Analysis and optimisation of a variational model for mixed Gaussian and Salt & Pepper noise removal - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Analysis and optimisation of a variational model for mixed Gaussian and Salt & Pepper noise removal

Résumé

We analyse a variational regularisation problem for mixed noise removal that was recently proposed in [14]. The data discrepancy term of the model combines $L^1$ and $L^2$ terms in an infimal convolution fashion and it is appropriate for the joint removal of Gaussian and Salt & Pepper noise. In this work we perform a finer analysis of the model which emphasises on the balancing effect of the two parameters appearing in the discrepancy term. Namely, we study the asymptotic behaviour of the model for large and small values of these parameters and we compare it to the corresponding variational models with $L^1$ and $L^2$ data fidelity. Furthermore, we compute exact solutions for simple data functions taking the total variation as regulariser. Using these theoretical results, we then analytically study a bilevel optimisation strategy for automatically selecting the parameters of the model by means of a training set. Finally, we report some numerical results on the selection of the optimal noise model via such strategy which confirm the validity of our analysis and the use of popular data models in the case of "blind" model selection.
Fichier principal
Vignette du fichier
AnalysisIC_final.pdf (844.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01889729 , version 1 (07-10-2018)

Identifiants

  • HAL Id : hal-01889729 , version 1

Citer

Luca Calatroni, Kostas Papafitsoros. Analysis and optimisation of a variational model for mixed Gaussian and Salt & Pepper noise removal. 2018. ⟨hal-01889729⟩
100 Consultations
40 Téléchargements

Partager

More