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Abstract. We analyse a variational regularisation problem for mixed noise removal that
was recently proposed in [14]. The data discrepancy term of the model combines L1 and
L2 terms in an infimal convolution fashion and it is appropriate for the joint removal of
Gaussian and Salt & Pepper noise. In this work we perform a finer analysis of the model
which emphasises on the balancing effect of the two parameters appearing in the discrepancy
term. Namely, we study the asymptotic behaviour of the model for large and small values
of these parameters and we compare it to the corresponding variational models with L1 and
L2 data fidelity. Furthermore, we compute exact solutions for simple data functions taking
the total variation as regulariser. Using these theoretical results, we then analytically study
a bilevel optimisation strategy for automatically selecting the parameters of the model by
means of a training set. Finally, we report some numerical results on the selection of the
optimal noise model via such strategy which confirm the validity of our analysis and the use
of popular data models in the case of “blind” model selection.

1. Introduction

Image denoising is a classical problem in imaging which is defined as the task of removing
oscillations and interferences from a given image f . Given a regular image domain Ω ⊆ R2 the
problem can be formulated mathematically as the task of retrieving a noise-free image u from
its noisy measurement f , the latter being the result of a (possibly non-linear) degradation
operator T . In its general form, this problem can be written in the following way

find u such that f = T (u).

Here the operator T introduces noise in the image, not only in an additive way, and it is
not to be confused with the forward operator in the context of inverse problems. In order to
obtain a noise-free image, a classical technique consists of minimising an appropriate energy



functional J over a suitable Banach space X where the image functions are assumed to lie.
In its general form the problem reads as follows:

min
u∈X

{J (u) := R(u) + λΦ(u, f)} . (1.1)

Here, R(u) stands for the regularisation term encoding a priori information on the regularity
of the solution, Φ(u, f) for the data-fitting measure that depends on the statistical and
physical assumptions in the data and λ > 0 is a scalar parameter whose magnitude balances
the regularisation against trust in the data. Since the seminal work of Rudin, Osher, Fatemi
[52], a popular choice for R in (1.1) is R(u) = |Du|(Ω), the Total Variation (TV) seminorm
[4], due to its ability of preserving salient structures in the image, i.e., edges, while removing
noise at the same time. Here Du represents the distributional derivative of the function
u ∈ BV(Ω), the space of functions of bounded variation, and |Du|(Ω) is the total variation
of this measure. In the recent years, also higher-order regularisation terms that improve
upon TV-induced artefacts – notably, the creation of piecewise constant structures – have
been proposed in the literature. Among those, the most prominent is the Total Generalized
Variation (TGV) [9], see also [47] for a comprehensive review.

In this work we will mostly focus on the standard TV regularisation energy, as our work
focuses on the choice of Φ rather than of R. Classical data fidelity terms for denoising images
with Gaussian or impulsive Salt & Pepper noise are based on the use of the L2 and L1 norm,
respectively, i.e.,

ΦL2(u, f) :=
1

2

∫
Ω

(f − u)2 dx or ΦL1(u, f) :=

∫
Ω

|f − u| dx.

These discrepancies are statistically consistent with the assumptions on the noise since they
can be derived as the MAP estimators of the underlying likelihood function [7].

There exists a considerable amount of work in the literature regarding the structures of
solutions of variational problems with pure L1 or L2 fidelity terms. As a result, the differences
between the effects that these terms have on the solutions of the corresponding denoising
models are well understood. See for instance [1, 2, 3, 16, 17, 18, 20, 28, 36, 43, 51, 53] for TV
regularisation and [10, 48, 49, 50, 54] for TGV. For example, in the case of TV regularisation,
it is known that the use of L2 fidelity does not introduce new discontinuities in the solution,
which is not the case for the L1 fidelity. Moreover, the L1 model is capable of exact data
recovery, in contrast to the L2 one, where always some loss of contrast occurs.

1.1. Image denoising for noise mixtures

Due to different image acquisition and transmission faults, the given image f may be
corrupted by a mixture of noise statistics. This is typical, for instance, whenever the presence
of noise is due to electronic faults and/or photon-counting processes (such as in astronomy and
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microscopy applications) combined with actual damages in the receiving sensors, resulting
in a lack of information transmittance in only a few image pixels (“burned pixels”). The
modelling of Φ in (1.1) is therefore expected to encode such noise combination. In this work
we consider the special case when Gaussian and sparse Salt & Pepper noise are present in
the data.

Several authors have considered previously such noise combination. In [32, 41], for
instance, a combined model with a L1 +L2 data fidelity and TV regularisation is considered
for the joint removal of impulsive and Gaussian noise. Another approach is considered in
[12] where two sequential steps having L1 and L2 as data fidelity are performed to remove
the impulsive and the Gaussian component of the mixed noise, respectively. Framelet-based
approaches combining L1 and L2 data fidelities in a discrete setting have also been proposed
in [27, 55]. However, despite the observed good practical performance of the models described
above, the use of an additive and sequential combination of L1 and L2 data fitting terms lacks
a rigorous statistical interpretation in terms, for instance, of a MAP estimation.

We remark that the combination of other noise distributions such as, for instance,
Gaussian and Poisson is also frequent in astronomy and microscopy applications and have
been studied in several works such as, for instance, [8, 37, 42]. Such noise mixtures, however,
are outside the scope of this work.

1.2. Infimal convolution modelling of data discrepancies

Recently in [14], a non-standard variational model for noise removal of mixtures of Salt &
Pepper and Gaussian, and Gaussian and Poisson noise has been studied. The model, which
will be referred to as TV–IC model, is based on the minimisation of an energy functional
which is the sum of |Du|(Ω) and an infimal convolution of single noise data discrepancy
terms. Given two positive parameters λ1, λ2 it reads:

min
u∈BV(Ω)

|Du|(Ω) + Φλ1,λ2(u, f),

where the data fidelity Φλ1,λ2(u, f) is defined as

Φλ1,λ2(u, f) := inf
v
λ1Φ1(v) + λ2Φ2(v, f − u). (1.2)

Here, Φ1,Φ2 denote standard data fidelity terms typically used for single noise removal
such as the L1, L2 norm and the Kullback-Leibler functional. In the particular case of a
mixture of Salt & Pepper and Gaussian noise, (1.2) specifies into Φ1(v) = ∥v∥L1(Ω) and
Φ2(v, f − u) = 1

2
∥f − u− v∥2L2(Ω). In this case, the minimisation in (1.2) is done over L1(Ω)

and Φλ1,λ2(u, f) reads

Φλ1,λ2(u, f) = min
v∈L1(Ω)

λ1∥v∥L1(Ω) +
λ2
2
∥f − u− v∥2L2(Ω), f, u ∈ L1(Ω). (1.3)
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It can be easily checked that the minimisation in (1.3) is indeed well-defined. The reader
should not be alerted by the fact that the L1 functions f, u appear in the L2 part of (1.3), as
the variable v takes care of any non-integrability issue, see Proposition 2.1. In fact, as we are
going to remark in the same proposition, the functional Φλ1,λ2 can be written equivalently as

Φλ1,λ2(u, f) =

∫
Ω

φ(f(x)− u(x)) dx,

where φ is the well-known Huber-regularisation of the absolute value function. As a
consequence, the functional Φλ1,λ2 can be simply seen as a Huberised L1 norm.

In [14], it was shown that the data discrepancy (1.3) corresponds to the joint MAP
estimator for a denoising problem featuring a mixture of Laplace and Gaussian noise
distributions. The effectiveness of the model for the removal of such noise mixture as well
as the additional property of decomposing the noise into its sparse (Salt & Pepper) and
distributed (Gaussian) component was there confirmed with extended numerical examples.

Note that a Huber smoothing of the L1 norm has previously been considered in order
to apply fast second order minimisation algorithms such as semismooth Newton method in
[33]. Also, in the purely discrete setting, smoothed TV–L1 models have been studied in [45]
for exact histogram specification. Similar models (among which also Huber-type) were also
considered in [5], where the authors obtained bounds on the infinity norm of the difference
between data and solutions.

Our contribution. In this work we examine in depth the similarities and the differences
between the TV–IC model and the pure TV–L1, TV–L2 ones. We first provide detailed
asymptotic results as λ1 or λ2 tend either to infinity or to zero and describe how the solution of
the model varies in these cases. Note that these results are proved for a general regularisation
term. Secondly, in order to have a better insight on the type of solutions one can expect,
we do a fine scale analysis of the one-dimensional TV regularised model by computing exact
solutions for simple data functions f . Up to our knowledge, this is the first time that the
effect of the Huberised L1 fidelity term is studied in the continuous setting.

In the second part of the paper, we focus on the optimal selection of the parameters
λ1, λ2 appearing in (1.3). In order to do that, we consider a bilevel optimisation approach
[13, 24] which in its general formulation reads

min
λ1,λ2 ≥0

F (uλ1,λ2)

subject to uλ1,λ2 ∈ argmin
u∈BV(Ω)

|Du|(Ω) + Φλ1,λ2(u, f).
(1.4)

Here F denotes a cost functional which measures how far the solution uλ1,λ2 is from some
ground truth (training) image. The parameters λ1, λ2 selected within this framework are
therefore those producing the closest reconstruction uλ1,λ2 to the training image, see Section
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4.1 for more details. We perform a rigorous analysis on the existence of solutions of (1.4) as
well as a regularised version of it, proving the Fréchet differentiability of the solution map
S : (λ1, λ2) 7→ uλ1,λ2 and the existence of adjoint states. This allows to derive a handy
characterisation of the gradient of the reduced form of F which can be used for efficient
numerical implementations. Our analysis justifies rigorously the formal Lagrangian approach
considered in [14, Section 7].

We conclude our study with some numerical experiments connecting the analysis on the
structure of solutions discussed above with the problem of learning the optimal noise model
for a given noisy image with unknown noise intensity. Our numerical findings show that in
case of pure Salt & Pepper and Gaussian denoising, the bilevel optimisation approach applied
to the TV–IC model computes optimal parameters which enforces pure L1 fidelity. In the
case of noise mixture, a combination of L1 and L2 data fitting is preferred. Interestingly,
in the case of pure Gaussian, it is not the pure L2 data fitting that is selected but still a
combination of L1 and L2, indicating the benefit of the use of L1 discrepancy even in the
case of Gaussian noise.

We emphasise that the two parts of the paper are intrinsically connected, see for instance
Propositions 4.2 and 4.3. In the former, by making use of the analytical results of the first
part, we show with a help of a counterexample, that in order to show existence of solutions
for the bilevel optimisation problem (1.4), it is necessary to enforce an upper bound on the
parameters λ1, λ2. The existence of solutions in this case, is shown in Proposition 4.3 also
by making use of the results of the first part of the paper.

Overall, this study motivates further the use of the TV–IC model and in general the use
of the infimal convolution based fidelity term, by (i) describing the structure of the expected
solutions and (ii) by proposing an automated parameter selection strategy making this model
more flexible and applicable to mixed denoising problems.

2. Analysis of the L1–L2 IC model: characterisation and asymptotics

We start this section by observing that the L1–L2 infimal convolution term can be equivalently
formulated as a Huberised L1 norm. This provides an interesting motivation on its
effectiveness in the removal of mixed Salt & Pepper and Gaussian noise. As usual, Ω ⊆ Rd

denotes an open, bounded, connected domain with Lipschitz boundary.
Proposition 2.1. Let λ1, λ2 > 0, f, u ∈ L1(Ω) and consider the data fitting term, Φλ1,λ2(u, f)

defined in (1.3). Then
Φλ1,λ2(u, f) =

∫
Ω

φ(f(x)− u(x)) dx, (2.1)

where for t ∈ R

φ(t) =

{
λ1|t| − λ2

1

2λ2
, if |t| ≥ λ1

λ2
,

λ2

2
|t|2, if |t| < λ1

λ2
.

(2.2)
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Proof. The proof is straightforward, in view of

Φλ1,λ2(u, f) = min
v∈L1(Ω)

∫
Ω

(
λ1|v(x)|+

λ2
2
(f(x)− u(x)− v(x))2

)
dx,

and noticing that the minimisation in the definition of Φλ1,λ2 can be considered pointwise.
Immediate calculations show that the optimal v can be computed explicitly as

vopt(x) =

{
f(x)− u(x)− λ1

λ2

f(x)−u(x)
|f(x)−u(x)| , if |f(x)− u(x)| ≥ λ1

λ2
,

0, if |f(x)− u(x)| < λ1

λ2
.

(2.3)

From the formulation (2.1)–(2.2) one sees that the infimal convolution of L1 and L2 data
fidelities coincides with a smoothed L1 norm, see Figure 1. This is in fact well-known in the
context of optimisation in Hilbert spaces [6], where an explicit expression like (2.3) is often
used to compute the soft-thresholding operators. Furthermore, let us point out here that
Proposition 2.1 above is analogous to a similar result about the Huberised total variation
functional, which has also been shown to be equivalent to a corresponding infimal convolution
functional involving L1 and L2 norms, see [11] and [30].

t

φ(t)

λ2 = 0.25

λ2 = 0.5

λ2 = 2

−5 −3 −1 1 3 5

(a) Fixed λ1 = 1 and varying λ2.

t

φ(t)

λ1 = 0.25

λ1 = 0.5

λ1 = 2

−5 −3 −1 1 3 5

(b) Fixed λ2 = 1 and varying λ1.

Figure 1: Example plots of the Huber function φ.

The formulation (2.1)–(2.2) of Φλ1,λ2 provides an interesting insight on its interpretation
and motivates its effectiveness for mixed noise removal. When |f(x)−u(x)| is large, the noise
component is interpreted as Salt & Pepper by the model and then Φλ1,λ2 behaves locally as
∥f − u∥L1(Ω). On the other hand, if |f(x)− u(x)| is small, then the model assumes that the
noise is Gaussian and enforces a data fidelity Φλ1,λ2 locally equal to ∥f − u∥2L2(Ω), see Figure
2 for a visualisation.

2.1. Asymptotic behaviour

In this section, we investigate the asymptotic behaviour of the L1–L2 IC model. Here, we do
not need to restrict to the TV regulariser, but we can consider a more general regularisation
functional J with the following properties:
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(a) Original image u (b) Data f (c) Data f – detail
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(d) |f(x)− u(x)| along the line profile

Figure 2: Interepretation of the L1–L2 IC term based on the formulation (2.1)–(2.2). First
row: original image, noisy version and detail with line profile (red). Second row: difference
|f − u| along the line profile. The fidelity functional Φλ1,λ2 locally acts like ∥f − u∥L1 at
points with high values of |f−u| (blue asterisks), thus assuming these points to be corrupted
by Salt & Pepper noise. On the other hand, Φλ1,λ2 acts locally as ∥f − u∥2L2 at points with
low values of |f − u| (red asterisks), identifying these points as corrupted by Gaussian noise.
Parameters: Gaussian variance σ2 = 0.005, density of pixels corrupted by Salt & Pepper
noise d = 5%.

(i) J : L1(Ω) → R ∪ {∞} is positive, proper, convex, lower semicontinuous with respect to
the strong convergence in L1(Ω).

(ii) There exist constants C1, C2 > 0 such that C1|Du|(Ω) ≤ J(u) ≤ C2|Du|(Ω) for every
u ∈ BV(Ω).

Classical regularisers such as TV, Huber-TV and TGV of any order, satisfy the above
properties. Note that this is also true for a large class of structural TV-type functionals that
are commonly used in inverse problems, see [31].
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We are interested in the following general problem:

min
u∈BV(Ω)
v∈L1(Ω)

J(u) + λ1∥v∥L1(Ω) +
λ2
2
∥f − u− v∥2L2(Ω), (2.4)

which is a more general version of the TV–IC model for Gaussian and Salt & Pepper noise
removal

min
u∈BV(Ω)
v∈L1(Ω)

|Du|(Ω) + λ1∥v∥L1(Ω) +
λ2
2
∥f − u− v∥2L2(Ω). (2.5)

The well-posedness of (2.5) has been studied in [14]. For the more general model (2.4)
existence of minimisers (u∗, v∗) ∈ BV(Ω) × L1(Ω) follows from a simple application of the
direct method of calculus of variations. Note however, that the solution u∗ is not necessary
unique as Φλ1,λ2(·, f) is not strictly convex (J is not necessarily strictly convex either). The
same holds for v∗ due to formula (2.3) which connects it with u∗.

One natural question one may ask is in what degree we can expect to recover the single
noise models by sending the parameters λ1, λ2 (or their ratio) to infinity. In the following
we answer this question by taking advantage of the formulation (2.1)–(2.2) and using some
Γ-convergence arguments. Firstly, we extend a corresponding proposition that was shown in
[14, Proposition 5.1], to the general regulariser case, adjusted for our purposes.

Proposition 2.2. Let (u∗, v∗) ∈ BV(Ω) × L1(Ω) be an optimal pair for (2.4). Then, the
following assertions hold:

(i) If λ1 → ∞, f ∈ L1(Ω) then v∗ → 0 in L1(Ω).
(ii) If λ2 → ∞, f ∈ L2(Ω) then ∥f − u∗ − v∗∥L2(Ω) → 0. If in addition λ1 is fixed, then the

same result holds with f ∈ L1(Ω).
(iii) If both λ1, λ2 → ∞ and f ∈ L2(Ω) then (i) holds and we have that u∗ → f in L1(Ω). If

f ∈ BV(Ω) this convergence is also weakly∗ in BV(Ω).

Proof. (i) We notice that

λ1∥v∗∥L1(Ω) ≤ J(u) + λ1∥v∥L1(Ω) +
λ2
2
∥f − u− v∥2L2(Ω), ∀u ∈ BV(Ω), v ∈ L1(Ω),

which by setting v = f − u, implies

λ1∥v∗∥L1(Ω) ≤ J(u) + λ1∥f − u∥L1(Ω), ∀u ∈ BV(Ω), v ∈ L1(Ω). (2.6)

Given ϵ > 0, we can find uϵ ∈ C∞
c (Ω) such that ∥f − uϵ∥L1(Ω) < ϵ. Thus (2.6) becomes

∥v∗∥L1(Ω) ≤
1

λ1
J(uϵ) + ϵ ⇒ lim sup

λ1→∞
∥v∗∥L1(Ω) ≤ ϵ.

Since ϵ was arbitrary, the result follows.
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(ii) In this case we have that for every u ∈ BV(Ω) and v ∈ L1(Ω)

λ2
2
∥f − u∗ − v∗∥2L2(Ω) ≤ J(u) + λ1∥v∥L1(Ω) +

λ2
2
∥f − u− v∥2L2(Ω), (2.7)

which by setting v = 0, implies
λ2
2
∥f − u∗ − v∗∥2L2(Ω) ≤ J(u) +

λ2
2
∥f − u∥2L2(Ω), ∀u ∈ BV(Ω).

Then, proceeding as in step (i) the result follows. Notice that if we assume that λ1 is fixed
(or more generally bounded from above) and by merely assuming f ∈ L1(Ω), we can have
the same result by setting v = f and u = 0 in (2.7).

(iii) Notice that if both λ1, λ2 → ∞ and f ∈ L2(Ω) then from (i), (ii) we get that
∥v∗∥L1(Ω) → 0 and ∥f −u∗− v∗∥L1(Ω) → 0 and hence an application of the triangle inequality
implies that u∗ → f in L1(Ω). If in addition f ∈ BV(Ω), then we have that |Du∗|(Ω) is
uniformly bounded by setting v = 0, u = f in

C1|Du∗|(Ω) ≤ J(u∗) ≤ J(u) + λ1∥v∥L1(Ω) +
λ2
2
∥f − u− v∥2L2(Ω), ∀u ∈ BV(Ω), v ∈ L1(Ω).

From compactness in BV(Ω) and the fact that ∥f − u∗∥L1(Ω) → 0 we infer that u∗ → f

weakly∗ in BV(Ω).

In what follows, we refine the result above and prove convergence of the minimisers
of (2.4) to the minimisers of the single noise models. To do so, we apply Γ-convergence
arguments [21] to the IC term Φλ1,λ2 .
Proposition 2.3. Let f ∈ L1(Ω) and let us define the functional F λ1,λ2 : L1(Ω) → R+ by
F λ1,λ2(u) := Φλ1,λ2(u, f). Then
(i) For any fixed λ1, F λ1,λ2 Γ-converges to F1(·) := λ1∥f − ·∥L1(Ω) as λ2 → ∞.

(ii) For any fixed λ2, F λ1,λ2 Γ-converges to F 2(·) as λ1 → ∞, where for every u ∈ L1(Ω),
F 2 is defined as

F 2(u) :=
λ2
2
∥f − u∥2L2(Ω) :=

{
λ2

2
∥f − u∥2L2(Ω), if f − u ∈ L2(Ω),

+∞, if f − u ∈ L1(Ω) \ L2(Ω).

Proof. For (i), let
(
λ
(n)
2

)
n∈N be a sequence with λ(n)2 → ∞ and set F n := F λ1,λ

(n)
2 . We notice

that F n converges uniformly to λ1∥f − ·∥L1(Ω). Indeed, for u ∈ L1(Ω), we have∣∣F n(u)− λ1∥f − u∥L1(Ω)

∣∣ = ∣∣∣∣∫
Ω

φ(f − u)− λ1|f − u| dx
∣∣∣∣

≤
∫
|f−u|≥ λ1

λ
(n)
2

λ21

2λ
(n)
2

dx+

∫
|f−u|< λ1

λ
(n)
2

∣∣∣∣∣λ(n)2

2
|f − u|2 − λ1|f − u|

∣∣∣∣∣ dx
≤

∫
Ω

λ21

2λ
(n)
2

dx+

∫
Ω

λ21

2λ
(n)
2

dx+

∫
Ω

λ21

λ
(n)
2

dx→ 0 as n→ ∞.
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Since the last limit is independent of u, the convergence of the functionals is indeed uniform.
Moreover F n is continuous with respect to the L1 topology, see for instance [14]. Thus from
[21, Proposition 5.2] we immediately get that F n Γ-converges to F1 as n→ ∞.

For (ii), we now set F n := F λ
(n)
1 ,λ2 with λ

(n)
1 → ∞ and observe that F n converges

pointwise to F 2. Indeed if f − u ∈ L1(Ω) \ L2(Ω) then

F n(u) ≥
∫
|f−u|<

λ
(n)
1
λ2

λ2
2
|f − u|2dx→ ∞ as n→ ∞.

On the other hand, if f − u ∈ L2(Ω), proceeding as before we have∣∣∣∣F n(u)− λ2
2
∥f − u∥2L2(Ω)

∣∣∣∣ ≤ ∫
|f−u|≥

λ
(n)
1
λ2

λ
(n)
1 |f − u| −

(
λ
(n)
1

)2
2λ2

dx+

∫
|f−u|≥

λ
(n)
1
λ2

λ2
2
|f − u|2dx

≤
∫
|f−u|≥

λ
(n)
1
λ2

3

2
λ2|f − u|2dx→ 0 as n→ ∞.

If
(
λ
(n)
1

)
n∈N is increasing, it can be easily verified that the sequence (Fn)n∈N is increasing.

Moreover the L2 norm is lower semicontinuous with respect to the strong L1 topology. Hence
from [21, Remark 5.5], we have that F n Γ-converges to F 2. In the case where

(
λ
(n)
1

)
n∈N

is non-monotonically going to infinity, we can find an increasing subsequence and then the
result follows from the Urysohn property of Γ-convergence, see [21, Proposition 8.3].

As a corollary, we obtain the following result on the convergence of minimisers.
Corollary 2.4 (Convergence to single noise models). The following two results hold:
(i) Let f ∈ L1(Ω), λ1 > 0 fixed and

(
λ
(n)
2

)
n∈N with λ

(n)
2 → ∞. If (un)n∈N ⊆ BV(Ω) is

a sequence of minimisers of (2.4), then every subsequence of (un)n∈N has a weak∗ in
BV(Ω) cluster point which is a minimiser of

min
u∈BV(Ω)

J(u) + λ1∥f − u∥L1(Ω). (2.8)

Moreover if the solution u∗ of (2.8) is unique, then un → u∗ weakly∗ in BV(Ω) and

J(un) + Φλ1,λ
(n)
2 (un, f) → J(u∗) + λ1∥f − u∗∥L1(Ω). (2.9)

(ii) Let f ∈ L2(Ω), λ2 > 0 fixed and
(
λ
(n)
1

)
n∈N with λ

(n)
1 → ∞. If (un)n∈N ⊆ BV(Ω) is a

sequence of minimisers of (2.4), then un → u∗ weakly∗ in BV(Ω), where u∗ is the unique
minimiser of

min
u∈BV(Ω)

J(u) +
λ2
2
∥f − u∥2L2(Ω). (2.10)

Moreover
J(un) + Φλ

(n)
1 ,λ2(un, f) → J(u∗) +

λ2
2
∥f − u∗∥2L2(Ω).

10



Proof. (i) Since the functional J is lower semicontinuous with respect to L1, then [21,
Proposition 6.25] we have that the minimising functionals Φλ1,λ

(n)
2 (·, f)+J(·) also Γ-converge

to the functional in (2.8). Moreover, note that (un)n∈N is uniformly bounded in BV(Ω).
Since un is a minimiser we have in fact that for every u ∈ BV(Ω) and every v ∈ L1(Ω), the
following three inequalities hold

C1|Dun|(Ω) ≤ J(un) ≤ J(u) + λ1∥v∥L1(Ω) +
λ
(n)
2

2
∥f − u− v∥2L2(Ω), (2.11)

λ
(n)
2

2
∥f − un − vn∥2L2(Ω) ≤ J(u) + λ1∥v∥L1(Ω) +

λ
(n)
2

2
∥f − u− v∥2L2(Ω), (2.12)

λ1∥vn∥L1(Ω) ≤ J(u) + λ1∥v∥L1(Ω) +
λ
(n)
2

2
∥f − u− v∥2L2(Ω). (2.13)

By setting u = 0, v = f in (2.11) one obtains a uniform bound for the sequence (|Dun|(Ω))n∈N.
From (2.12) and from the fact that Ω is bounded, one obtains a uniform bound for
(∥f−un−vn∥L1(Ω))n∈N. Similarly, from (2.13), a uniform bound on (∥vn∥L1(Ω))n∈N is obtained
and this means that (∥un∥L1(Ω))n∈N is also bounded. Thus every subsequence of un has a
cluster point in BV(Ω) with respect to the weak∗ topology, which must be a minimiser of (2.8),
[21, Corollary 7.20]. Furthermore if (2.8) has a unique minimiser, then every subsequence of
un has a further subsequence that converges to u weakly∗ in BV(Ω). Thus, in this case un
converges to u weakly∗ in BV(Ω) and moreover (2.9) holds by [21, Corollary 7.20].

(ii) The Γ-convergence of the energies follows as above. By setting, v = u = 0 in (2.11)
one obtains a uniform bound on (|Dun|(Ω))n∈N and similarly as in (i) a bound on L1(Ω) and
consequently in BV(Ω) is obtained for u. The rest of the proof follows as in (i), bearing in
mind that the solution of (2.10) is unique.

We summarise our findings so far in Table 1, where we have combined the results of
Proposition 2.2 and Corollary 2.4.

In the case of bounded data and TV regularisation, the results obtained above can be
refined. We first recall the following well-known result, see [19, Lemma 3.5].
Proposition 2.5. Let u be a solution of (2.5), with f ∈ L∞(Ω). Then the following maximum
principle holds:

ess inf
x∈Ω

f(x) ≤ ess inf
x∈Ω

u(x) ≤ ess sup
x∈Ω

u(x) ≤ ess sup
x∈Ω

f(x).

We can now prove the following result for the TV–IC minimisation problem (2.5).
Proposition 2.6. Suppose that f ∈ L∞(Ω) and the parameters λ1, λ2 > 0 satisfy the following
condition

λ1
λ2

≥ 2∥f∥∞. (2.14)

11



λ1 → ∞
f ∈ L1(Ω)

λ1 → ∞
λ2 fixed
f ∈ L2(Ω)

λ2 → ∞
f ∈ L2(Ω)

(or f ∈ L1(Ω) & λ1 fixed)

λ2 → ∞
λ1 fixed
f ∈ L1(Ω)

J–λ1L1 has !sol. u∗

λ1 → ∞
λ2 → ∞
f ∈ L2(Ω)

v v → 0 in L1(Ω) v → 0 in L1(Ω) ∥f − u− v∥L2(Ω) → 0 v → f − u∗ in L1(Ω) v → 0 in L1(Ω)

u cannot say u→ solution J–λ2

2
L2,

w∗ in BV(Ω)
cannot say u→ u∗, w∗ in BV(Ω)

u→ f in L1(Ω),
(w∗ in BV(Ω)

if f ∈ BV(Ω))

Table 1: Summary of all the asymptotic results concerning the solution pair u, v of (2.4)
when one or both parameters λ1 and λ2 are let to infinity.

Then, if u is a solution of (2.5), there holds

Φλ1,λ2(u, f) =
λ2
2
∥f − u∥2L2(Ω). (2.15)

As a result, the problem (2.5) is equivalent to a standard TV–L2 minimisation problem.

Proof. This is a direct consequence of Proposition 2.5 and the formulation (2.1)–(2.2) of
Φλ1,λ2(u, f). Indeed, using a translation argument and Proposition 2.5 one shows directly
that for the solution u of (2.5), it holds ∥f − u∥∞ ≤ 2∥f∥∞. Thus if (2.14) holds, (2.1)
implies that φ(f − u) = λ2

2
|f − u|2 so that (2.15) holds as well.

We note here that the adaptation of Proposition 2.5 and, consequently, of Proposition
2.6 to other widely used regularisers is not immediate. For instance, it remains an open
problem to show that the solution u of the TGV–L2 problem with data f ∈ L∞(Ω) is also an
L∞ function, see for instance the corresponding discussion in [54]. However, in dimension one
this fact is true when f ∈ BV(Ω), by taking advantage of the estimate ∥u∥L∞(Ω) ≤ C∥u∥BV(Ω),
see for instance [49, Proposition 2].

In view of the Proposition above, one sees that in the case of TV regularisation, the
Gaussian noise model can be recovered simply by fixing either λ2 and setting λ1 large enough
or by fixing λ1 and setting λ2 small enough. In Figure 3 we graphically depict this behaviour.

2.2. Convergence of the parameters to zero and non-exact recovery of the data

We now study the asymptotic behaviour of the model when the parameters are sent to zero.
For this analysis and for the sake of simplicity, we focus on the TV minimisation model (2.5)
but the results can be easily extended to the general regulariser case. First, we recall the

12



λ2

λ1

λ1 = 2∥f∥∞λ2
TV–L2

TV–L1

Figure 3: If λ1

λ2
≥ 2∥f∥∞ then (2.5) is equivalent to the TV–L2 problem, see Proposition 2.6.

By fixing λ1 and sending λ2 to infinity the solution u converges to a solution of an TV–L1

in the sense of Corollary 2.4.

definition of the mean uΩ and median values
{
uΩ

}
of an L1 function u defined by:

uΩ :=

∫
Ω

u dx,

uΩ ∈ argmin
c∈R

∫
Ω

|u− c| dx.

Remark 2.7. Note that the median value is not necessarily unique. Moreover, if u ∈ L2(Ω)

then uΩ = argmin
c∈R

∫
Ω
|u− c|2 dx.

We have the following result:

Proposition 2.8. Let f ∈ L1(Ω) and
(
λ
(n)
1

)
n∈N,

(
λ
(n)
2

)
n∈N two sequences such that

λ
(n)
1 → 0 and λ

(n)
1

λ
(n)
2

→ 0, as n→ ∞. (2.16)

Then, denoting by (un)n∈N the sequence of the corresponding solutions of (2.5) we have that

un → fΩ weakly∗ in BV(Ω).

By this we mean that every subsequence of (un)n∈N has a further subsequence converging to
a median of f .

Proof. Let (un)n∈N ⊆ BV(Ω) be a sequence of the corresponding solutions for the parameters(
λ
(n)
1 , λ

(n)
2

)
. Notice that the sequence (un)n∈N is uniformly bounded in BV(Ω). Indeed the

bound on TV is obtained again from (2.11), while for the L1 bound, we first observe that:

− λ21
2λ2

|Ω|+ λ1∥f − u∥L1(Ω) ≤
∫
Ω

φ(f − u) dx, ∀u ∈ L1(Ω). (2.17)
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Using (2.17), we get

−
(
λ
(n)
1

)2
2λ

(n)
2

|Ω|+ λ
(n)
1 ∥f − un∥L1(Ω) ≤

∫
Ω

φ(f − un) dx ≤ λ
(n)
1 ∥f∥L1(Ω) ⇒

− λ
(n)
1

2λ
(n)
2

|Ω|+ ∥f − un∥L1(Ω) ≤ ∥f∥L1(Ω),

where the bound is obtained using (2.16). Thus every subsequence of (un)n∈N has a further
(not relabelled) subsequence converging to an element u∗ ∈ BV(Ω). We will show that u∗ is
a median of f . Notice first that since λ(n)1 → 0, then from (2.11) we get that |Dun|(Ω) → 0.
Thus, from the lower semicontinuity of total variation and the fact that Ω is connected we
get that u∗ is a constant. By thus setting u = c ∈ R and v = f − c along with (2.17) in

|Dun|(Ω) +
∫
Ω

φ(f − un) dx ≤ |Du|(Ω) + λ
(n)
1 ∥v∥L1(Ω) +

λ
(n)
2

2
∥f − u− v∥2L2(Ω),

we get

−
(
λ
(n)
1

)2
2λ

(n)
2

|Ω|+ λ
(n)
1 ∥f − un∥L1(Ω) ≤ λ

(n)
1 ∥f − c∥L1(Ω) ⇒

−λ
(n)
1

λ
(n)
2

|Ω|+ ∥f − un∥L1(Ω) ≤ ∥f − c∥L1(Ω) ⇒ (by taking limits)

∥f − u∗∥L1(Ω) ≤ ∥f − c∥L1(Ω).

Hence since u∗ is constant and c ∈ R was arbitrary, we have that u is a median of f .

Similarly, we have the following result:

Proposition 2.9. Let f ∈ L2(Ω) and
(
λ
(n)
1

)
n∈N,

(
λ
(n)
2

)
n∈N two sequences such that

λ
(n)
2 → 0 and λ

(n)
2

λ
(n)
1

→ 0, as n→ ∞.

Then for the corresponding solutions (un)n∈N of (2.5) we have that

un → fΩ weakly∗ in BV(Ω).

Proof. The proof follows the same steps as in Proposition 2.8. First, observe that the sequence
of solutions (un)n∈N is bounded in BV(Ω). Indeed, from (2.11) we have that |Dun|(Ω) → 0.
From (2.13) we further get that (vn)n∈N is bounded in L1 and from (2.12) we get that
(f − un − vn)n∈N is bounded in L1. Thus, from the triangle inequality we have that (un)n∈N
is bounded in L1. Hence, there exists a subsequence of (un)n∈N that converges to a function
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u∗ weakly∗ in BV(Ω) with u∗ being a constant. It remains to show that u∗ is the mean value
of f . As before, we have for an arbitrary c ∈ R

|Dun|(Ω) +
∫
Ω

φ(f − un) dx ≤ λ
(n)
2

2
∥f − c∥2L2(Ω) ⇒

1

2

∫
|f−un|<

λ
(n)
1

λ
(n)
2

|f − un|2dx ≤ 1

2
∥f − c∥2L2(Ω) ⇒ (using Fatou’s Lemma)

1

2
∥f − u∗∥2L2(Ω) ≤

1

2
∥f − c∥2L2(Ω).

Since u is a constant and c ∈ R was arbitrary the proof is complete.

The following proposition states that with the L1–L2 infimal convolution fidelity model
we can never expect exact recovery of the data. This is similar to the pure L2 model, see
also [19, Proposition 4.1].

Proposition 2.10. Let f ∈ L1(Ω) and u∗ to be a solution of the minimisation problem (2.5).
Then u∗ = f if and only if f is a constant.

Proof. One direction is straightforward. Suppose now that f is a solution of (2.5). Note that
in this case necessarily we must have f ∈ BV(Ω) ⊆ Ld∗(Ω), where d∗ = d/(d− 1), see [4]. It
follows that for every 0 < ϵ < 1, the function fϵ := ϵf is suboptimal. Thus we have

|Df |(Ω) ≤ ϵ|Df |(Ω) + Φλ1,λ2(u, ϵf) =⇒ 0 ≤ (ϵ− 1)|Df |(Ω) + Φλ1,λ2(u, ϵf).

We continue

0 ≤ (ϵ− 1)|Df |(Ω) + Φλ1,λ2(u, ϵf)

0 ≤ (ϵ− 1)|Df |(Ω) +
∫
|f−ϵf |≥λ1

λ2

λ1|f − ϵf | − λ21
2λ2

dx+

∫
|f−ϵf |<λ1

λ2

λ2
2
|f − ϵf |2 dx+ =⇒

0 ≥ |Df |(Ω)−
∫
|f |≥ λ1

λ2|1−ϵ|

λ1|f | dx+
∫
|f |≥ λ1

λ2|1−ϵ|

λ21
2λ2|1− ϵ|

dx− |1− ϵ|
∫
|f |< λ1

λ2|1−ϵ|

λ2
2
|f |2 dx.

(2.18)

Now working with each one of the first three terms in (2.18), using dominated convergence,
we have

lim
ϵ→1

∫
|f |≥ λ1

λ2|1−ϵ|

|f | dx = 0, (2.19)

lim
ϵ→1

∫
|f |≥ λ1

λ2|1−ϵ|

λ21
2λ2|1− ϵ|

dx =
λ1
2

lim
t→∞

∫
|f |≥t

t dx ≤ λ1
2

lim
t→∞

∫
|f |≥t

|f | dx = 0, (2.20)
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and finally

lim
ϵ→1

|1− ϵ|
∫
|f |< λ1

λ2|1−ϵ|

λ2
2
|f |2 dx =

λ2
2
lim
ϵ→1

|1− ϵ|
∫
|f |< λ1

λ2|1−ϵ|

|f |
d

d−1 |f |
d−2
d−1

≤ λ2
2

(
λ1
λ2

) d−2
d−1

lim
ϵ→1

|1− ϵ|
|1− ϵ|

d−2
d−1

∫
|f |< λ1

λ2|1−ϵ|

|f |
d

d−1 dx ≤ λ2
2

(
λ1
λ2

) d−2
d−1

∥f∥d∗Ld∗ (Ω) limϵ→1
|1− ϵ|

1
d−1 = 0.

(2.21)
By combining (2.19), (2.20), (2.21) with (2.18) we get that |Df |(Ω) = 0, and since Ω is
connected, f is a constant function. Note that the calculations above assumed that d > 1

but if d = 1 then f ∈ L∞(Ω) ⊆ L2(Ω) and the analogous calculation to (2.21) follows more
easily.

It is clear from all the analysis above that the TV–IC model, at least when f ∈ L∞(Ω),
can reproduce the TV–L2 solutions, but as far as the TV–L1 solutions are concerned, these
are only (guaranteed to be) recovered in the limit λ2 → ∞, see again Figure 3.

2.3. The one-homogeneous analogue

We conclude this section by briefly presenting an alternative form of (1.3), i.e., its one-
homogeneous analogue, by which the TV–L1 solutions can also be recovered for finite
parameters. This discussion is motivated by some analogous results in [11]. We define:

Φλ1,λ2

1−hom(u, f) := min
v∈L1(Ω)

λ1∥v∥L1(Ω) + λ2∥f − u− v∥L2(Ω),

which, via a straightforward computation gives

min

(
λ1,

λ2
2|Ω|1/2

)
∥f − u∥L1(Ω) ≤ min

v∈L1(Ω)
λ1∥v∥L1(Ω) +

λ2
2|Ω|1/2

∥f − u− v∥L1(Ω)

≤ min
v∈L1(Ω)

λ1∥v∥L1(Ω) +
λ2
2
∥f − u− v∥L2(Ω) ≤ λ1∥f − u∥L1(Ω).

Hence, it is clear that

Φλ1,λ2

1−hom(u, f) = λ1∥f − u∥L1(Ω), if λ1
λ2

≤ 1

2|Ω|1/2
,

Thus, under such choice the TV–L1 model can be recovered. We state here without any proof
the relationship between these two versions. Let us define the following sets for f ∈ L1(Ω):

SIC =
{
u∗ ∈ BV(Ω) : u∗ = argmin

u∈BV(Ω)

|Du|(Ω) + Φλ1,λ2(u, f), for some λ1, λ2 > 0
}
,

S1−hom
IC =

{
u∗ ∈ BV(Ω) : u∗ = argmin

u∈BV(Ω)

|Du|(Ω) + Φλ1,λ2

1−hom(u, f), for some λ1, λ2 > 0
}
,

SL1 =
{
u∗ ∈ BV(Ω) : u∗ = argmin

u∈BV(Ω)

|Du|(Ω) + λ1∥f − u∥L1(Ω), for some λ1 > 0
}
.
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Then one can show by using similar techniques as in [11] that

S1−hom
IC = SIC ∪ SL1 and that, in general, SL1 \ SIC ̸= ∅.

3. Exact solutions

In order to get more insights about the relationship of the TV–IC model with the pure
TV–L1 and TV–L2 models, we compute in this section some exact solutions for simple one
dimensional data functions f . In particular, we set here Ω = (−2L, 2L) for some L > 0, and
we consider as data f the following step function

f(x) =

{
0, if x ∈ (−2L,−L) ∪ (L, 2L),

h, if x ∈ [−L,L],
(3.1)

where h > 0. Using similar techniques as in [10, 11, 48, 51], we can easily show using primal-
dual optimality conditions, that a function u ∈ BV(Ω) is a solution of (2.5) if and only if
there exists a function v ∈ H1

0 (Ω) such that

v′ =

{
λ1

f−u
|f−u| , if |f − u| ≥ λ1

λ2
,

λ2(f − u), if |f − u| < λ1

λ2
,

(3.2)

v ∈ Sgn(Du), (3.3)

where

Sgn(Du) =

{
v ∈ L∞(Ω) ∩ L∞(Ω, Du) : ∥v∥∞ ≤ 1, v =

dDu

d|Du|
, |Du|–a.e.

}
.

Here dDu
d|Du| denotes the Radon–Nikodým density of Du with respect to |Du|. Compared to

the aforementioned references, the only difference here is the right-hand side of (3.2) which
is the subdifferential of Φλ1,λ2 evaluated at f −u. With the help of the optimality conditions
above, we are able to compute analytically all the solutions to the problem (2.5) for the data
(3.1), and for all combinations of the parameters λ1, λ2. Note that similarly to pure L1 and
L2 cases one can show that no new jump discontinuities are created for the solution u, which
will be constant in the areas where {f ̸= u}. Thus all the solutions will be either constants
or piecewise constants with jumps at x = −L and x = L which must also have the same
orientations with the jumps of f .

We first examine the case u = h
2
, i.e., the mean value of f . In such case we have

|f − u| = h
2

everywhere and thus if h
2
≤ λ1

λ2
then v′ = λ2(f − u) everywhere. In order for the

condition (3.2) to hold we must also have λ2 ≤ 2
hL

. Note that if h
2
≤ λ1

λ2
and λ2 <

2
hL

, then
the solution must be constant otherwise one can check that in every case the condition (3.3)
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would be violated. One can further show in this case that if u is a constant with h
2
< λ1

λ2
, the

only possibility is u = h
2
.

Suppose now that h
2
≥ λ1

λ2
and also λ1 < 1

L
. Observe that in this case, every constant

function u = c with λ1

λ2
≤ c ≤ h− λ1

λ2
satisfies (3.2)–(3.3). In that case we have |f − u| ≥ λ1

λ2

everywhere. Notice again that no other constant function is a solution. By contradiction,
that would mean that |f − u| > λ1

λ2
and |f − u| < λ1

λ2
on (−2L,L) ∪ (L, 2L) and (−L,L)

respectively (or vice versa). With the help of (3.2) and the fact that v ∈ H1
0 (Ω) one would

then arrive to a contradiction. Furthermore, one can check that discontinuous solutions
cannot occur in this case either.

We concentrate now on the case h
2
≥ λ1

λ2
and λ1 =

1
L

. Note that the constant functions
u = c with λ1

λ2
≤ c ≤ h − λ1

λ2
are solutions in this case as well. However, one can also verify

that the following family of discontinuous functions are also solutions:

u(x) =


c1, if x ∈ (−2L,−L),
h− d, if x ∈ [−L,L],
c2, if x ∈ (L, 2L),

λ1
λ2

≤ ci < h− d ≤ h− λ1
λ2
, i = 1, 2.

It can be checked similarly as before that no other solutions can occur.
Finally, we consider the case λ1 > 1

L
and λ2 ≥ 2

hL
. We claim that in that case the unique

solution is given by

u(x) =

{
1

Lλ2
, if x ∈ (−2L,−L) ∪ (L, 2L),

h− 1
Lλ2

, if x ∈ [−L,L].

One can similarly check that no other solution is possible. We summarise our findings in the
following proposition.

Proposition 3.1. Let Ω = (−2L, 2L) and f ∈ BV(Ω) being the jump function given by (3.1).
Then the solutions u to the TV–IC minimisation problem

min
u∈BV(Ω)

|Du|(Ω) + Φλ1,λ2(u, f),

are given by the following formulae:

(i) If h
2
< λ1

λ2
and λ2 ≤ 2

hL
, then the solution is unique and given by

u =
h

2
.

(ii) If h
2
≥ λ1

λ2
and λ1 < 1

L
, then there exist infinitely many constant solutions given by

u = c,
λ1
λ2

≤ c ≤ h− λ1
λ2
.
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λ1

λ2
0

2
hL

1
L

λ1 =
h
2λ2

Unique solution

λ1

λ2

λ1

λ2

λ1

λ2

λ1

λ2

Multiple solutions

Multiple solutions

1
Lλ2

1
Lλ2

Unique solution

Figure 4: Visualisation of all the possible solutions to the TV–IC problem (2.5) for data (3.1)
and for all the possible combinations of the parameters λ1 and λ2, see Proposition 3.1.

(iii) If h
2
≥ λ1

λ2
and λ1 = 1

L
, then there there exist infinitely many solutions given by

u(x) =


c1, if x ∈ (−2L,−L),
h− d, if x ∈ [−L,L],
c2, if x ∈ (L, 2L),

λ1
λ2

≤ ci ≤ h− d ≤ h− λ1
λ2
, i = 1, 2.

(iv) If λ2 > 2
hL

and λ1 > 1
L

, then the solution is unique and given by

u(x) =

{
1

Lλ2
, if x ∈ (−2L,−L) ∪ (L, 2L),

h− 1
Lλ2

, if x ∈ [−L,L].

A visualisation of these solutions is depicted in Figure 4. Observe that for large enough
ratio λ1

λ2
all the TV–L2 solutions are recovered as Proposition 2.6 predicts – compare also
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Figures 3 and 4. Moreover, observe that as λ1 and λ1

λ2
goes to zero, the solutions indeed

converge to a median of f , as shown in Proposition 2.8. Note however, that apart from some
medians, the solutions of the TV–L1 model are not recovered. More precisely, the ones that
perfectly fit the data in the whole domain or part of it, i.e., u = h, u = 0 and u = f cannot
be obtained here. This is also in accordance to Proposition 2.10.

4. Automatic selection of parameters

We describe now a bilevel optimisation strategy for the estimation of optimal parameters λ1
and λ2 in the TV–IC model (2.5) based on the use of training sets, see [13, 24, 26]. This
approach has been heuristically considered for the TV–IC model in [14, Section 7] with little
theoretical justification. To fill this gap, we prove in this section existence results for the
solution of the bilevel minimisation problem and for the corresponding adjoint problem, thus
making the derivation the optimality systemin [14] rigorous.

We point out that in [40, 41] an adaptive optimisation approach has been proposed for
the automatic selection of parameters when a linear combination of L1 and L2 data fidelities
is considered. However, differently to our setting, in that approach the noise level is assumed
to be known.

4.1. Bilevel optimisation

Learning approaches have become very popular over the recent years due to their ability of
combining data- and model-driven algorithms for the optimal design of imaging models. In
particular, bilevel optimisation techniques have been proposed by several different authors in
discrete [38, 39, 46, 56] and functional [13, 24, 25, 26, 34, 35] settings as a tool to estimate
the “best” variational image restoration model within a certain class by means of training
examples. Typically, such examples consist of images obtained in standard acquisition
settings, and thus corrupted by noise with equal (unknown) intensity, paired with their
corresponding versions ideally acquired in a very low-noise setting. In medical imaging, for
instance, such training set can be provided by means of real and/or simulated phantoms.
Note that in order to make the estimation robust, a large training set is often desirable; for
that, stochastic optimisation techniques and sampling approaches can be used to reduce the
computational costs, see, e.g., [15].

The general bilevel optimisation problem can be formulated as:

min
λ∈[0,∞)m

F (uλ) (4.1)

subject to:
uλ ∈ argmin

u∈X

{
J(u,λ) := |Du|(Ω) + Φλ(u, f)

}
, (4.2)
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where λ = (λ1, . . . , λm) ∈ [0,∞)m are the parameters to optimise and F ≥ 0 is an appropriate
quality measure which is minimised under the constraint that the function uλ is a solution
of the denoising model (4.2) in a suitable function space X.

In [13, 24] this approach is used to estimate the optimal parameters λ in the case when
single data models Φi, i = 1, . . . ,m are linearly combined, i.e., when

Φλ(u, f) =
m∑
i=1

λiΦi(u, f).

There, theoretical results showing existence of minima and the adjoint state for the problem
(4.1)–(4.2) are shown and Newton-type methods are proposed for its efficient numerical
solution. Similar results and algorithms are further studied in [25, 26] for the estimation of
optimal parameters of higher-order regularisers (e.g., TGV) combined with Gaussian fidelity.

In the following we set m = 2 and consider the problem of estimating the optimal
parameters λ1 and λ2 in (2.5).

General framework: The non-smooth TV–IC bilevel problem reads:

min
λ1,λ2 ≥0

F (uλ1,λ2)

subject to uλ1,λ2 ∈ argmin
u∈BV(Ω)

|Du|(Ω) + Φλ1,λ2(u, f),
(4.3)

where Φλ1,λ2 is the IC fidelity (1.3). We follow [13, 24, 25, 26] and introduce an appropriate
smoothing of the TV semi-norm combined with a further quadratic smoothing. This is crucial
for the following proofs and for the design of the gradient-based optimisation algorithms we
intend to use.

For ϵ≪ 1, we then consider the following regularised version of (4.3):

min
λ1,λ2≥0

F (uλ1,λ2)

subject to uλ1,λ2 ∈ argmin
u∈H1(Ω)

ϵ

2
∥u∥2H1(Ω) + ∥∇u∥γ,L1(Ω) + Φλ1,λ2

ϵ,γ (u, f).
(4.4)

Here, we denote by ∥∇u∥γ,L1(Ω) =
∫
Ω
|∇u|γ dx, with | · |γ being a smooth Huber-type

regularisation depending on a parameter γ > 0 whose C1-derivative reads:

hγ(z) :=


z
|z| if γ|z| − 1 ≥ 1

2γ
,

z
|z|(1−

γ
2
(1− γ|z|+ 1

2γ
)2) if γ|z| − 1 ∈ (− 1

2γ
, 1
2γ
),

γz if γ|z| − 1 ≤ − 1
2γ
.

(4.5)

Note that | · |γ has one degree higher regularity than the classical Huber function φ in (2.2).
This higher-order Huber-type smoothing has been previously used in [13, 26] for similar
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bilevel problems since it endows the problem (4.4) with further regularity, compare Theorem
4.6.

We then similarly regularise the IC fidelity term as:

Φλ1,λ2
ϵ,γ (u, f) := min

v∈L2(Ω)

{
Gλ1,λ2
ϵ,γ (v, u, f) :=

ϵ

2
∥v∥2L2(Ω) + λ1∥v∥γ,L1(Ω) +

λ2
2
∥f − u− v∥2L2(Ω)

}
,

(4.6)
where ∥v∥γ,L1(Ω) is defined analogously as above. For simplicity, from now on, we will assume
that f ∈ L2(Ω).

Inspired by [13, 26], we focus on two main choices of F . Namely, we consider the L2

cost corresponding to Peak Signal to Noise Ratio (PSNR) optimisation

FL2(uλ1,λ2) := ∥uλ1,λ2 − ũ∥2L2(Ω), for training data ũ ∈ L2(Ω), (4.7)

and the Huberised TV cost, which is related to quality measures that are more adjusted to
actual human perception, such as the Structural Similarity Index (SSIM):

FL1
γD

(uλ1,λ2) := ∥D(uλ1,λ2 − ũ)∥M,γ, for training data ũ ∈ BV(Ω). (4.8)

Here, ∥Du∥M,γ :=
∫
Ω
|∇u|γ dx + |Dsu|(Ω) so that the smooth Huber-type regularisation is

applied on the absolutely continuous part of |Du|. For the abstract formulation of (4.4) in
terms of a general F , we refer the reader to [26].

Remark 4.1. Note that if λ1 = 0 and/or λ2 = 0, then Φλ1,λ2(u, f) = 0 for every u ∈ L1(Ω).
In that case every constant function c is a minimiser of the lower level problem of (4.3).
Thus we trivially have infλ1,λ2≥0 F (uλ1,λ2) <∞ where F is taken to be either FL2 or FL1

γD
.

4.2. Well-posedness of the TV–IC bilevel problem

We now discuss the well-posedness of the bilevel problems (4.3) and (4.4). For this type of
problems, it is a common practice to impose an extra box constraint on the parameters λ1, λ2
in order to ensure existence of solutions (see [13]), although generalisations to unbounded
intervals are also possible [26]. The following proposition says that for problem (4.3) (i.e.,
with no upper bound constraints on the parameter domain) existence of solutions may fail.

Proposition 4.2. There exist data f ∈ L2(Ω) and training data ũ ∈ L2(Ω) such that the
non-smooth bilevel problem (4.3) does not have a solution for the cost function FL2.

Proof. Take f to be any non-constant function in BV(Ω) ∩ L2(Ω) with the property that
there exists λ∗ such that

f = argmin
u∈BV(Ω)

|Du|(Ω) + λ1∥f − u∥L1(Ω)
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for all λ1 ≥ λ∗. We note that there are a plethora of such functions, in particular this
holds for any one-dimensional function in BV(Ω) ∩ L∞(Ω), see also [18]. Now set ũ = f .
Then from Proposition 2.10, we have that FL2(uλ1,λ2) > 0 for every λ1, λ2 ≥ 0. Now fix
λ1 ≥ λ∗ and let λ(n)2 → ∞ as n → ∞. Then according to Corollary 2.4 we have that
u
λ1,λ

(n)
2

→ f weakly∗ in BV(Ω) as n → ∞. The function f can in fact be chosen such that
this convergence is even uniform, see for instance the example in Proposition 3.1. Then it is
clear that FL2(u

λ1,λ
(n)
2
) → 0, which means that

inf
λ1,λ2≥0

FL2(uλ1,λ2) = 0.

Since F (uλ1,λ2) > 0 for every λ1, λ2 ≥ 0, we have that for such choices of f and ũ, the bilevel
problem (4.3) does not have solutions.

Similarly, we can use the example of Proposition 3.1 to show that the bilevel problem
(4.3) with FL1

γD
cost may not have a solution either, in the case when λ1 and λ2 are

unbounded.
On the other hand, in the following Proposition we show that the existence of solutions

of (4.3) is always guaranteed whenever box constraints on λ1, λ2 are considered.

Proposition 4.3 (Well-posedness of (4.3) with box constraints). The bilevel problem (4.3)
with the extra box constraints 0 ≤ λi ≤ Li, Li > 0 for i = 1, 2 admits an optimal solution
(λ̂1, λ̂2) for both choices of cost functionals (4.7)–(4.8).

Proof. Let (λ(n)1 , λ
(n)
2 ) ∈ C := {(λ1, λ2) : 0 ≤ λ1 ≤ L1, 0 ≤ λ2 ≤ L2} be a minimising sequence

for (4.3). Let us denote by un := u
λ
(n)
1 ,λ

(n)
2

the corresponding solution to the lower level
problem corresponding to the parameter pair (λ

(n)
1 , λ

(n)
2 ).

First suppose that after some index n0 at least one of the terms (λ
(n)
1 )n∈N and (λ

(n)
2 )n∈N

is zero. This means that un = cn are constants for n ≥ n0. Now if F = FL2 , due to the
coercivity of this functional we have that (cn)n∈N is bounded, so (un)n∈N is bounded in BV(Ω).
If F = FL1

γ
then it is obvious that F (un) = ∥Dũ∥M,γ for n ≥ 0. Thus in this case every

constant function trivially solves the bilevel problem (4.3).
We can then assume that λ(n)1 , λ

(n)
2 > 0 for every n ∈ N. We claim again that the

sequence un is bounded in BV(Ω). Indeed, we have that for every n ∈ N we can bound the
TV term as

|Dun|(Ω) ≤ |Dun|(Ω) + Φλ
(n)
1 ,λ

(n)
2 (un, f) ≤ Φλ

(n)
1 ,λ

(n)
2 (0, f) ≤ L2

2
∥f∥2L2(Ω).

To bound un in L1(Ω), we separate the two cases depending on whether the sequence λ
(n)
1

λ
(n)
2

is
bounded or not.
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If this sequence is bounded by some K > 0, we observe that un is also a miminiser of

min
u∈BV(Ω)

Φ
1,
λ
(n)
2

λ
(n)
1 (u, f) +

1

λ
(n)
1

|Du|(Ω),

which implies that

Φ
1,
λ
(n)
2

λ
(n)
1 (un, f) ≤ Φ

1,
λ
(n)
2

λ
(n)
1 (0, f).

Then we have the following successive bounds∫
Ω

|f − un| dx =

∫
|f−un|<

λ
(n)
1

λ
(n)
2

|f − un| dx+
∫
|f−un|≥

λ
(n)
1

λ
(n)
2

λ
(n)
1

2λ
(n)
2

dx

+

∫
|f−un|≥

λ
(n)
1

λ
(n)
2

|f − un| −
λ
(n)
1

2λ
(n)
2

dx ≤ K|Ω|+ 1

2

∫
Ω

|f − un| dx+ Φ
1,
λ
(n)
2

λ
(n)
1 (un, f),

whence we get:

1

2

∫
Ω

|f − un| dx ≤ K|Ω|+ Φ
1,
λ
(n)
2

λ
(n)
1 (0, f)

≤ K|Ω|+
∫
|f |≥

λ
(n)
1

λ
(n)
2

|f | dx+ λ
(n)
2

2λ
(n)
1

∫
|f |<

λ
(n)
1

λ
(n)
2

|f |2 dx ≤ K|Ω|+
∫
Ω

|f | dx+ K

2
|Ω|.

Suppose now that the sequence λ
(n)
1

λ
(n)
2

is unbounded. This means that there exists a (non-

relabelled) subsequence λ
(n)
2

λ
(n)
1

→ 0. Since λ(n)1 is bounded, this further implies that λ(n)2 → 0.
Then from Proposition 2.9 we get that un → fΩ weakly∗ in BV(Ω) and that, in particular,
un is bounded in L1(Ω). So in both cases we have that un is bounded in BV(Ω).

Having this combined with the boundedness of the sequence (λ
(n)
1 , λ

(n)
2 )n∈N implies

that we can then extract a further non-relabelled subsequence (λ
(n)
1 , λ

(n)
2 , un)n∈N converging

weakly∗ in R×R×BV(Ω) to a limit point (λ̂1, λ̂2, û). In particular, this entails that un → û

strongly in L1(Ω). Similarly as in the proof of Proposition 2.3 one can now show that
the sequence J(·, λ(n)1 , λ

(n)
2 ) Γ-converges to J(·, λ̂1, λ̂2), with respect to the strong topology in

L1(Ω), which means that û is a minimiser of the lower level problem with parameters (λ̂1, λ̂2).
Now, using [21, Corollary 7.20] we finally have:

Φλ̂1,λ̂2(û, f) + |Dû|(Ω) = lim
n→∞

Φλ
(n)
1 ,λ

(n)
2 (un, f) + |Dun|(Ω),

which completes the proof.
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Remark 4.4. Similarly, one can prove the existence of solutions to the regularised bilevel
problem (4.4). Note that in [25] similar techniques are used to prove analogous results
for general regularisers and data fidelities. There, the authors proved also the outer-
semicontinuity property of the solution map S which guarantees that the minimisers of the
regularised problem converge towards the minimisers of the one where ϵ = 0.

The quadratic H1 and L2 regularisations in (4.4) and (4.6) are required to ensure the
differentiability of the solution map, as we are going to highlight in the following. Note that
in this section we make use of the formulation (4.4) where the two variables uλ1,λ2 , vλ1,λ2 are
treated jointly so that the lower-level problem actually reads:

(uλ1,λ2 , vλ1,λ2) ∈ argmin
u∈H1(Ω)
v∈L2(Ω)

ϵ

2

(
∥u∥2H1(Ω) + ∥v∥2L2(Ω)

)
+ ∥∇u∥γ,L1(Ω) (4.9)

+ λ1∥v∥γ,L1(Ω) +
λ2
2
∥f − u− v∥2L2(Ω).

An alternative analysis could exploit the characterisation of the IC data fidelity term given
by Proposition 2.1 and consider the minimisation over u only. In such case, we believe that
only an H1-regularisation on u would be enough for the following proofs. Here, however, we
stick with the joint approach to compare our results with the ones derived formally in [14].

Note that whenever uλ1,λ2 is given, one can compute the corresponding vλ1,λ2 by simply
solving the optimisation problem (4.6). In particular, the following proposition makes explicit
a property of vλ1,λ2 which will be needed in the following. We refer the reader to [14, Remark
2.1] for a similar characterisation in the case non-regularised case.

Proposition 4.5. Let u, f in L2(Ω), 0 ≤ λi ≤ Li with Li > 0, i = 1, 2 and ϵ > 0. Let vλ1,λ2

the minimiser of the functional Gλ1,λ2
ϵ,γ (·, u, f) defined in (4.6). There holds:

vλ1,λ2 = vλ1,λ2(u) = argmin
v∈L2(Ω)

Gλ1,λ2
ϵ,γ (v, u, f) = prox λ1

ϵ+λ2
∥·∥γ,L1(Ω)

(
λ2(f − u)

ϵ+ λ2

)
, (4.10)

where for any z ∈ L2(Ω), proxτg(z) denotes the proximal-mapping operator in L2(Ω) of the
function g with parameter τ . In particular, vλ1,λ2 : z 7→ prox λ1

ϵ+λ2
∥·∥γ,L1(Ω)

(z) is a firmly
non-expansive operator and it is therefore 1-Lipschitz continuous, i.e.:

∥vλ1,λ2(u1)− vλ1,λ2(u2)∥L2(Ω) ≤ ∥u1 − u2∥L2(Ω), for all u1, u2 ∈ L2(Ω).
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Proof. Straightforward calculations give:

vλ1,λ2 = argmin
v∈L2(Ω)

ϵ

2
∥v∥2L2(Ω) + λ1∥v∥γ,L1(Ω) +

λ2
2
∥f − u− v∥2L2(Ω)

= argmin
v∈L2(Ω)

∥v∥γ,L1(Ω) +
ϵ+ λ2
2λ1

∥v∥2L2(Ω) +
1

2λ1

λ2

(
1 + ϵ

λ2

)∥f − u∥2L2(Ω) −
λ2
λ1

∫
Ω

(f − u)v dx

= argmin
v∈L2(Ω)

∥v∥γ,L1(Ω) +
1

2 λ1

ϵ+λ2

∥∥∥∥λ2(f − u)

ϵ+ λ2
− v

∥∥∥∥2

L2(Ω)

= prox λ1
ϵ+λ2

∥·∥γ,L1(Ω)

(
λ2(f − u)

ϵ+ λ2

)
.

The firm non-expansiveness property (4.10) follows then directly from [6, Proposition
12.27].

4.3. Optimality system

We now study in more detail the bilevel problem (4.4) with (4.9) as lower level problem and
prove the existence of Lagrange multipliers by deriving the optimality system characterising
its stationary points. As a by product, we find an easy formula to compute the gradient of the
cost functional in terms of its adjoint state, which simplifies the design of the gradient-based
algorithm which we are going to use to solve (4.4) in an efficient way.

We start defining the Hilbert space H := H1(Ω)×L2(Ω) endowed with the scalar product
(z, w)H := (z1, w1)H1(Ω) + (z2, w2)L2(Ω) for all z, w ∈ H. We further denote by S : R2 → H
the solution map S : (λ1, λ2) 7→ (uλ1,λ2 , vλ1,λ2) which assigns to the optimal parameters
(λ1, λ2) the corresponding solution pair of (4.9). To avoid heavy notations, we will omit
the explicit dependence of the pair (u, v) on the parameters (λ1, λ2) unless explicitly needed.
Note that we take the whole space R2 as differentiability set although from an imaging point
of view the use of negative parameters clearly does not make sense. However, the following
differentiability result holds in such case as well.

Recalling the definition of hγ in (4.5), we have that in correspondence with an optimal
pair y := (u, v) ∈ H, we have that the following variational equality holds true for all test
functions Ψ := (ψ1, ψ2) ∈ H:

ϵ (y,Ψ)H +

∫
Ω

hγ(∇u)∇ψ1 dx + λ1

∫
Ω

hγ(v)ψ2 dx + λ2

∫
Ω

(u + v − f)(ψ1 + ψ2) dx = 0.

(4.11)

We now prove the main differentiability result.

Theorem 4.6 (Fréchet differentiability of the solution map). The solution operator S : R2 →
H which assigns to each parameter pair (λ1, λ2) the element y := (u, v) = S(λ1, λ2), solution
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of the TV–IC denoising problem (4.4)–(4.6) is Fréchet differentiable. In particular, for any
θ = (θ1, θ2) ∈ R2 its Fréchet derivative is the unique solution z := S ′(λ1, λ2)[θ1, θ2] ∈ H of
the following linearised equation:

ϵ (z,Ψ)H +

∫
Ω

h′γ(∇u)∇z1∇ψ1 dx+ λ1

∫
Ω

h′γ(v)z2ψ2 dx+ θ1

∫
Ω

hγ(v)ψ2 dx

+ λ2

∫
Ω

(z1 + z2)(ψ1 + ψ2) dx+ θ2

∫
Ω

(u+ v − f)(ψ1 + ψ2) dx = 0, (4.12)

for all Ψ = (ψ1, ψ2) ∈ H.

Proof. Thanks to the ellipticity of the scalar product in H and the monotonicity of hγ,
existence and uniqueness of z of (4.12) are guaranteed by Lax-Milgram theorem.

Now, we want to show that z is the Fréchet derivative of S. To do that, given
θ = (θ1, θ2) ∈ R2 let us define y+ = (u+, v+) := S(λ1 + θ1, λ2 + θ2). We aim to show
that ξ = (ξ1, ξ2) := y+ − y − z ∈ H satisfies ∥ξ∥H = o(|θ|).

Writing (4.11) for y and y+, and (4.12) for z and combining them together, we get that
for every Ψ ∈ H there holds:

ϵ (ξ,Ψ)H +

∫
Ω

(
hγ(∇u+)− hγ(∇u)

)
∇ψ1 dx−

∫
Ω

h′γ(∇u)∇z1∇ψ1 dx

+ λ1

∫
Ω

(
hγ(v

+)− hγ(v)
)
ψ2 dx+ θ1

∫
Ω

(
hγ(v

+)− hγ(v)
)
ψ2 dx− λ1

∫
Ω

h′γ(v)z2ψ2 dx

+ λ2

∫
Ω

(ξ1 + ξ2)(ψ1 + ψ2) dx+ θ2

∫
Ω

(
(u+ − u) + (v+ − v)

)
(ψ1 + ψ2) dx = 0.

We now add and subtract the terms:∫
Ω

h′γ(∇u)
(
∇(u+ − u)

)
∇ψ1 dx, and λ1

∫
Ω

h′γ(v)
(
v+ − v

)
ψ2 dx,

thus getting:

ϵ (ξ,Ψ)H +

∫
Ω

h′γ(∇u)∇ξ1∇ψ1 dx+ λ1

∫
Ω

h′γ(v)ξ2ψ2 dx+ λ2

∫
Ω

(ξ1 + ξ2)(ψ1 + ψ2) dx

= −
∫
Ω

(
hγ(∇u+)− hγ(∇u)− h′γ(∇u)(∇(u+ − u))

)
∇ψ1 dx

− λ1

∫
Ω

(
hγ(v

+)− hγ(v)− h′γ(v)(v
+ − v)

)
∇ψ2 dx− θ1

∫
Ω

(
hγ(v

+)− hγ(v)
)
ψ2 dx

− θ2

∫
Ω

(
(u+ − u) + (v+ − v)

)
(ψ1 + ψ2) dx, for all Ψ ∈ H.
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We now choose Ψ = ξ. Under this choice, by monotonicity of h′γ we have that the last three
terms on the left-hand side become non-negative. We further deduce:

∥ξ∥H ≤ C
(
∥hγ(∇u+)− hγ(∇u)− h′γ(∇u)(∇(u+ − u))∥L2(Ω)

+ |λ1| ∥hγ(v+)− hγ(v)− h′γ(v)(v
+ − v)∥L2(Ω) + |θ1| ∥hγ(v+)− hγ(v)∥L2(Ω)

+ |θ2| ∥u+ − u∥L2(Ω) + |θ2| ∥v+ − v∥L2(Ω)

)
.

where C is a generic positive and finite constant which may change from line to line. By the
differentiability and Lipschitz continuity of hγ and h′γ, we have:

∥ξ∥H ≤ C
(
o
(
∥∇u+ −∇u∥L2(Ω)

)
+ |λ1| o

(
∥v+ − v∥L2(Ω)

)
(4.13)

+ |θ2| ∥u+ − u∥L2(Ω) + (|θ1|+ |θ2|) ∥v+ − v∥L2(Ω)

)
.

We now focus on the terms depending on the difference between v+ = vλ1+θ1,λ2+θ2(u
+) and

v = vλ1,λ2(u). By triangle inequality we have:

∥v+ − v∥L2(Ω) ≤ ∥vλ1+θ1,λ2+θ2(u
+)− vλ1+θ1,λ2+θ2(u)∥L2(Ω) + ∥vλ1+θ1,λ2+θ2(u)− vλ1,λ2(u)∥L2(Ω)

≤ ∥u+ − u∥L2(Ω) + |θ|,

where the last inequality follows from Proposition 4.5 and from the continuity property of
the proximal mapping with respect to its parameter which can be easily checked in our case
recalling that |hγ(·)| ≤ 1. We then deduce in (4.13) that:

∥ξ∥H ≤ C
(
o(|θ|) + o(∥u+ − u∥H1(Ω))

)
(4.14)

Thus, to conclude it only remains to show that o(∥u+−u∥H1(Ω)) = o(|θ|). To do that, we use
standard Sobolev embeddings and the regularity result of Gröger for second-order systems
[29, Theorem 1] and get that for p > 2:

∥u+ − u∥H1(Ω) ≤ ∥u+ − u∥W 1,p(Ω) ≤ C|θ|
(
∥div(hγ(∇u))∥W−1,p(Ω) + ∥hγ(∇u)∥W−1,p(Ω)

)
≤ C|θ|∥hγ(∇u)∥L∞(Ω) ≤ C|θ|,

since |hγ(·)| ≤ 1. Combining with (4.14) this finishes the proof.

Remark 4.7. The regularity result by Gröger is a classical argument for the proof of Fréchet
differentiability in similar bilevel problems (see, e.g., [13]). Note, however, that the original
result in [29] was proved for C2-regular domains, while its extension to convex Lipschitz
domains (such as image domains) has been proved by Dauge in [22].

We now prove the existence and uniqueness of the adjoint state of the problem (4.4).
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Theorem 4.8 (Adjoint equation). Let (u, v) ∈ H. There exists a unique solution Π :=

(p1, p2) ∈ H to the adjoint PDE:

ϵ(Π,W )H +

∫
Ω

h′γ(∇u)∇w1∇p1 dx+ λ1

∫
Ω

h′γ(v)w2p2 dx

+ λ2

∫
Ω

(p1 + p2)w1 dx+ λ2

∫
Ω

(p1 + p2)w2 dx = −
∫
Ω

F ′(u)w1 dx, (4.15)

for any W := (w1, w2) ∈ H.

Proof. For w ∈ H, let us consider the following bilinear form on H×H:

a(Π,W ) := ϵ(Π,W )H +

∫
Ω

h′γ(∇u)∇w1∇p1 dx

+ λ1

∫
Ω

h′γ(v)w2p2 dx+ λ2

∫
Ω

(p1 + p2)w1 dx+ λ2

∫
Ω

(p1 + p2)w2 dx.

The form a(·, ·) is trivially symmetric and coercive, since by taking W = Π, we get:

a(Π,Π) = ϵ∥Π∥2H+

∫
Ω

h′γ(∇u)∇p1∇p1+λ1
∫
Ω

h′γ(v)p2p2 dx+λ

∫
Ω

(p1+p2)
2 dx ≥ ϵ∥Π∥2H.

by monotonicity of h′γ. By Lax-Milgram theorem, we infer that there exists a unique solution
of (4.15).

Note that by taking w2 = 0 in (4.15), we get the optimality condition for p1, i.e.:

ϵ(p1, w1)H1(Ω) +

∫
Ω

h′γ(∇u)∇w1∇p1 dx+ λ2

∫
Ω

(p1 + p2)w1 dx = −
∫
Ω

F ′(u)w1 dx,

for any w1 ∈ H1(Ω). Similarly, for w1 = 0, we get the optimality condition for p2:

ϵ

∫
Ω

w2p2 dx+ λ1

∫
Ω

h′γ(v)w2p2 dx+ λ2

∫
Ω

(p1 + p2)w2 dx = 0,

for any w2 ∈ L2(Ω).

Finally, we now combine the results above to derive the optimality system of the bilevel
problem (4.4). We recall that by y = (u, v) ∈ H we denote the solution pair.

Theorem 4.9 (Optimality system). Let (λ̄1, λ̄2) ∈ R+ × R+ an optimal solution of the
problem (4.4). Then, there exists a Lagrange multiplier Π := (p1, p2) ∈ H and µ1, µ2 ∈ R+
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such that the following system holds:

ϵ (y,Ψ)H +

∫
Ω

hγ(∇u)∇ψ1 dx+ λ1

∫
Ω

hγ(v)ψ2 dx

+ λ2

∫
Ω

(u+ v − f)(ψ1 + ψ2) dx = 0, for all Ψ = (ψ1, ψ2) ∈ H,

ϵ(Π,W )H +

∫
Ω

h′γ(∇u)∇w1∇p1 dx+ λ1

∫
Ω

h′γ(v)w2p2 dx (4.16)

+ λ2

∫
Ω

(p1 + p2)(w1 + w2) dx = −
∫
Ω

F ′(u)w1 dx, for all W = (w1, w2) ∈ H,

µ1 :=

∫
Ω

h′γ(v)p2 dx, µ2 :=

∫
Ω

(f − v − u)(p1 + p2) dx,

µ1 ≥ 0, µ2 ≥ 0, µ1 · λ̄1 = µ2 · λ̄2 = 0.

Proof. We can write the bilevel problem (4.4) in a reduced form as:

min
λ1,λ2≥0

F(λ1, λ2) := F (uλ1,λ2).

Using [57, Theorem 3.1], we deduce the existence of multipliers µ1, µ2 ∈ R+ such that:

µ1 = ∇λ1F(λ̄1, λ̄2),

µ2 = ∇λ2F(λ̄1, λ̄2),

µ1 ≥ 0, µ2 ≥ 0, µ1 · λ̄1 = µ2 · λ̄2 = 0.

Computing the gradient of F by using the chain rule we get:

∇F(λ1, λ2)[θ1, θ2] =
(
F ′(uλ1,λ2),S ′(λ1, λ2)[θ1, θ2]

)
L2(Ω)

=

∫
Ω

F ′(uλ1,λ2)z dx

where z ∈ H is the linearised state provided by Theorem 4.6. Theorem 4.8 ensures that there
exist a Lagrange multiplier Π := (p1, p2) satisfying the adjoint equation (4.15), which entails:∫

Ω

F ′(uλ1,λ2)z dx =− ϵ(Π, z)H −
∫
Ω

h′γ(∇u)∇z1∇p1 dx

− λ1

∫
Ω

h′γ(v)z2p2 dx− λ2

∫
Ω

(p1 + p2)(z1 + z2) dx

= θ1

∫
Ω

hγ(v)p2 dx+ θ2

∫
Ω

(u+ v − f)(p1 + p2) dx,

which completes the proof.

Remark 4.10. Theorem 4.9 provides also the following handy formula for the computation
of the gradient of the bilevel problem (4.4) with data fidelity (4.6) in a reduced form:

∇F(λ1, λ2)[θ1, θ2] = θ1

∫
Ω

hγ(v)p2 dx+ θ2

∫
Ω

(u+ v − f)(p1 + p2) dx. (4.17)
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Remark 4.11. Compared to the optimality system derived in [14, Section 7] via Lagrangian
formalism, we note that the optimality system (4.16) presents an additional quadratic ϵ-
regularisation on v. This is needed in the proof of Theorem 4.6 to get a uniform, finite
estimate for ξ2 not depending on λ2 which may be zero.

5. Numerical experiments

In this section we report some numerical results on the computation of the optimal parameters
(λ̄1, λ̄2) of the TV–IC model by means of the bilevel optimisation strategy described in the
previous section. For given training images with a mixture of Gaussian and Salt & Pepper
noise with various intensities, we describe in Algorithm 1 the main steps to compute (λ̄1, λ̄2)

by solving the optimality system (4.16) via a second-order BFGS optimisation approach. A
general review of second-order numerical methods for PDE-constrained optimisation models
can be found in the book [23], while more details on the numerical realisation of similar
bilevel models can be found in [13, Section 8.3] and in [26, Section 4.1].

In the following numerical computations:
- We consider test images of size N × N ≡ 256 × 256 pixels. The differential operators

are discretised using finite difference schemes with mesh step size h = 1/N . Standard
forward/backward differences are used for the discretisation of the divergence/gradient
operator, respectively.

- For illustrative purposes, we report the results obtained using a training set consisting of
one training pair (ũ, f̃) only. We recall that f̃ represents the noisy version of ũ corrupted
by a mixture of Gaussian and Salt & Pepper noise of various intensities which we will
specify in each case. The efficient extension to multiple constraints can be done similarly
as in [13, 15].

- The lower-level regularised TV–IC problem (4.4) is solved by means of the SemiSmooth
Newton (SSN) algorithm described in [14] with a warm start. The regularisation
parameters are chosen as ϵ = 10−10 and γ = 103. The algorithm is stopped if either
the difference between two consecutive iterates is below tol = 10−6 or if the maximum
number of iterations maxiter = 35 is reached.

- For the outer BFGS iterations, an Armijo line-search with parameter η = 10−4 is
employed together with a curvature verification. The Armijo rule:

F(λk + αkdk)−F(λk) ≤ ηαk∇F(λk)
⊤dk

is checked at any iteration k ≥ 2 Here λk = (λ1k, λ
k
2) stands for the parameter pair

updated along the iterations, dk for the quasi-Newton descent direction and αk for
the line step. The expression of ∇F is given in Remark 4.10. The outer algorithm is
stopped when the maximum between the norm of the gradient of the cost functional
and the difference of two subsequent iterates is smaller than tol1 = 10−6.
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- The adjoint equation is solved by means of standard sparse linear solvers.
- Our validation images are taken from the public domain.

Algorithm 1 Bilevel optimisation algorithm for computing optimal λ1 and λ2 in (4.4)
Input: Training pair (ũ, f̃). Regularisation parameters: γ ≫ 1, ϵ≪ 1.
Output: Optimal parameters λ̄1 and λ̄2.
Initialise: λ01, λ02, n = 1.
while not converging do
SSN algorithm to compute (un, vn) by solving (4.11) with parameters (λ

(n)
1 , λ

(n)
2 );

compute adjoint states (pn1 , p
n
2 );

compute F ′(un) using (4.17);
BFGS update to compute new (λn+1

1 , λn+1
2 );

Armijo line-search with parameter η ≪ 1;
n = n+ 1;
end while

In Figure 5 we report a numerical experiment confirming the effectiveness of the bilevel
optimisation approach on images corrupted by a mixture of Gaussian and Salt & Pepper
noise with Gaussian variance σ2 = 0.01 and percentage of missing pixels d = 10%. We report
the result obtained with respect to both the L2 cost functional (4.7) and the Huberised L1

gradient cost (4.8). As observed in [26], we remark that minimising with respect to the L2

cost is indeed equivalent to PSNR optimisation, while the optimisation with respect to the
Huberised L1 gradient cost produces better visual results which is similar to optimising the
SSIM.

In order to validate numerically the theoretical insights given by the analysis performed
in Section 2, we report in the following Figure 6 a plot of the optimal parameters (λ̄1, λ̄2)

computed by solving the bilevel system (4.16) with L2 cost (4.7) and in correspondence of a
training pair (ũ, f̃θ) where the noisy image is corrupted by a mixture of Gaussian and Salt
& Pepper noise with varying intensity. Namely, for θ ∈ [0, 1], we corrupt the training image
ũ in 7a with Gaussian noise with distribution N (0, θσ2), σ2 = 0.005 and Salt & Pepper noise
with a percentage of corrupted pixels equal to d = (1 − θ)10%. Consequently, the noisy
image fθ is corrupted by pure impulsive noise for θ = 0 (Figure 7b), by pure Gaussian
noise for θ = 1 (Figure 7f) and by a mixture of the two for θ ∈ (0, 1) (Figures 7c-7e). As
suggested by the theory (see, in particular, Proposition 2.3 and Corollary 2.4), we observe
that when θ = 0 the bilevel strategy selects a large optimal parameter λ̄2, enforcing a TV–L1

denoising model which is well known to be optimal for this type of noise (see, e.g., [28, 44]).
Furthermore, by Corollary 2.4 we also have that the lower-level solution of the mixed noise
problem approximates (in the sense of Γ-convergence) a solution of the corresponding TV–L1
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(a) ũ (b) f̃ (c) uλ̄1,λ̄2
, FL2 cost. (d) uλ̄1,λ̄2

, FL1
γD

cost.

Figure 5: Optimal TV–IC denoising results for initial guess (λ01, λ
0
2) = (1, 10) w.r.t. FL2 and

FL1
γD

costs (4.7)–(4.8). Noisy image corrupted with Gaussian noise with variance σ2 = 0.01

and percentage of missing pixels d = 10%. 5b Noisy image f̃ : PSNR=14.40 dB, SSIM=0.17.
5c Optimal uλ̄1,λ̄2

w.r.t. FL2 cost: PSNR=28.35 dB, SSIM=0.81. 5d Optimal uλ̄1,λ̄2
w.r.t.

FL1
γD

cost: PSNR=27.91 dB, SSIM=0.83.

model. It is then interesting to notice that in the case θ = 1 the bilevel optimisation strategy
does not enforce a TV–L2 model (i.e., a large λ̄1), but rather a combination of TV–L1 and
TV–L2. This might be an indication that in practice the TV–L1 model works well also in the
case of pure Gaussian noise removal. This is reflected in our experiment where the estimated
optimal data model turns out to be indeed a combination of the two discrepancies. Note
that the two parameters λ1 and λ2 scale differently, with λ̄1 only slightly varying across the
different simulations.

We report in Table 2 the numerical values of (λ̄1, λ̄2) and the corresponding PSNR values
of the noisy images f̃θ and of the optimal reconstructions uλ̄1,λ̄2

.

θ PSNR f̃θ λ̄1 λ̄2 PSNR uλ̄1,λ̄2

0 15.41 dB 1.95 123.39 29.71 dB
0.25 16.19 dB 2.15 61.04 24.66 dB
0.5 17.49 dB 2.31 39.94 25.35 dB
0.75 19.28 dB 2.51 45.90 24.01 dB

1 22.74 dB 2.47 57.35 24.25 dB

Table 2

6. Conclusions and outlook

In this paper we have presented a fine analysis of the TV–IC denoising model originally
proposed in [14] for mixed Gaussian and Salt & Pepper noise removal. Our study started
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Figure 6: Optimal parameters (λ̄1, λ̄2) computed by solving the bilevel system (4.16) with
L2 cost and training pair (ũ, f̃θ) depending on a parameter θ ∈ [0, 1] which controls the
amount of Gaussian and Salt & Pepper noise in the data, see Figure 7. For θ = 0 only
Salt & Pepper noise is present and the model computes optimal parameters enforcing TV-L1

denoising model. For 0 < θ < 1 the data discrepancies are weighted by smaller parameters
λ̄1 and λ̄2. For each θ the bilevel Algorithm 1 is initialised with (λ01, λ

0
2) = (1, 1).

with a characterisation of the IC data-discrepancy as a Huber-regularised L1 discrepancy.
We then studied in detail the asymptotic behaviour of the solutions of the TV–IC model
using Γ-convergence arguments, showing that the solutions of the single TV–L1 and TV–L2

denoising models can be retrieved in the limit as the parameters tend to infinity. We gained
more insights on the model by calculating some exact solutions for simple one-dimensional
data functions. Using these theoretical results we then formulated and rigorously analysed a
bilevel optimisation approach in function spaces for the estimation of the optimal parameters
of the model. With the use of a counterexample motivated by our theoretical work, we showed
that box constraints on the parameters are indeed necessary to obtain existence.

In the spirit of [13, 26], after a suitable regularisation of the non-smooth problem, we
then proved the differentiability of the solution map via standard arguments as well as the
existence of the adjoint states by which we can derive the corresponding optimality system
in a compact form. Thanks to the handy characterisation of the gradient of the bilevel cost
functional in terms of its adjoint states, efficient numerical schemes can be easily implemented.
In particular, in Section 5 we considered the second-order BFGS Algorithm 1 to numerically
compute the optimal parameters of the TV–IC model for noise mixtures with different noise
levels. The numerical results show good agreement with the analytical study of the first
sections, making this strategy appealing for blind image denoising applications, where the
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(a) ũ (b) f̃θ, θ = 0 (S & P noise). (c) f̃θ, θ = 0.25.

(d) f̃θ, θ = 0.5. (e) f̃θ, θ = 0.75. (f) f̃θ, θ = 1 (Gaussian noise).

Figure 7: Training images used for the computation of the optimal parameters (λ̄1, λ̄2) whose
values are reported in Figure 6; The noise-free image ũ is corrupted with a mixture of Gaussian
and Salt & Pepper noise of different intensities, ranging from pure impulsive noise when θ = 0

to pure Gaussian when θ = 1.

intensity of each noise component is unknown.
Further research could address the validation of the TV–IC model over a set of images

in order to estimate the preferred noise model with respect to the denoising application at
hand (i.e., the noise intensity, the structure of the image etc.), similarly as done in [26]. The
IC discrepancy could further be combined with higher-order regularisers (such as TGV [9])
for more visually pleasing reconstructions. Finally, a similar study could be done for more
general noise mixtures such as Gaussian & Poisson noise, for which the IC discrepancy has
been shown in [14] to be a statistically consistent model.
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