Generation of SDN policies for protecting Android environments based on automata learning - Archive ouverte HAL Access content directly
Conference Papers Year : 2018

Generation of SDN policies for protecting Android environments based on automata learning

Abstract

Software-defined networking offers new opportu-nities for protecting end users and their applications. In that context, dedicated chains can be built to combine different security functions, such as firewalls, intrusion detection systems and services for preventing data leakage. To configure these security chains, it is important to have an adequate model of the patterns that end user applications exhibit when accessing the network. We propose an automated strategy for learning the networking behavior of end applications using algorithms for generating finite state models. These models can be exploited for inferring SDN policies ensuring that applications respect the observed behavior: such policies can be formally verified and deployed on SDN infrastructures in a dynamic and flexible manner. Our solution is prototypically implemented as a collection of Python scripts that extend our Synaptic verification package. The performance of our strategy is evaluated through extensive experimentations and is compared to the Synoptic and Invarimint automata learning algorithms.
Fichier principal
Vignette du fichier
main.pdf (477.42 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01892390 , version 1 (07-12-2018)

Identifiers

Cite

Nicolas Schnepf, Rémi Badonnel, Abdelkader Lahmadi, Stephan Merz. Generation of SDN policies for protecting Android environments based on automata learning. NOMS 2018 - IEEE/IFIP Network Operations and Management Symposium, Apr 2018, Taipei, Taiwan. ⟨10.1109/NOMS.2018.8406153⟩. ⟨hal-01892390⟩
116 View
193 Download

Altmetric

Share

Gmail Facebook X LinkedIn More