A split-and-merge approach for hyperspectral band selection - Archive ouverte HAL
Article Dans Une Revue IEEE Geoscience and Remote Sensing Letters Année : 2017

A split-and-merge approach for hyperspectral band selection

Résumé

The problem of band selection (BS) is of great importance to handle the curse of dimensionality for hyperspectral image (HSI) applications (e.g., classification). This letter proposes an unsupervised BS approach based on a split-and-merge concept. This new approach provides relevant spectral sub-bands by splitting the adjacent bands without violating the physical meaning of the spectral data. Next, it merges highly correlated bands and sub-bands to reduce the dimensionality of the HSI. Experiments on three public data sets and comparison with state-of-the-art approaches show the efficiency of the proposed approach.
Fichier principal
Vignette du fichier
rashwan_19069.pdf (688.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01887849 , version 1 (04-10-2018)

Identifiants

Citer

Shaheera Rashwan, Nicolas Dobigeon. A split-and-merge approach for hyperspectral band selection. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (8), pp.1378-1382. ⟨10.1109/LGRS.2017.2713462⟩. ⟨hal-01887849⟩
58 Consultations
133 Téléchargements

Altmetric

Partager

More