To reduce the running time to O(m2 logm) and the space to O(m2) for the unweighted
version, we use the data structure from Lemma 2.4, and the same argument as in the
proof of Theorem 3.4 shows that wmax − wret ≤ 3.

8

Algorithm 2 Maximum (weight) independent set inside a strip of width 1

Input: The set Q of m points p1, . . . , pm ordered by x coordinate inside a strip of width
1.

Output: A maximum weight independent set of Q.
1: D = array [1 . . .m] of data structure from Lemma 2.3 (weighted) or 2.4 (unweighted)
2: S = array [1 . . .m, 0 . . .m] of integers
3: W = array [1 . . .m, 0 . . .m] of reals (weighted) or integers (unweighted)
4: max = (1, 0)
5: for i = 1, . . . ,m do
6: S[i, 0] = 0 . Represents Si,0 = {pi}
7: W [i, 0] = w(pi)
8: if W [i, 0] > W [max] then
9: max = (i, 0)

10: end if
11: end for
12: for i = 2, . . . ,m do
13: T = {}
14: for j = 1, . . . , i− 1 do
15: if ‖pipj‖ > 1 then
16: A = complement of a disk of radius 1 centered at pi
17: k = maxQuery(D[j], A) . Returns 0 if no point is found
18: S[i, j] = k . Represents Si,j = Sj,k ∪ {pi}
19: W [i, j] = W [j, k] + w(pi)
20: T = T ∪ {(j, pj,W [i, j])} . (label, point, weight) for D[i]
21: if W [i, j] > W [max] then
22: max = (i, j)
23: end if
24: end if
25: end for
26: D[i] = preprocess(T) . New data structure from set T
27: end for
28: (i, j) = max, IS = {pi}
29: while j 6= 0 do
30: IS = IS ∪ {pj}
31: i = j, j = S[i, j]
32: end while
33: return IS

9

Combining Lemma 3.1 and Theorem 4.2, we obtain the following theorem.

Theorem 4.3. Given a set P of n weighted points, we can compute a 2-approximation
to the maximum weight independent set in O(n2 log2 n) time and O(n2 log n) space. In
the unweighted version, the complexities decrease to O(n2 log n) time and O(n2) space.

5 Polynomial-Time Approximation Scheme

We design a polynomial time approximation scheme (PTAS) for the maximum indepen-
dent set problem on a given UDG, where the geometric representation of the graph has
been given i.e., the center of the unit disks are given. We assume that P be the set of
centers of the unit disks associated with the UDG. Also assume that R be an enclosing
rectangle of the point set P . To design a PTAS we use two level shifting strategy, pro-
posed by Hauchbaum and Maass [17]. In the first level of shifting strategy we execute
k + 1 iterations as follows: in the i-th iteration (0 ≤ i ≤ k), we partition the region R
into disjoint vertical slabs such that (i) the first slab is of width i starting from left, (ii)
width of each even slab is 1, and (iii) width of other slab is k (note that width of last slab
may be less than k). Therefore, solution of different slabs of width k are non-intersecting.

In an iteration of the first level, we consider only those vertical slabs containing at least
one point in P , and compute maximum independent set by applying second level shifting
strategy by considering horizontal partition of each vertical slab, add up the solutions
of all slabs to get the solution of that iteration. The iteration producing maximum size
solution is reported. The proof of the following lemma is presented in [14].

Lemma 5.1. If nk is the maximum number of mutually non-overlapping unit disks whose
centers lie in a strip of width k > 1 and intersected by a vertical line `, then nk ≤ 7k

3
+ 2.

5.1 Computing MIS for unit disks centered in a k × k square

Let Q ⊆ P be the set of points inside a cell χ of size k×k. Consider a vertical line `v and a
horizontal line `h that partition χ into four sub-cells each of size k

2
× k

2
. Let Q(`v, `h) ⊆ Q

be the set of points whose distance from `v or `h is at most 1
2
, and Q1, Q2, Q3, Q4 ⊆ Q

be the set of points in the four quadrants whose distance from `v and `h is greater than
1
2
. To compute a MIS for the set of points in Q, we use the following divide and conquer

technique.
Consider all possible subsets Q′ ⊆ Q(`v, `h) of size at most 2× nk, where nk = 7k

3
+ 2

(since 2 × nk is the maximum possible size of the point set in Q(`v, `h) that can appear
in an optimal solution due to Lemma 5.1). For each of Q′, we do the following in each
quadrant: delete all the points in Qi (i = 1, 2, 3, 4) which are not independent with Q′.
Let Q′i ⊆ Qi be the remaining set of points. Now compute the optimal solution for Q′i
recursively using the same procedure. If T (m, k) is the time complexity for finding MIS
in χ, then T (m, k) = 4 · T (m, k

2
)×m2nk = mO(k). Thus, we have the following result:

Theorem 5.2. Given a set P of n points in the plane and an integer k > 1, the proposed
algorithm computes an independent set of size at least 1

(1+ 1
k
)2
|OPT | in nO(k) time, where

|OPT | is the optimal size of the solution.

10

References

[1] P. Agarwal, M. van Kreveld, and S. Suri. Label placement by maximum independent
set in rectangles. Comput. Geom., 11(3):209–218, 1998.

[2] S. Arya, D. M. Mount, and J. Xia. Tight lower bounds for halfspace range searching.
Disc. Comput. Geom., 47(4):711–730, 2012.

[3] J. L. Bentley and J. B. Saxe. Decomposable searching problems I. static-to-dynamic
transformation. J. Algorithms, 1(4):301–358, 1980.

[4] H. Brönnimann, B. Chazelle, and J. Pach. How hard is halfspace range searching.
Disc. Comput. Geom., 10:143–155, 1993.

[5] P. Carmi, G. K. Das, R. K. Jallu, S. C. Nandy, P. R. Prasad, and Y. Stein. Minimum
dominating set problem for unit disks revisited. Inter. J. Comput. Geom. Appl.,
25:227–244, 2015.

[6] T. M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms, 46(2):178–189, 2003.

[7] T. M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor
queries. In Proc. 17th Annu. ACM-SIAM Symp. Disc. Algorithms (SODA), pages
1196–1202, 2006.

[8] T. M. Chan. Optimal partition trees. Disc. Comput. Geom., 47(4):661–690, 2012.

[9] T. M. Chan and S. Har-Peled. Approximation algorithms for maximum independent
set of pseudo-disks. Disc. Comput. Geom., 48(2):373–392, 2012.

[10] X. Cheng, X. Huang, D. Li, W. Wu, and D.-Z. Du. A polynomial-time approximation
scheme for the minimum-connected dominating set in ad hoc wireless networks.
Networks, 42:202–208, 2003.

[11] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Math.,
86(1–3):165–177, 1990.

[12] G. D. da Fonseca, C. M. H. de Figueiredo, V. G. Pereira de Sá, and R. C. S.
Machado. Efficient sub-5 approximations for minimum dominating sets in unit disk
graphs. Theoret. Comput. Sci., 540–541:70–81, 2014.

[13] G. D. da Fonseca, V. G. P. de Sá, and C. M. H. de Figueiredo. Linear-
time approximation algorithms for geometric intersection graphs. arXiv preprint
arXiv:1402.4722, 2014.

[14] G. K. Das, M. De, S. Kolay, S. C. Nandy, and S. Sur-Kolay. Approximation algo-
rithms for maximum independent set of a unit disk graph. Inform. Process. Lett.,
115(3):439–446, 2015.

[15] M. De, G. Das, P. Carmi, and S. Nandy. Approximation algorithms for a variant of
disc. piercing set problem for unit disks. Inter. J. Comput. Geom. Appl., 6(23):461–
477, 2013.

11

[16] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geome-
try: Algorithms and Applications. 2008.

[17] D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing
problems in image process. and VLSI. J. ACM, 32(1):130–136, 1985.

[18] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. Ravi, D. J. Rosenkrantz, and
R. E. Stearns. NC-approximation schemes for NP- and PSPACE-hard problems for
geometric graphs. J. Algorithms, 26:238–274, 1998.

[19] E. Köhler and L. Mouatadid. A linear time algorithm to compute a maximum
weighted independent set on cocomparability graphs. Inform. Process. Lett., 2015.

[20] M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple
heuristics for unit disk graphs. Networks, 25(2):59–68, 1995.

[21] J. Matoušek. Reporting points in halfspaces. In Proc. 32nd Annu. Symp. Found.
Comput. Sci. (FOCS), 1991., pages 207–215, 1991.

[22] T. Matsui. Approximation algorithms for maximum independent set problems and
fractional coloring problems on unit disk graphs. In Proc. 2nd Japan Conf. Disc.
Comput. Geom. (JCDCG), volume 1763 of LNCS, pages 194–200, 1998.

[23] T. Nieberg, J. Hurink, and W. Kern. Approximation schemes for wireless networks.
ACM Trans. Algorithms, 4(4):49:1–49:17, 2008.

[24] M. H. Overmars and J. van Leeuwen. Worst-case optimal insertion and deletion
methods for decomposable searching problems. Inform. Process. Lett., 12(4):168–
173, 1981.

[25] E. J. van Leeuwen. Approximation algorithms for unit disk graphs. In Graph-
theoretic concepts in computer science, pages 351–361, 2005.

12

	Introduction
	Data Structures
	Small strips
	Large Strips
	Polynomial-Time Approximation Scheme
	Computing MIS for unit disks centered in a k k square

