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Abstract—Software-defined networking offers new opportu-
nities for protecting end users and their applications. In that
context, dedicated chains can be built to combine different
security functions, such as firewalls, intrusion detection systems
and services for preventing data leakage. To configure these
security chains, it is important to have an adequate model of
the patterns that end user applications exhibit when accessing
the network. We propose an automated strategy for learning the
networking behavior of end applications using algorithms for
generating finite state models. These models can be exploited
for inferring SDN policies ensuring that applications respect the
observed behavior: such policies can be formally verified and
deployed on SDN infrastructures in a dynamic and flexible man-
ner. Our solution is prototypically implemented as a collection
of Python scripts that extend our Synaptic verification package.
The performance of our strategy is evaluated through extensive
experimentations and is compared to the Synoptic and Invarimint
automata learning algorithms.

I. INTRODUCTION

The increasing number of connected devices, such as smart-
phones, smart objects and sensors, is an important factor of
Internet growth and dynamics. It also poses new challenges in
terms of security management. These devices with restricted
capacities generate a larger attack surface. A typical example is
the recent attack against the DynDNS service, which exploited
a botnet of infected smart objects to perform flooding. Mali-
cious applications targeting these devices are also increasing
massively every year. Preventive security methods that con-
sist in analyzing the applications before their publication on
markets are of limited effectiveness. For instance, analyses
estimate that more than 3 million malwares were published
on the official Google application market [1], [2]. Security
mechanisms must be adjusted to threats dynamically. They
are also constrained by the resources of devices that are
often limited in terms of memory and CPU, making the local
deployment of protective mechanisms more challenging.

In the meantime, the development of software-defined net-
working (SDN) provides new perspectives in terms of security,
through an extended programmability of networks [3], [4]. The
SDN architecture relies on the decoupling of the data and con-
trol planes of networks, the first consisting in programmable
switches deployed in the network, and the second consist-
ing in a central component, the controller, responsible for
dynamically configuring the switches in response to network
events. The interface between these planes is implemented by
a dedicated protocol, such as OpenFlow, that can then serve
as a support for deploying security rules from the controller

to the switches. Programming the controller can benefit from
high-level languages, such as Pyretic [5], part of the Frenetic
family of languages [6]. These languages allow the dynamics
of the controller and the forwarding rules of the switches to
be described as a Python program, before compiling them into
low-level OpenFlow rules.

This programmability brings flexibility to the deployment
and adjustment of security mechanisms in the network infra-
structures. In this paper we propose an approach based on
automata learning to capture the networking behavior of
user applications; such models can be used for generating
SDN policies in order to protect Android environments. More
precisely, we build finite-state models that characterize the
behavior of user applications through the analysis of flow-
based interaction traces. We aim to infer SDN policies from
these models in order to protect end users. Security policies
can be expressed using Pyretic rules, for which formal verifi-
cation methods are available that can help validating network
policies. The verification of the control plane can be performed
by model checking using the Kinetic extension [7]. In addition,
the data plane associated to Pyretic rules can be verified using
our Synaptic checker described in [8].

Our main contributions are: (i) designing an automated
technique for learning the behavior of Android applications,
(ii) developing practical algorithms for building the automata,
(iii) prototyping our method based on Python scripts, and
(iv) evaluating its performance through extensive experiments,
with a comparison to other automata learning algorithms,
namely Synoptic [9] and Invarimint [10].

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of existing related work. Sec-
tion III describes the envisaged architecture for generating
SDN policies and our algorithms for building finite state
models. Section IV compares performance results obtained
with different automata learning methods. Section V concludes
and points out future research perspectives.

II. RELATED WORK

The widespread presence of malware applications on the
Google market store has spurred research on the validation
of Android applications. Asavoae et al. describe techniques
for detecting collusion of Android malware applications based
on their permissions [11], but do not address the detection
of attacks from a networking perspective. Similarly, Zhang
et al. rely on the Android permissions for automatically



generating security centric descriptions of applications [12],
but also do not consider the validation of networking aspects.
Mariconti et al. detect malware by building Markov models
of the applications, but this approach requires downloading
and executing the byte code of the application [13]. Kim
et al. mine the network protocols of an application from its
executable, but the deployment of this approach is intractable
in SDN networks [14]. Finally, Xia et al. audit Android appli-
cations at runtime [15], and Ren et al. propose an approach
for discovering personal data in the network traffic of an
application [16]; however, these approaches do not include
automatic adjustments or the verification of network policies.

In our previous paper [8] we introduce the Synaptic checker
for the verification of both control and data planes of a
software-defined network policy. This checker relies on the
Pyretic programming language [5], part of the Frenetic family
of languages for programming SDN controllers [6]: Pyretic
is implemented as a domain-specific language embedded in
Python for the specification of chains of rules at an abstract
level, from which low-level OpenFlow rules can be compiled.
Pyretic is complemented by an extension, called Kinetic, for
describing control plane policies; Kinetic also offers formal
verification techniques based on model checking [7]. Synaptic
extends this formalism for verifying the correctness of both
the control and data planes of Pyretic policies, before their
deployment in the network.

To automate the protection of Android applications, we
suggest here to complement our Synaptic checker by automata
learning methods for obtaining a representation of the network
behavior of Android applications. Automata learning methods
can be classified into several categories: purely algorithmic,
purely statistical or a mix of both. Among the purely al-
gorithmic methods, the reference k-tails algorithm [17] can
mine exact, but potentially complicated, Markov models of
applications. This algorithm underlies the Synoptic1 tool [9]
that can learn Markov models of processes. The Invarimint
tool [18] is also based on k-tails but produces simpler, so-
called declarative automata, without probabilities on the edges.
In the field of statistical automata learning algorithms, there is
the approach proposed by Carrasco [19] for inferring grammar
of languages by stochastic methods used in [20] for learning
inexact automata from logs of behaviors. Das and Mozer
[21] suggest relying on neural nets for learning models of
applications; this approach requires a learning session before
producing the model of a system while exact approaches can
be directly applied on logs without training phase.

III. AUTOMATA LEARNING STRATEGY FOR SUPPORTING
ANDROID APPLICATION SECURITY

We propose in this paper an approach for learning inter-
action models of applications for protecting Android environ-
ments. More precisely, this approach consists in automatically
profiling applications based on automata learning methods
applied to network logs. We mainly focus on the network

1Synoptic is an automata miner, while Synaptic is a checker.

traces characterizing the behavior of applications, in contrast
to Android permissions that focus on the services that applica-
tions can access directly on the smart device. One question to
consider is whether application models should be built from
packets or flows: a packet is the basic unit of data exchanged
by applications during a communication whereas a flow is an
aggregated and unidirectional collection of packets that can be
used instead of packets for representing the network behavior
of applications.

Figure 1. Overview of the proposed architecture for securing applications.

We decided to build our models from flow traces, following
Sperotto [22] who argues that using flows instead of packets
presents several advantages from a security perspective. First
of all, analyzing flows is faster than analyzing packets because
we are interested in collections of packets sharing the same
IP addresses and port numbers. A second advantage of this
approach is higher confidentiality for end users: whereas an
analysis at the level of packets can observe the data exchanged
during a communication, the latter is hidden in the analysis of
flows: one can only observe aggregate information such as the
numbers of packets and of bytes but not what is transmitted
over the network. We are mainly interested in the remote
servers the application is communicating with, focusing on
identifying communications that may present a risk for the
safety of a smart environment.

The communication pattern of an application can conve-
niently be represented as a finite state automaton; in particular
we consider hidden Markov models of applications because
this representation captures interesting properties in terms of
network security [22]. In addition to probabilistic aspects we
are also interested in having quantitative information about
the numbers of bytes and of packets sent or received by
applications during their communications in order to capture
abnormal behaviors and to adjust the chains accordingly when
observing such events at the network level.

A. Underlying architecture
The overall architecture that supports our technique for

protecting devices and applications in an SDN environment



is depicted in Figure 1. It relies on a security manager that
is responsible for the orchestration of security chains on top
of an SDN controller. Our approach is organized into four
major phases: netflow acquisition, netflow aggregation and
automata learning. The acquisition probe is deployed directly
on the smart device for collecting application flows. Using
a dedicated protocol, these traces are sent to the security
manager. After an aggregation phase (realized by an abstrac-
tion module), a process miner is applied during the automata
learning phase for building a finite state machine that captures
the communication behavior of the application.

B. NetFlow acquisition

The first phase relates to the acquisition of flow traces of
applications that are collected on the end device. In the context
of protecting Android devices, this acquisition is supported
by Flowoid [23], a probe developed in our research group.
Deployed on Android devices, Flowoid collects traces of the
network behavior of running applications and computes sev-
eral statistics: the transmission of these traces to the security
manager is based on NetFlow, a protocol specially designed
for the acquisition of network flows over the network. In terms
of information, Flowoid collects for each flow the IP addresses
of the source and of the destination and the corresponding port
numbers: it also provides information on the network protocol
(TCP or UDP), a timestamp labeling the communication, its
length, and the numbers of bytes and of packets transmitted.
In order to build a model representing the behavior of ap-
plications, the fields that characterize the communications of
an application must be identified: actually the IP source and
its corresponding port number are not informative because
they are bound to the smart device. The information about
the network protocol and the numbers of bytes and packets
are interesting but not sufficient for building a representative
model of the communications of an application. The most
relevant fields are the IP destination that defines the remote
server that provides the service and the corresponding port
number that defines this service. We will therefore initially
consider only these fields for building the transitions of our
model. The other informations are aggregated in order to infer
properties of the traffic, as we describe next.

C. NetFlow aggregation

We rely on flows collected by Flowoid for inferring our
application models: however, we need to define a way of
aggregating these flows, in order to infer interesting properties
on the traffic. If we directly use the IP addresses and port num-
bers contained in the logs, we obtain very precise application
models. The problem of this approach is that whenever the IP
address of a service changes, our models do not hold anymore.
We therefore need to consider the traffic at a higher level of
abstraction. An idea for solving this problem is to consider
the type of service the application is communicating with, for
instance google or amazon. In other words, we are interested in
knowing the owner of the IP addresses contained in a log. This
information can be collected by using whois requests: this

command returns information about the organization owning
the IP address in the field orgname but it can also return
a more precise information, viz. the name of the network
in the field netname. When whois returns both a netname
and an orgname we have to decide which information to
use for building the automaton: using only netnames could
again result in a too precise automaton containing traces of
networks appearing only once; using only orgnames could
result in automata integrating many flows aggregated under
very general services such as RIPE Network Coordination
Centre. As a compromise between these two extremes, we
decided to set a threshold n: if a netname appears more than
n times in the overall log it is considered as significant and
it is integrated into the model of the application; otherwise
we integrate the orgname. We thereby limit the influence of
netnames appearing only once or twice in the input log by
setting a high value of n; conversely, we can avoid a too strong
presence of generic orgnames by setting a lower value of n.
We complement this strategy for aggregating IP addresses by
another one for handling port numbers: although most Android
applications only use HTTP or HTTPS ports and do not require
such an aggregation strategy, some applications present a high
disparity of port numbers that should be aggregated. In that
case we can use the most frequent prefixes of port numbers in
order to aggregate flows: this approach allows us to group
together flows that have the same port number; moreover,
when an application frequently communicates on a given port
range we can aggregate these flows in order to get a more
compact representation of the traffic of applications. The idea
is again to only consider prefixes that appear more often than a
certain threshold in order to limit the influence of port numbers
appearing only once or twice in the flow.

D. Automata learning

The next phase consists in automata learning. The objec-
tive is to learn a Markovian model capturing the network
behavior of an application. This automaton is implemented
by two tables: States associates flows to their number of
instances, while Transitions associates pairs of flows to their
probability of succession. The arguments of our algorithm
(see Algorithm 1) are the list noted Flows of extended flows
computed by our aggregation module and the size N of
this list; the local variables that we use are flow containing
the orgname and the port number associated to a flow and
transition containing two consecutive flows. Each state of
the automaton is a class of flows defined by the name of the
destination organization and the corresponding port number.
Moreover, states can be enriched by auxiliary information
in order to represent more details about the corresponding
traffic. Concretely, we compute the following standard network
information for each state of our automata:

• the maximum numbers of bytes and of packets sent
during a flow;

• the average number of bytes and of packets sent during
a flow;

• the length of the longest flow;



Algorithm 1 Automaton learning algorithm.
States := ∅
Transitions := ∅
Flows :=List of flows.

. Initialize the set of states
flow := Flows[0 ]
States[flow ] := 1

. Count occurrences of states and transitions
for i ∈ 1..N do

transition := (flow ,Flows[i ])
flow := Flows[i ]
if flow ∈ States then

States[flow ] += 1
else

States[flow ] := 1
end if
if transition ∈ Transitions then

Transitions[transition] += 1
else

Transitions[transition] := 1
end if

end for
. Compute the probabilities of transitions

for transition ∈ Transitions do
Transitions[transition] :=
Transitions[transition]/States[transition0]

end for

Applications Number of NetFlow logs Number of IP/ports
disneyland 282 5
dropbox 1000 17
faceswitch 151 30
lequipe 1000 208
meteo 1000 89
ninegag 1000 124
pokemongo 275 24
ratp 779 3
skype 1000 442
viber 1000 176

Figure 2. Set of applications used during our experiments.

• the average length of the set of flows;
• the rates of TCP/UDP traffic.
As an example, we consider the logs of 275 flows generated

by the pokemongo application: these traces contain commu-
nications of the application with 24 different hosts on the
ports 80 and 443. Our aggregation strategy groups the 24 IP
addresses of these logs under 7 different orgnames: based on
this information we run our automata learning algorithm and
obtain the automaton of Figure 3. This automaton contains 10
states and 33 transitions; to give a comparison, the automata
mined directly from the IP addresses contains 26 states and
77 transitions. We also applied Invarimint and Synoptic to this
example: Invarimint produces an automaton with 12 states and
32 transitions without probabilities and Synoptic produces an
automaton with 28 states and 65 transitions.

IV. PERFORMANCE EVALUATION

We evaluated the performance of our prototype through
several experiments. In particular, we wanted to compare the
performances obtained with different methods of automata
learning. The experimental setup was based on a MacBook Air
laptop computer with an Intel Core i5 (1.7 GHz) processor and
4Gb of RAM. We considered the three following process/au-
tomata miners: Synoptic, its declarative version implemented
in Invarimint, and finally our own generation method described
in the previous section. For these experiments we used a set of
10 log files, described in Figure 2. From these log files we built
the automata with the three methods that we selected, noting
that we were not able to get the automata for the applications
lequipe, skype and viber with Synoptic because of excessive
memory consumption.

In order to compare the automata that we obtained we
defined the following evaluation criteria:

• the simplicity of the resulting automata, expressed in
terms of numbers of both states and transitions;

• the precision of the model, expressed as the number of
flows of other applications rejected by the automata.

A. Simplicity of automata

We only considered exact generation methods in this eval-
uation: the automata produced by such algorithms are guaran-
teed to accept all the logs used for learning. However, such
automata can be quite complicated to read and to interpret, and
their size has an influence on the number of SDN rules that are
generated. We therefore chose their simplicity as an evaluation
criterion, measured as the numbers of states and of transitions
of an automaton. Because these metrics vary with both the
method of generation and with the level of abstraction of the
input logs, we compared the different methods by applying
them on logs aggregated with different values of the threshold
parameter n. The results of these experiments are presented
in Figure 4.

Without aggregating IP addresses our approach produces
automata with in average 105.2 states and 322.8 transitions
for this data set. The automata produced by Invarimint and
by our approach are of similar complexity on average, In-
varimint produces automata that have two more states and
one transition less than our approach. In contrast, Synop-
tic produces automata with in average 11.2 states and 29
transitions more than our approach. Indeed, the automata
generated by Synoptic are always the most complex ones.
Considering the performances of the aggregation strategy, the
best improvement is obtained when replacing the IP addresses
by their corresponding orgnames; concerning the influence
of the value of n, the strongest impact is observed when
aggregating the less frequent netnames, meaning that limiting
the influence of values with low frequency of appearance is
the most important factor for choosing the threshold value n.
For completing these results we also compared the automata
sizes for our approach and for Invarimint when applying
the port abstraction strategy on the logs of the three most



Figure 3. Automaton describing the behavior of the pokemongo application.

Figure 4. Simplicity of automata generated with the considered methods.

complex applications: lequipe, skype and viber. During these
experiments we considered the influence of the threshold on
port numbers varying from 0 to 10. These results are described
in Figure 5.

The high number of states and of transitions of these
automata is caused by the complexity of the applications. The
complexity of the automata decreases most significantly for
threshold values between 0 and 3. This can be explained by the
peer-to-peer profile of the considered applications that causes
many port numbers to appear only one or two times. Port
numbers appearing more than 4 or 5 times can be considered
as being representative of the behavior of the application,
nevertheless, for logs where such values would constitute an
important part of the traffic it could be interesting to consider

higher threshold values.

B. Precision of automata

The next criterion that we considered is the precision of the
automata: given an application, we define the precision of its
automaton as the percentage of logs of other applications that
it rejects, in other words as the rate of foreign traffic rejected
by the automaton. Having a high precision is important for
ensuring that the traffic of an application will not be blocked
by other automata. On the other hand, if two automata match
the same traffic, their respective sets of rules could be joined
into a set that is useful for both applications. We evaluated
the precision of the automata generated by each method



Figure 5. Impact of port abstraction on the sizes of automata.

for the different applications, when using the orgname-based
abstraction: these results are depicted in Figure 6.

Figure 6. Precision of orgname-based automata.

One can observe that the precision depends more on the
type of application that is considered than on the method used
for generating the automata. Moreover, for some applications,
using the orgnames for computing the automata is sufficient
for having a satisfactory precision. However for others, such as
lequipe, precision is unsatisfactory. This difference is due to
the fact that some applications only contact private services
such as disney world wide service whereas others contact
many public services such as Amazon or Google. For com-
pleting these results we ran another set of experiments with
automata generated from the IP addresses of the remote hosts
that the application contacts: these results are presented in
Figure 7. Again, the precision depends more on the type of
application that is considered than on the method used for
generating the automata. We can see that the precision of
the automata is better without abstracting the logs2: this fact
confirms our strategy of using the IP addresses for matching
the traffic at the network level. However, the strong overlaps
observed when using the orgnames for generating the automata
could be exploited for identifying sections of application traffic
that can be protected by the same types of chains, so the

2Observe the different scale of the ordinate axis in Figure 7.

Figure 7. Precision of automata based on IP addresses.

information on the IP addresses would be used for configuring
these chains.

V. CONCLUSIONS AND FUTURE WORK

We propose in this paper a technique for learning the behav-
ior of Android applications, as a starting point for generating
SDN policies for protecting them. Our solution collects traces
of NetFlow records of their applications, aggregates them,
and finally builds finite-state models. We have described the
architecture supporting our approach, as well as the interac-
tions among its different components. We have designed and
implemented aggregation and automata learning algorithms
that allow precise and generic models of applications to be
built, with the aim of using these models for configuring
chains of security functions specified in the Pyretic language
and verified with our Synaptic checker. We have developed
a prototype of our solution implementing these algorithms,
and evaluated its performances through a series of experiments
based on the backend process miners Synoptic and Invarimint,
in addition to our own algorithm. The experiments showed the
benefits and limits of these methods in terms of simplicity,
precision, genericity, and expressivity, while varying the level
of aggregation of the input flow traces.

As future perspectives, we work on the generation or
selection of chains of security functions, based on the inferred
finite-state automata. We are also interested in further optimiz-
ing the formal models that we generate, based on the nature of
the properties to ensure. Finally, we want to investigate further
the integration of this automata learning method into the
context of an automated management framework for security
chains with our Synaptic checker.
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