Ramsey-type graph coloring and diagonal non-computability - Archive ouverte HAL
Article Dans Une Revue Archive for Mathematical Logic Année : 2015

Ramsey-type graph coloring and diagonal non-computability

Résumé

A function is diagonally non-computable (d.n.c.) if it diagonalizes against the universal partial computable function. D.n.c. functions play a central role in algorithmic ran-domness and reverse mathematics. Flood and Towsner asked for which functions h, the principle stating the existence of an h-bounded d.n.c. function (h-DNR) implies Ramsey-type weak König's lemma (RWKL). In this paper, we prove that for every computable order h, there exists an ω-model of h-DNR which is not a not model of the Ramsey-type graph coloring principle for two colors (RCOLOR 2) and therefore not a model of RWKL. The proof combines bushy tree forcing and a technique introduced by Lerman, Solomon and Towsner to transform a computable non-reducibility into a separation over ω-models.
Fichier principal
Vignette du fichier
rcolor-dnr.pdf (250.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01888596 , version 1 (05-10-2018)

Identifiants

Citer

Ludovic Patey. Ramsey-type graph coloring and diagonal non-computability. Archive for Mathematical Logic, 2015, 54 (7-8), pp.899 - 914. ⟨10.1007/s00153-015-0448-5⟩. ⟨hal-01888596⟩
66 Consultations
81 Téléchargements

Altmetric

Partager

More