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Ramsey-type graph coloring and diagonal non-computability

Ludovic Patey

Abstract

A function is diagonally non-computable (d.n.c.) if it diagonalizes against the universal
partial computable function. D.n.c. functions play a central role in algorithmic ran-
domness and reverse mathematics. Flood and Towsner asked for which functions h,
the principle stating the existence of an h-bounded d.n.c. function (h-DNR) implies
Ramsey-type weak König’s lemma (RWKL). In this paper, we prove that for every
computable order h, there exists an ω-model of h-DNR which is not a not model of the
Ramsey-type graph coloring principle for two colors (RCOLOR2) and therefore not a
model of RWKL. The proof combines bushy tree forcing and a technique introduced
by Lerman, Solomon and Towsner to transform a computable non-reducibility into a
separation over ω-models.

Keywords: Reverse mathematics, Forcing, Graph coloring, König’s lemma

1. Introduction

In this paper, we deepen our understanding of the relation between diagonal non-
computability and consequences of Ramsey-type weak König’s lemma by separating
related principles within the framework of reverse mathematics.

Diagonal non-computability plays an important role in algorithmic randomness
in which is it known to computationally coincide with infinite subsets of Martin-Löf
randoms. In a reverse mathematical perspective, the corresponding principle has been
used as a discriminating statement for separating theorems. Some principles in reverse
mathematics – WKL0 [11], RRT2

2 [21], RWWKL [3], can be characterized by d.n.c-like
statements. Therefore, diagonal non-computability can be considered as a unifying
framework for comparing existing principles.

The study of Ramsey-type versions of principles which are not consequences of the
Ramsey theorem has been initiated by Flood [6] with his Ramsey-type weak König’s
lemma (RWKL). As pointed out by Flood & Towsner [7], this principle aims to play
a central role in reverse mathematics, as the “missing link” explaining the relation
between Ramsey’s theorem for pairs (RT2

2) and weak König’s lemma (WKL0). Indeed,
previous proofs of RT2

2 seemed to require WKL0 even though Liu [20] proved that WKL0
is not a consequence of RT2

2. RWKL contains in fact the exact combinatorics needed in
the proofs of RT2

2 or even weaker statements like the Erdős-Moser theorem [7, 3].



1.1. Diagonally non-computable functions

A function f is diagonally non-computable (d.n.c.) relative to X if for every index e,
f(e) 6= ΦX

e (e), where Φe is an effective enumeration of all Turing machines. D.n.c.
functions have been extensively studied in literature [1, 4, 13, 18]. The degrees of
d.n.c. functions coincide with the degrees of fixed-point free functions [12] and the
degrees of infinite subsets of Martin-Löf random reals [9, 16, 17].

Definition 1.1 (Diagonal non-computability) A function f is h-bounded for some func-
tion h if f(x) ≤ h(x) for every input x. DNR is the statement “For every definable
set X, there exists a function d.n.c. relative to X” and for every function h, h-DNR
is the statement “For every definable set X, there exists an h-bounded function d.n.c.
relative to X”.

In particular, when h is the function constantly equal to k, we say that f is k-
bounded. Friedberg [14] proved that every k-bounded d.n.c. function computes a 2-
bounded d.n.c. function. Jockusch [14] proved that this reduction is not uniform,
and Dorais & Shafer [4] constructed a non-standard structure satisfying the statement
(∃k)k-DNR and which does not contain any 2-bounded d.n.c. function. The degrees
of 2-bounded d.n.c. functions coincide with the degrees of completion of Peano arith-
metic [11].

When considering orders h, that is, non-decreasing and unbounded functions, h-
bounded d.n.c. functions are known to form a strict hierarchy within reverse mathemat-
ics [1, 7]. Recently, Bienvenu and the author [2] proved that witnesses to the strictness
of this hierarchy can be constructed by probabilistic means. Jockusch [14] showed the
existence of computable orders h such that every Martin-Löf random computes an h-
bounded d.n.c. function.

1.2. Ramsey-type principles

Many principles in reverse mathematics are of the form

(∀X)[Φ(X)→ (∃Y )Ψ(X, Y )]

where Φ and Ψ are arithmetic formulas. A set X such that Φ(X) holds is called an
instance and a set Y such that Ψ(X, Y ) holds is a solution to X. The Ramsey-type
version of such a principle informally consists of asserting, for every instance X, the
existence of infinitely many bits of information “compatible” with a solution to X.

Among the principles in reverse mathematics, weak König’s lemma (WKL0) asserts,
for every infinite binary tree T , the existence of an infinite path through T . In this case,
its Ramsey-type version – i.e. Ramsey-type weak König’s lemma (RWKL) – asserts the
existence of a direction d – left or right – and an infinite set of depths H, such that
there are arbitrarily large nodes in T which go on direction d at each depth of H. We
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now give a precise definition of RWKL. We denote by ω the set of positive integers and
by 2<ω the set of finite binary strings.

Definition 1.2 (Ramsey-type weak König’s lemma) A set H ⊆ ω is homogeneous for
a σ ∈ 2<ω if (∃c < 2)(∀i ∈ H)[i < |σ| → σ(i) = c]. A set H is homogeneous for an
infinite tree T ⊆ 2<ω if the tree {σ ∈ T : H is homogeneous for σ} is infinite. RWKL is
the statement “Every infinite subtree of 2<ω has an infinite homogeneous set”.

Flood introduced the principle in [6] under the name RKL, and proved that it is a
strict consequence of stable Ramsey’s theorem for pairs (SRT2

2) and WKL0 over RCA0.
He also proved that RCA0 ` RWKL→ DNR and asked whether the implication is strict.
Bienvenu et al. [3] studied extensively variants of RWKL and constructed an ω-model
of DNR – and even of weak weak König’s lemma (WWKL0) – which is not a model
of RWKL. Flood & Towsner [7] reproved the existence of an ω-model of DNR which
is not a model of RWKL using the techniques developped by Lerman et al. in [19].
They asked in particular for which functions h the principle h-DNR implies RWKL.
In this paper, we answer this question by proving that for every computable order h,
h-DNR does not even imply a weaker statement over ω-models. Note that this result
is incomparable (neither stronger nor weaker) than the result of Bienvenu et al. [3]
since there exists computable orders h such that the measure of oracles computing an
h-bounded d.n.c. function is null [15].

1.3. Ramsey-type graph coloring

A graph G = (V,E) is k-colorable if there is a function f : V → k such that
(∀x, y ∈ V )({x, y} ∈ E → f(x) 6= f(y)), and a graph is locally k-colorable if every finite
subgraph is k-colorable. The statement that every locally k-colorable graph admits an
infinite k-coloration for some fixed k ≥ 2 has been proved to be equivalent to WKL0
over RCA0 by Hirst in [10]. We focus on the Ramsey-type version of this principle.

Definition 1.3 (Ramsey-type graph coloring) Let G = (V,E) be a graph. A set
H ⊆ V is k-homogeneous for G if every finite V0 ⊆ V induces a subgraph that is
k-colorable by a coloring that colors every vertex in V0 ∩ H color 0. RCOLORk is the
statement “for every infinite, locally k-colorable graph G = (V,E), there is an infinite
H ⊆ V that is k-homogeneous for G.”

The principles RCOLORk have been introduced by Bienvenu et al. in [3]. They
proved that RWKL is equivalent to RCOLORk for every k ≥ 3. and constructed an ω-
model of WWKL0 (and in particular of DNR) which is not a model of RCOLOR2. It is
currently unknown whether RCOLOR2 is strictly weaker than RWKL and in particular
whether or not it implies DNR over RCA0. The principle RCOLOR2 seems easier to
manipulate than RWKL, and most proofs of the type “Φ does not prove RWKL” can be
strengthened without any additional effort to “Φ does not prove RCOLOR2”.
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1.4. Notation

We now introduce some basic notation and definitions. See Soare [22] or Downey
and Hirschfeldt [5] for a complete background in computability theory.

String, sequence. Fix a function h : ω → ω. A string (over h) is an ordered tuple
of integers a0, . . . , an−1 (such that ai < h(i) for every i < n). A sequence (over h) is an
infinite listing of integers a0, a1, . . . (such that ai < h(i) for every i ∈ ω). We denote
by � the prefix relation between two strings or between a string and a sequence. For
s ∈ ω, hs is the set of strings of length s over h, h<s is the set of strings of length
strictly smaller than s over h, h<ω is the set of finite strings over h and hω is the set
of sequences (i.e. infinite strings) over h. When h is the constant function k, we write
ks (resp. k<s, . . . ) for hs (resp. h<s, . . . ). Given a string σ ∈ h<ω, we denote by |σ| its
length. Given two strings σ, τ ∈ h<ω, σ is a prefix of τ (written σ � τ if there exists a
string ρ ∈ h<ω such that σρ = τ .

Tree, path. A tree T ⊆ k<ω is a set downward-closed under the prefix relation. A
binary tree is a tree T ⊆ 2<ω. A set P ⊆ ω is a path though T if for every σ ≺ P , σ ∈ T .
A string σ ∈ k<ω is a stem of a tree T if every τ ∈ T is comparable with σ. Given a
tree T and a string σ ∈ T , we denote by T [σ] the subtree {τ ∈ T : τ � σ ∨ τ � σ}.

Turing functionals. We fix an effective enumeration Φ0,Φ1, . . . of all Turing func-
tionals. Given an oracle X, we write WX

e = dom(ΦX
e ), that is, WX

e is the set of all
inputs x such that ΦX

e (x) ↓. We may apply a Turing functional over a string σ ∈ ω<ω.
In this case, by convention, Φσ

e (x) ↓→ x < |σ|.
An order h is an unbounded, non-decreasing function over integers. Given two

sets A and B, we write A ⊆fin B to mean that A is a finite subset of B. We also
denote by A × B the set of unordered pairs {a, b} where a ∈ A and b ∈ B. Last, the
notation A > x means that the set A is empty or its least element is greater than x.

2. Bushy tree forcing

The specificity of the combinatorics of diagonally non-computable functions f is
that f has to avoid at most one bad value on each input e. Therefore, if we consider
two functions f0 and f1 having two different values on input e, at least one of them
diagonalizes against Φe(e). The exploitation of this observation leads to the notion of
bushy tree forcing, in which the construction of a d.n.c. function is done by simply
applying cardinality arguments. Bushy tree forcing was first developed in [1]. Since
then, it has been successfully applied to various problematics, like proving the existence
of a d.n.c. function of minimal degree [18]. We state the core lemmas of bushy tree
forcing without proving them. See the survey [15] for detailed proofs.

Definition 2.1 (Bushy tree) Fix an integer k and a string σ ∈ ω<ω. A tree T is k-
bushy above σ if it has stem σ and whenever τ � σ is not a leaf of T , it has at least k
immediate children.
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Definition 2.2 (Big set, small set) Fix an integer k and some string σ ∈ ω<ω. A set
B ⊆ ω<ω is k-big above σ if there exists a finite tree T k-bushy above σ such that all
leaves of T are in B. If no such tree exists, B is said to be k-small above σ.

These notions of k-bigness and k-smallness can be justified as follows: Suppose we
have constructed an initial segment σ of a d.n.c. function f . We want to decide whether
a Σ0

1 property ϕ(f) will hold or not. A property ϕ induces a set of strings B = {τ ∈
ω<ω : ϕ(τ) holds}. Deciding ϕ(f) consists in either finding an extension τ � σ which
is in B and such that τ is again an initial segment of a d.n.c. function, or ensuring that
no extension of σ will meet B.

Suppose that B is 2-big above σ. By definition, there exists a finite tree T 2-
bushy above σ and whose leaves are all in B. In other words, for each leaf τ in T ,
ϕ(τ) holds. By our previous observation, at each depth, there exists at most one bad
value. Therefore the tree T must have one leaf τ which is an initial segment of a d.n.c.
function. By hypothesis, ϕ(τ) holds and σ being the stem of T , τ � σ. We can then
take this τ as our desired extension and continue the construction.

Suppose now that B is 2-small above σ. Informally, it means that σ does not
have enough extensions satisfying ϕ. In this case, we want to ensure that no further
extension of σ will meet B while continuing the construction. But, how can we ensure
there will always be a d.n.c. extension avoiding B when choosing a leaf in T while
considering other properties ϕ? It suffices to slightly modify our question for the next
property ϕ1 and ask whether the corresponding set B1 is 3-big, and so on.

At this stage, it becomes clear that the good forcing notion is a pair (σ,B) where
σ ∈ ω<ω and B is a set which is k-small above σ for some k. The set B is intuitively
the “bad” set of extensions we want to avoid, and therefore may only increase. Another
condition (τ, C) extends (σ,B) if σ � τ and B ⊆ C.

What about the constraint that σ must be an initial segment of a d.n.c. function?
Fix any set X, and consider the set BX

DNC of all strings which are not initial segments
of any function d.n.c. relative to X:

BX
DNC =

{
σ ∈ ω<ω : (∃e < |σ|)ΦX

e (e) ↓= σ(e)
}

One can easily see that BX
DNC is 2-small above the empty string. Therefore, by starting

the construction with the initial condition (ε, BX
DNC), we ensure that the resulting func-

tion will be d.n.c. relative to X. Notice that the choice of the set X has no impact on
the construction as we only care about the bushiness of the corresponding set BX

DNC .

The following three lemmas are at the core of every bushy tree argument.

Lemma 2.3 (Concatenation) Fix an integer k. Suppose that A ⊆ ω<ω is k-big above σ.
If Aτ ⊆ ω<ω is k-big above τ for every τ ∈ A, then

⋃
τ∈AAτ is k-big above σ.
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The concatenation property is very intuitive and is sufficient for running a basic
bushy tree argument. Indeed, fix a condition (σ,B) where B is k-small above σ. We
need to decide whether a property ϕ with corresponding set C = {τ ∈ ω<ω : ϕ(τ) holds}
can be forced. The question becomes “Is the set B ∪ C k-big above σ?” In the case of
a positive answer, let T be a finite tree k-bushy above σ whose leaves are in B ∪C. By
the concatenation property, B must be k-small above one of the leaves τ in T , otherwise
B would be k-big above σ. The condition (τ, B) is the desired extension forcing ϕ(f)
to hold. In the case of a negative answer, (σ,B ∪ C) is an extension forcing ϕ(f) not
to hold.

Lemma 2.4 (Smallness additivity) Suppose that B1, B2, . . . , Bn are subsets of ω<ω, k1,
k2, ..., kn are integers, and σ ∈ ω<ω. If Bi is ki-small above σ for all i, then

⋃
iBi is

(
∑

i ki)-small above σ.

Smallness additivity has a significant impact on the effectiveness of the forcing ar-
gument. Note that we did not impose effectiveness constraints on the set B in the defi-
nition of a condition (σ,B), and indeed, sets may have arbitrary complexity, like BX

DNC

which is strictly X-c.e. The question of the k-bigness of a set B is B-c.e. However,
the considered properties have often a c.e. corresponding set C. In this case, given a
condition (σ,B), the question of k-bigness of B ∪C is Σ0,B

1 whereas the k-bigness of C
is Σ0

1.

Smallness additivity enables us to ask the question of k-bigness of C independently
of B, and combine the two sets after. Indeed, suppose that B is k-small above σ, and
ask whether C is k-big above σ. If so, by the usual reasoning, find a leaf τ in the bushy
tree witnessing k-bigness of C, such that B is still k-small above τ . In the other case,
(σ,B ∪ C) is a valid extension as B ∪ C is 2k-small above σ.

The effectiveness issue will be particularly important when defining the computable
graph in the ground construction, so that it satisfies specific properties necessary to the
iteration forcing.

Lemma 2.5 (Small set closure) We say that B ⊆ ω<ω is k-closed if whenever B is
k-big above a string ρ then ρ ∈ B. Accordingly, the k-closure of any set B ⊆ ω<ω is
the set C = {τ ∈ ω<ω : B is k-big above τ}. If B is k-small above a string σ, then its
closure is also k-small above σ.

Considering the k-closure C of the set B instead of the set B itself in the con-
dition (σ,B) simplifies the reasoning. Indeed, taking an extension τ of σ avoiding
the set C is enough to deduce by k-closure that C is k-small above τ and therefore
that (τ, C) is a valid condition.
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3. Separation over ω-models

An ω-structure is a structure M = (ω, S,+, ·, <) where ω is the set of standard
integers, +, · and < are the standard operations over integers and S is a set of reals such
that M satisfies the axioms of RCA0. Notice that M is fully specified by its second-
order part S, and we may therefore amalgamateM with S. Friedman [8] characterized
the second-order parts S of ω-structures as those forming a Turing ideal, that is, a set
of reals closed by Turing join and downward-closed by Turing reduction.

Separation of a principle P from a principle Q over ω-models differs from com-
putable non-reducibility in that solutions to P-instances may enable to define other P-
instances whose solutions compute solutions to Q-instances. Therefore, we need to be
careful about iterated applications of principles. In their paper [19], Lerman, Solomon
& Towsner introduced a general technique for transforming a one-step separation – i.e.
proof of computable non-reducibility – into a separation over ω-models, and used it for
separating EM from SRT2

2 and ADS from SCAC over ω-models. We briefly present their
method.

Fix two principles P and Q, each of the form (∀X)[Φ(X) → (∃Y )Ψ(X, Y )] where
Φ and Ψ are arithmetical formulas. The construction of an ω-model of P which is not a
model of Q consists of creating a Turing ideal I together with a fixed Q-instance I0 ∈ I,
such that every P-instance J ∈ I has a solution in I, whereas I0 contains no solution
in I. The techniques introduced by Lerman et al. include

• A ground construction, whose goal is to define a fixed instance I0 of Q with no
computable solution, and ensuring some fairness property about the iteration
forcing. Lerman et al. used the forcing framework for creating their instances
although computable instances could be defined. The constructed instance is
considered as the ground context.

• An iteration forcing which, given a context X sharing the same properties with
the ground context – i.e. I0 has no X-computable solution and the iteration
forcing relative to X satisfies some fairness properties – and an X-computable
P-instance J , constructs a solution G to J such that X ⊕ G satisfies again the
contextual properties.

Choosing carefully the enumeration J0, J1, . . . of all P-instance functionals, one can
define an infinite sequence of contexts X0 = I0 ≤T X1 ≤T X2 . . . such that

• Xi does not compute a solution to I0

• Xi+1 computes a solution to JXi
i
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and such that the Turing ideal generated by the Xi’s is the second-order part of an ω-
model of P.

The specificity of the techniques of Lerman et al. is that instead of creating a Q-
instance I0 which will try to satisfy the least requirements necessary to the iteration
forcing at each level, I0 considers only the ground context, and satisfies a much more
general notion of requirement. This notion has to be general enough so that we can
express the requirements at level i+ 1 inside the requirements at level i, and therefore
satisfy transparently requirements at all levels.

Given a Q-instance I0, a context X and an iteration forcing notion PX , they define
their general requirement KX,I0 to be an upward-closed set of forcing conditions c ∈ PX

with a particular shape

KX,I0 = {c ∈ PX : (∃F ⊆fin I0)RX
K (c, F )}

where RX
K is an X-computable predicate with some additional properties specific to the

forcing notion we consider. The set F has to be understood as a finite sub-instance
of I0. If G(c) is the initial segment of the generic solution G we are constructing, an
intended particular requirement is

WX,I0
e = {c ∈ PX : (∃F ⊆fin I0)ΦX⊕G(c)

e is not an F -solution}

where “Φ
X⊕G(c)
e is not an I0-solution” has to be understood as “Φ

X⊕G(c)
e halts on an

initial segment which cannot be extended into an F -solution.” Therefore, if some
condition c ∈ We, then it cannot be extended into an infinite set G such that ΦX⊕G

e is
a solution to I0.

Of course, we cannot expect all our requirements WX,I0
e to be PX-dense, as there

are Turing indices e such that ΦX⊕G
e is nowhere defined, whatever the oracle G. In

those cases, one may want to force ΦX⊕G
e not to be total. In Lerman et al. framework,

this is done by ensuring that further extensions avoid the following set for some x ∈ ω:

KX,[x,+∞) = {c ∈ PX : (∃F finite Q-instance over [x,+∞))RX
K (c, F )}

In the case of WX,[x,+∞)
e , it corresponds to forcing ΦX⊕G

e not to halt on values greater
than x. The fairness condition that the Q-instance I0 has to satisfy states that if there
are valid extensions in KX,F , for finite Q-instance F over an arbitrarily far domain, then
I0 will take one of those F as a part of its own instance, and therefore there will exist
a valid extension in KX,I0 . The combinatorics of P have to be good enough to ensure
that, in a context X where the fairness condition holds, either we will find an extension
in KX,I0 , or we will avoid the requirement KX,[x,+∞) for some x ∈ ω.

4. Main result

Flood and Towsner [7] asked for which functions h the statement h-DNR im-
plies RWKL over RCA0. In the case of functions whose range is bounded by some
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constant k, h-DNR implies k-DNR and therefore is equivalent to WKL0. We prove that
in the case of computable orders h, h-DNR does not even imply the Ramsey-type graph
coloring principle for pairs over ω-models.

Theorem 4.1 For every computable order h, there exists an ω-model of h-DNR which
is not a model of RCOLOR2.

The proof of Theorem 4.1 follows the pattern presented in section 3, in which the
iteration forcing is a variant of the bushy tree forcing presented in section 2. Fix a
computable order h. The proof is divided into two main parts:

• The first part describes the iteration forcing in a context X, assuming that we
have already constructed a computable, locally 2-colorable graph G ensuring that
the context X satisfies some properties.

• The second part is the actual finite-injury priority construction of the graph G so
that it satisfies the required properties over the ground context (the latter being
the empty context as G is a computable graph).

Finally, we describe the construction of the ω-model of h-DNR which is not a model
of RCOLOR2.

4.1. Iteration forcing

The general context of the iteration forcing is a fixed set X such that

• X does not compute a solution to G

• each requirement KX,G is uniformly dense (in a sense defined below)

Our goal is to define an h-bounded d.n.c. function f such that X ⊕ f satisfies
the same context properties, that is, X ⊕ f does not compute a solution to G and the
requirements KX⊕f,G are uniformly dense.

Definition 4.2 Our set of forcing conditions QX is the set of pairs (σ,B) such that
σ ∈ h<ω and B ⊆ h<ω is an h(|σ|)-closed set of strings h(|σ|)-small above σ. We say
that (τ, C) ≤ (σ,B) if σ � τ and B ⊆ C.

Our initial condition will be (ε, BX
DNC). Therefore, every infinite descending se-

quence of conditions will produce an h-bounded function d.n.c. relative to X.

We say that a condition (σ,B) is k-roomy if B is k-small above σ and h(|σ|) ≥ 4k.
The intuition of k-roominess is that there is room for increasing the size of the bad set B.
The choice of the coefficient is for the purpose of our combinatorics. Notice that, thanks
to the fact that h is an order, every condition can be extended to a k-roomy condition
for some k ∈ ω.
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4.1.1. Requirements and uniform density

As presented in section 3, a requirement is a set of conditions of the iteration
forcing PX which enable to diagonalize positively against the instance G of RCOLOR2.
In our case, a finite set of vertices F is extensible to an infinite solution to G if and
only if it does not contain a pair of vertices {x, y} which are the endpoints of a path of
odd length in G. Based on this observation, we define our set of diagonalizing pairs as
follows.

Definition 4.3 Given a locally 2-colorable graph G, we denote by Odd(G) the G-c.e.
set of pairs {x, y} such that there exists a path of odd length whose endpoints are x
and y.

We extend the notation Odd(G) to sets of the form A0 × A1 where A0 and A1

are arbitrary sets of integers. In this case, we can view A0 × A1 as the set of edges
of a graph (which is locally 2-colorable if and only if A0 ∩ A1 = ∅). In particular,
{x} ∈ Odd(A0 × A1) for each x ∈ A0 ∩ A1.

In a forcing construction, a requirement is formally a set of conditions. In our case,
thanks to the smallness additivity property of the bushy tree forcing, a requirement
can be defined only in terms of the stem part of the condition (where by the stem of a
condition (σ,B) we mean σ).

Definition 4.4 A requirement is a set KX,G of finite strings over h which is closed under
extensions and is defined by

KX,G = {τ ∈ h<ω : (∃F ⊆fin Odd(G))RX
K (τ, F )}

for an X-computable relation RX
K such that if RX

K (τ, F ) holds for a finite set of pairs F ,
and F1 is a finite set of singletons extensible to pairs in F – that is (∀{z} ∈ F1)(∃{x, y} ∈
F )[z ∈ {x, y}] – then RX

K (τ, F1) also holds. This last property will be used in the proof
of Theorem 4.11.

We illustrate our general notion of requirement by describing a particular scheme
of requirements which will ensure that X ⊕ f does not compute a solution to G. We
shall see later another scheme of requirements which will “propagate” uniform density
to the context X ⊕ f .

Example 4.5 For each integer m, define the requirement

WX,G
m = {τ ∈ h<ω : (∃{a, b} ∈ Odd(G))ΦX⊕τ

m (a)↓ = ΦX⊕τ
m (b)↓ = 1}

In this case, the X-computable predicate RX
Wm

(τ, F ) is defined by

F 6= ∅ ∧ (∀x ∈
⋃

F )[ΦX⊕τ
m (x)↓ = 1]
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Note that it satisfies the property of Definition 4.4. Suppose a condition (σ,B) used
to construct our generic function f satisfies σ ∈ WX,G

m . Because σ is an initial segment
of f , we have successfully diagonalized against ΦX⊕f

m computing a solution to G.

We can replace the graph G in a requirement KX,G by a set of pairs A0×A1, which
can be thought of as the set of edges of a finite or infinite graph, and consider the set

KX,A0×A1 = {τ ∈ h<ω : (∃F ⊆fin Odd(A0 × A1))R
X
K (τ, F )}

Definition 4.6 We say KX is essential below some k-roomy condition (σ,B) if for
every x, there exists a finite set A0 > x such that for every y, there exists a finite set
A1 > y such that KX,A0×A1 is 2k-big above σ.

The following notion of uniform density is a fairness property of the context X. It
states that if the requirement KX,G provides infinitely many fresh values on which the
graph G could create a diagonalization, then at some point, G will actually produce
one.

Definition 4.7 We say KX,G is uniformly dense if whenever KX is essential below some
k-roomy condition (σ,B), KX,G is k-big above σ.

Definition 4.8 We say (σ,B) settles KX,G if either σ ∈ KX,G or there exists an x ∈ ω
such that KX,(x,+∞)2 ⊆ B.

Intuitively, a condition (σ,B) settles a requirement KX,G if it forces a finite bad out-
come σ ∈ KX,G (usually a diagonalization) or forces an infinite bad outcomeKX,(x,+∞)2) ⊆
B (basically forcing the partiality of a functional). This intuition is best illustrated by
the actual requirement scheme we care about.

Example 4.9 Suppose (σ,B) settles WX,G
m . We claim that if (σ,B) appears in a se-

quence defining a generic function f , then ΦX⊕f
m is not a solution to G. If σ ∈ WX,G

m ,
then this claim was verified by Example 4.5. So assume that (σ,B) settles KX,G via
the second clause and fix the witness x. We claim that for all (τ, C) ≤ (σ,B) and all
y > x, ΦX⊕τ

m (y) ↑ or ΦX⊕τ
m (y) ↓6= 1. It follows immediately from this claim that ΦX⊕f

m

is partial or defines a finite set and hence is not a solution to G. To prove this claim,
fix (τ, C) ≤ (σ,B). Suppose for a contradiction that there is a y > x such that
ΦX⊕τ
m (y)↓ = 1. Then

(∃{y, y} ∈ (x,+∞)2)ΦX⊕τ
m (y)↓ = ΦX⊕τ

m (y)↓ = 1

and hence τ ∈ KX,(x,+∞)2 ⊆ B ⊆ C, contradicting the fact that C is k-small above τ
for some k.

The following lemma confirms the intuition that the settling relation is a forcing
notion, and in particular is stable under condition extension.
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Lemma 4.10 If (σ,B) settles KX,G and (τ, C) ≤ (σ,B), then (τ, C) settles KX,G.

Proof. If σ ∈ KX,G, then by closure of KX,G under suffixes, τ ∈ KX,G and therefore
(τ, C) settles KX,G. Suppose now that (σ,B) settles KX,G via the second clause, with
some witness x. KX,(x,+∞)2 ⊆ B ⊆ C, therefore (τ, C) settles KX,G with the same
witness.

The following theorem is the heart of the iteration forcing. It states that, under
the assumption of uniform density, the set of conditions settling a requirement is dense.

Theorem 4.11 Let KX,G be a uniformly dense requirement and let (σ,B) be a condi-
tion. There is an extension (τ, C) ≤ (σ,B) settling KX,G.

Proof. We can suppose w.l.o.g. that (σ,B) is k-roomy for some k ∈ ω.

First suppose that KX,G is essential below (σ,B). By definition of uniformly dense,
KX,G is k-big above σ. By the contatenation property, there exists an extension τ � σ
which is in KX,G r B and such that B is k-small above τ . The condition (τ, B) is a
valid extension settling KX,G via the first clause.

Suppose now that KX,G is not essential below (σ,B). By definition, there exists
an x ∈ ω such that for every finite set A0 > x, there exists a y ∈ ω such that for every
finite set A1 > y, KX,A0×A1 is 2k-small above σ. Fix such x. We have two cases:

• Case 1: KX,(x,+∞)2 is 3k-small above σ. By the smallness additivity property,
B1 = B ∪ KX,(x,+∞)2 is 4k-small above σ. Therefore (σ,B1) is an extension of
(σ,B) settling KX,G via the second clause with witness x.

• Case 2: KX,(x,+∞)2 is 3k-big above σ. Let T ⊆ h<ω a the finite tree 3k-bushy
above σ whose leaves are in KX,(x,+∞)2 . There are finitely many leaves in T , so
there exists a finite set A0 such that KX,A2

0 is 3k-big above σ. By assumption, there
exists some y > A0 be such that for every finite set A1 > y, KX,A0×A1 is 2k-small
above σ. Fix such y. The set KX,A0×(y,+∞) is 2k-small above σ, otherwise, the
same argument as for A0 would give a finite set A1 ⊂ (y,+∞) such that KX,A0×A1

is 2k-big above σ, contradicting our choice of y. So B1 = (B ∪ KX,A0×(y,+∞)) is
3k-small above σ. By the concatenation property, there exists a string τ � σ in
KX,A2

0 such that B1 is 3k-small above τ . Notice that, if we denote by Γτ the set
of strings extending τ ,

KX,A0×(y,+∞) ∩ Γτ = {ρ � τ : (∃F ⊆fin Odd(A0 × (y,+∞)))RX
K (ρ, F )}

= {ρ � τ : (∃F ⊆fin Odd((y,+∞)2))RX
K (ρ, F )}

= KX,(y,+∞)2 ∩ Γτ

This equality is due to the extra property we imposed to RX
K in Definition 4.4.

Therefore B2 = B1 ∪ KX,(y,+∞)2 is 3k-small above τ . The condition (τ, B2) is an
extension settling KX,G via the second clause with witness y.
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4.1.2. The construction

At this stage of the proof, we have proven the lemmas necessary for constructing a
function f d.n.c. relative to X such that X ⊕ f does not compute a solution to G. We
shall see later that, by considering some carefully chosen requirements, the property of
uniform density of the requirements also holds at level X ⊕ f .

To define f , let KX,G0 ,KX,G1 . . . be a list of all the requirements. Thanks to The-
orem 4.11, we can define by induction an infinite decreasing sequence of conditions
c0 = (ε, BX

DNC) ≥ c1 ≥ . . . such that for each s ∈ ω

1. |σs| ≥ s (by the concatenation property)

2. cs+1 settles KX,Gs (by Theorem 4.11)

where cs is some ks-roomy condition (σs, Bs) for s > 0. We define our generic function
by f =

⋃
s σs. As BX

DNC = B0 ⊆ Bs for every s ≥ 0, BX
DNC is k-small above every

initial segment σs of f for some k, and therefore f is d.n.c. relative to X. Moreover, by
Example 4.9, X ⊕ f does not compute a solution to G.

4.1.3. Forcing uniform density

We now describe the requirements forcing uniform density at the next level. To
specify a potential requirement at the next level, we need the index for the relation
RX⊕f
K , defining the requirement KX⊕f,G. We shall denote this index by K. For each

such index K and each potential condition (ξ, ·) of the forcing PX⊕f we will associate a
requirement T XK,ξ,r at the level X ensuring that KX⊕f,G will satisfy uniform density in
the case where (ξ, ·) is an r-roomy condition.

The requirement T XK,ξ,r consists of all strings τ ∈ ω<ω such that there exists a finite
tree T ⊆ h<ω which is r-bushy below ξ (and whose code is bounded by |τ | to ensure X-
computability of RX

T ) such that for each leaf ρ in T , (∃F ⊆fin Odd(G))RX⊕τ
K (ρ, F ).

Note that this is where we need the fact that F is a finite subset of Odd(G) and not
simply a pair in Odd(G).

Lemma 4.12 Let f =
⋃
s σs be a generic function defined by a sequence of conditions

(σs, Bs). Each requirement KX⊕f,G is uniformly dense.

Proof. Fix a requirement KX⊕f,G and an r-roomy condition (ξ,D) such that KX⊕f is
essential below (ξ,D). By property 2. of the construction, there is a condition (σs, Bs)
settling T X,GK,ξ,r. By definition, there are two ways in which (σs, Bs) could settle T X,GK,ξ,r.
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• Case 1: σs ∈ T X,GK,ξ,r. By definition, there exists a finite tree T ⊆ h<ω which is r-

bushy below ξ and such that for each leaf ρ in T , (∃F ⊆fin Odd(G))RX⊕σs
K (ρ, F ).

In other words, KX⊕σs,G is r-big above ξ. Therefore, by the use property, KX⊕f,G
is r-big above ξ, hence KX⊕f,G is uniformly dense above (ξ, ·).

• Case 2: there exists an x ∈ ω such that T X,(x,+∞)2

K,ξ,r ⊆ Bs. Because KX⊕f is
essential below (ξ,D), there exists a finite set A0 > x and a finite set A1 > A0

such that KX⊕f,A0×A1 is r-big above ξ. Let T ⊆ h<ω be a finite tree r-bushy
above ξ witnessing this fact. Let (σt, Bt) be an extension of (σs, Bs) such that |σt|
is greater than the code of T and σt is large enough to witness that for each
leaf ρ ∈ T , (∃F ⊆fin Odd(G))RX⊕σt

K (ρ, F ). Such σt must exist by the use property.

By definition, σt ∈ T X,(x,+∞)2

K,ξ,r , but T X,(x,+∞)2

K,ξ,r ⊆ Bs ⊆ Bt, contradicting the fact
that Bt is k-small above σt for some k.

This last lemma finishes the iteration forcing as it enables to prove that the property
of uniform density is propagated to level X ⊕ f .

4.2. Ground construction

It remains to construct an infinite, computable, locally 2-colorable graph G such
that

• G has no computable infinite homogeneous set

• Each requirement K∅,G is uniformly dense

The construction is very similar to the measure-defeating argument used in [3]
for separating WWKL0 from RCOLOR2 over ω-models. The construction is done by
a finite injury priority argument. The resulting graph will be composed of connected
components of finite size. Each strategy will put restraints on finitely many connected
components, each of finite size, therefore each strategy will have cofinitely many vertices
not restrained by strategies of higher priority to work with. In order to make the graph
computable, the edges over domain {0, . . . , s} must be decided before stage s. We build
a graph satisfying two kind of requirements.

4.2.1. Forcing G not to have computable solutions

The first class of requirements Re ensures that Φe does not compute an infinite
G-homogeneous set.

Re : Φe infinite → (∃{x, y} ∈ Odd(G))Φe(x)↓ = Φe(y)↓ = 1

14



The strategy for satisfying the requirement Re consists of waiting until Φe halts
on two values x and y which are not in connected components restrained by strategies
of higher priority, and are not in the same connected components. Assuming that
each strategy acts finitely often and each connected component is of finite size, if Φe

is infinite, there must be such a pair {x, y} appearing at some finite stage s. At this
stage, the strategy picks two fresh vertices z1, z2 which have not appeared yet in the
construction, and adds the edges {x, z1}, {z1, z2}, {z2, y} in G. Having done that, the
strategy puts a restraint to all vertices in the connected component of x and y and
is declared satisfied. The edges added ensure that {x, y} ∈ Odd(G). As the graph is
computable, once a strategy is satisfied, it is never injured.

4.2.2. Forcing uniform density

The second class of requirements SK,σ,k states that if K is a potential requirement,
if h(|σ|) ≥ 4k and if for every x ∈ ω, there exists a finite set A0 > x such that for every
y ∈ ω, there exists a finite set A1 > y such that K∅,A0×A1 is 2k-big above σ, then the
set K∅,G is k-big above σ.

The strategy for satisfying the requirement SK,σ,k consists of waiting until it finds
two finite sets of vertices A0 and A1 such that the vertices of A0 and vertices of A1

live in different connected components and are not restrained by a strategy of higher
priority, together with a finite tree T ⊆ h<ω which is 2k-bushy above σ and whose
leaves are in K∅,A0×A1 .

If such a pair of sets A0 and A1 is found, the strategy takes two fresh vertices a
and b greater than any vertex which already appeared in the construction, and adds an
edge between them. It also adds edges between members of A0 and a so that they all live
in the same connected component. Now, consider two possible extensions G1, G2 of our
current graph G, in which G1 is some completion where all vertices in A1 are connected
to either a or b in a way that the graph remains bipartite, and G2 is obtained from G
by adding for each y ∈ A1 an edge {a, y} if and only if {b, y} ∈ G1 and an edge {b, y}
if and only if {a, y} ∈ G1. Note that G2 is also bipartite and any pair {x, y} ∈ A0×A1

is homogeneous for exactly one of G1 and G2. By the smallness additivity property,
either K∅,G1 or K∅,G2 is k-big above σ, so we can complete the graph G so that K∅,G is
k-big above σ.

If no such pair of sets exists, we claim that the requirement is vacuously satisfied.
Suppose it is not and assume that each connected component is of finite size, and there
are finitely many connected components restrained by strategies of higher priority.
Taking x to be greater than all restrained vertices, there must be a finite set A0 > x
such that for every y, there exists a finite set A1 > y such that K∅,A0×A1 is 2k-big
above σ.

By choice of x, members of A0 are not restrained by a strategy of higher priority.
The connected components of members of A0 being finite, taking y to be greater than all
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of those connected components, there must exist a finite set A1 > y such that K∅,A0×A1

is 2k-big above σ. By choice of y, members of A1 are in different connected components
than members of A0 and are not restrained by strategies of higher priority. By definition
of 2k-bigness, there exists a finite tree T which is 2k-bushy above σ and whose leaves
are in K∅,A0×A1 . Therefore we are in first case.

4.2.3. The construction

The two kinds of requirements are interleaved into a priority ordering. Notice that
as soon as an edge is put between two vertices x and y, the corresponding strategy puts
a restraint on the whole connected component, so that no strategy of lower priority can
add edges to it. As each strategy adds finitely many vertices, each connected component
of the resulting graph G must be of finite size. Moreover, no edge is added between two
vertices x, y < s after stage s, therefore the graph is computable.

This finishes the ground construction.

4.3. Putting all together

Thanks to the ground construction and the iteration forcing, we can define an
infinite increasing sequence of sets X0 = ∅ ≤T X1 ≤T . . . such that for each i ∈ ω

• Xi+1 computes a function d.n.c. relative to Xi

• Xi does not compute a solution to G

Let M be ω-structure whose second-order part is the Turing ideal generated by
the sequence X0, X1, . . . We first check thatM is a model of h-DNR. Fix a set Y ∈M.
There exists an i such that Y ≤T Xi, and so such that Xi+1 computes an h-bounded
function f d.n.c. relative to Y . By construction of M, Xi+1 ∈ M and so f ∈ M.
Therefore M is a model of h-DNR. There remains to check that M is not a model
of RCOLOR2. As G is computable, G ∈ M. For every set Y ∈ M, there exists an i
such that Y ≤T Xi and therefore Y is not a solution to G. Hence G has no solution
in M and thus is not a model of RCOLOR2.
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