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A Split-and-Merge Approach for

Hyperspectral Band Selection
Shaheera Rashwan and Nicolas Dobigeon, Senior Member, IEEE

Abstract— The problem of band selection (BS) is of great
importance to handle the curse of dimensionality for hyper-
spectral image (HSI) applications (e.g., classification). This letter
proposes an unsupervised BS approach based on a split-and-
merge concept. This new approach provides relevant spectral
sub-bands by splitting the adjacent bands without violating the
physical meaning of the spectral data. Next, it merges highly cor-
related bands and sub-bands to reduce the dimensionality of the
HSI. Experiments on three public data sets and comparison with
state-of-the-art approaches show the efficiency of the proposed
approach.

Index Terms— Band selection (BS), data reduction, hyperspec-
tral image (HSI).

I. INTRODUCTION

H
YPERSPECTRAL images (HSIs) contain hundreds of

continuous spectral bands, which are beneficial to remote

sensing applications, such as image classification and tar-

get detection [1], [2]. However, a large number of spectral

bands can result in a prohibitive computational complexity of

HSI analysis algorithms. More importantly, this high number 
of bands leads to the so-called curse of dimensionality, also

known as Hughes phenomenon [3], which, e.g., dramatically 
impacts the performance of the supervised classifiers [4].

Thus, band selection (BS) is an issue of high importance

for HSI classification, which can be addressed by remov-

ing the highly correlated bands or the bands identified as

those containing less significant information. Depending on

the amount of available a priori knowledge regarding the 
HSI to be processed, the existing BS methods can fall into

two distinct categories: supervised [5]–[7] and unsupervised 
approaches [8]–[15]. The labeled samples enable the super-

vised methods to take the spectral similarity between different

classes into account. They can generally achieve better classi-

fication performance than unsupervised methods. For example,

a BS method based on mutual information (MI) has been

proposed in [5]. More recently, Yin et al. [6] suggested a

new separability criterion, namely, the spectral separability

index, to identify the relevant bands. Yang et al. [7] proposed

a supervised BS algorithm that makes use of the known class
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signatures without examining the original bands nor needing

class training samples.

However, implementing supervised BS requires the avail-

ability of reliable labeled samples, which may be a difficult

and tedious task. Therefore, unsupervised BS methods have

been demonstrated to be more appropriate in applicative

scenarios since they do not require any prior information

about the different classes. Mojaradi et al. [8] derived an

innovative BS method, called prototype space BS, based

only on some class spectra. Also, Martínez-Usó et al. [9]

proposed a technique that is based on a hierarchical clus-

tering structure to group bands to minimize the intracluster

variance while maximizing the intercluster variance. Adopting

a spectral unmixing perspective [16], Du and Yang [10]

proposed the application of those similarity-based endmember

extraction algorithms for BS. Feng et al. [11] proposed a

formal probabilistic memetic algorithm for BS, which is

able to adaptively control the degree of global exploration

against local exploitation throughout the search procedure.

Nakamura et al. [12] addressed the problem of BS in hyper-

spectral remote sensing images by resorting to nature-inspired

algorithms. Chang et al. [13] presented a parallel BS approach,

referred to as parallel simulated annealing BS, for high-

dimensional remote sensing images. Cariou et al. [14] pro-

posed an unsupervised approach to band reduction for HSIs

named BandClust, which stands for band clustering. It consists

in splitting the initial range of spectral bands into disjoint

clusters or sub-bands. Sui et al. [15] proposed a new method

that integrates both the overall accuracy (OA) and redundancy

into the BS process by formulating an optimization model.

Recently, Wang et al. [17] proposed a novel salient BS method

that is based on manifold ranking to ensure an appropriate

measurement of band difference. Finally, Yuan et al. [18]

proposed a new framework named dual-clustering-based BS

by context analysis that considers the context information of

bands in the process of dual clustering.

All previous works dedicated to HSI BS are based on

selection procedures of the original bands. Such techniques

may produce unreliable results in particular when the spectral

ranges associated with these bands are not sufficiently narrow.

Conversely, this letter proposes an unsupervised approach for

HSI BS, which is based on band clustering by split-and-merge

steps. The main novelty of this letter consists in splitting

the original range of spectral bands into sub-bands and then

merging the resulting highly correlated bands.

This letter is organized as follows. The proposed method

is detailed in Section II. In Section III, some experimental

results obtained on three public hyperspectral data sets are



reported. Section IV concludes this letter and provides some

future works.

II. PROPOSED SPLIT-AND-MERGE BAND

SELECTION METHOD

Let us consider X , [x1, . . . , xL ]
T ∈ R

L×P the lexico-

graphically indexed HSI composed of P pixels and L bands,

where xℓ , [xℓ,1, . . . , xℓ,P ]
T is the image observed in the

ℓth band corresponding to a wavelength λℓ. This section

details the proposed split-and-merge algorithm for hyperspec-

tral BS as a two-stage approach beginning, first, by splitting

low-correlated bands and then merging high-correlated bands.

These two steps are described in what follows.

A. Splitting Step

The iterative splitting process consists in sequentially exam-

ining HSI bands to identify pairs of weakly correlated adjacent

bands ℓ and ℓ + 1. These uncorrelated HSI bands are subse-

quently split to build a synthetic HSI X̌ , [x̌1, . . . , x̌
Ľ
]T ∈

R
Ľ×P , where Ľ ≥ L is the total number of (possibly real

and virtual) spectral bands of the HSI recovered by the

process. More precisely, let X̌
(t)

denote the current state of

the synthetic HSI after the tth iteration of the splitting process.

The single-band images x̌
(t)
ℓ and x̌

(t)
ℓ+1 in bands ℓ and ℓ + 1

corresponding to the wavelengths λ
(t)
ℓ and λ

(t)
ℓ+1, respectively,

are split if the sample-based Pearson correlation coefficient

ř
(t)
ℓ,ℓ+1 between x̌

(t)
ℓ and x̌

(t)
ℓ+1 is lower than a given threshold

value ρ

ř
(t)
ℓ,ℓ+1 < ρ. (1)

One recalls that ř
(t)
ℓ,ℓ+1 is given by [19]

ř
(t)
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∑P
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¯̌x
(t)
ℓ

)(
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where x̌ℓ,p and ¯̌xℓ = (1/P)
∑P

p=1 x̌ℓ,p are the intensity of

the pth pixel and the mean pixel intensity, respectively, in the

ℓth band. These two decorrelated images x̌
(t)
ℓ and x̌

(t)
ℓ+1 are

then split to produce two additional virtual images x̌
(t+1)
ℓ+1 and

x̌
(t+2)
ℓ+1 of the (t + 1)th-iterated HSI image X̌

(t+1)
as follows:
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where α ∈ (0, 1) is a given weighting parameter. It is worthy

to note that the set of virtual composite images {x̌
(t+1)
ℓ+1 , x̌

(t+1)
ℓ+2 }

is expected to hold the same amount of information as the

pair of split images {x̌
(t)
ℓ , x̌

(t)
ℓ+1}. The band indexes (ℓ + 1)

and (ℓ+2) of the composite images correspond to wavelengths

λ
(t+1)
ℓ+1 and λ

(t+1)
ℓ+2 chosen in the range (λ

(t)
ℓ , λ

(t)
ℓ+1) as

{

λ
(t+1)
ℓ+1 = λ

(t)
ℓ + δλ(t)

λ
(t+1)
ℓ+2 = λ

(t)
ℓ+1 − δλ(t)

(4)

where the wavelength stepsize δλ(t) is adjusted along the

algorithm iterations following a geometrical updating rule,

δλ(t+1) = αδλ(t). Finally, if the pair of images {x
(t)
ℓ , x

(t)
ℓ+1}

has not been split, i.e., r
(t)
ℓ,ℓ+1 > ρ, then only the image

x
(t)
ℓ is included into the new state of the synthetic HSI,

i.e., x̌
(t+1)
ℓ = x̌

(t)
ℓ . The splitting procedure ends at iteration

Tmax when the wavelength stepsize δλ(Tmax) falls below a min-

imum value, namely, δλmin. The whole procedure is sketched

in Algorithm 1.

Algorithm 1 Splitting Process

Input: Observed image X .

Threshold parameter ρ.

Weighting parameter α.

Minimum stepsize δλmin and δλinit initial values.

Initializations:

1: t ← 1

2: δλ(t) ← δλinit

3: X̌
(t)
← X

4: Ľ ← L

Iterations:

5: while δλ(t) > δλmin do

6: ℓ ← 1

7: while ℓ < Ľ do

8: Compute r
(t)
ℓ,ℓ+1 following (2)

9: if r
(t)
ℓ,ℓ+1 < ρ then

10: x̌
(t+1)
ℓ ← x̌

(t)
ℓ

11: x̌
(t+1)
ℓ+1 ← α(x̌

(t)
ℓ + x̌

(t)
ℓ+1)

12: x̌
(t+1)
ℓ+2 ← (1− α)(x̌

(t)
ℓ + x̌

(t)
ℓ+1)

13: x̌
(t+1)
ℓ+3 ← x̌

(t)
ℓ+1

14: Ľ ← Ľ + 2

15: ℓ ← ℓ+ 3

16: else

17: x̌
(t+1)
ℓ ← x̌

(t)
ℓ

18: ℓ ← ℓ+ 1

19: end if

20: end while

21: δλ(t+1) ← αδλ(t)

22: t ← t + 1

23: end while

Output: The HSI X̌ = X̌
(t−1)

after the splitting process.

B. Merging Step

Once a synthetic HSI image X̌ with an extended number

Ľ of bands has been obtained from the splitting process

(see Section II-A), these Ľ spectral bands follow a merg-

ing process that aims at gathering most of the informa-

tion into a significantly lower number of bands L̂ , with

L̂ ≤ L ≤ Ľ. This merging process consists in succes-

sively analyzing the spectral bands of X̌ to identify the

most correlated ones, following the opposite decision rule

specified in (1). This set of correlated images is then fused

to produce a single-band image according to a hyperspectral



fusion process. Hyperspectral fusion has motivated plenty

of research contributions [20]–[23]. In this letter, the fusion

process is conducted by averaging the multiple single-band

images to be merged

x̂ℓ =
1

|Iℓ|

|Iℓ|
∑

k=1

x̌k (5)

where x̂ℓ denotes the ℓth band after the merging process, Iℓ is

the set of indices corresponding to the bands x̌k to be merged,

and | · | denotes the cardinality. The whole merging process

is provided in Algorithm 2. Note that the fusing step is only

denoted by fuse{·} since any other competing fusion algorithm

can be used in place of the considered empirical average.

Algorithm 2 Merging Process

Input: HSI image X̌ after splitting process.

Threshold parameter ρ.

Initializations:

1: t ← 1

2: ℓ ← 1

3: L̂ ← Ľ

Iterations:

4: while ℓ < L̂ do

5: ℓ← 1

6: Iℓ ← {ℓ}

7: for k ∈ {ℓ+ 1, . . . , Ľ} do

8: Compute řℓ,k following (2)

9: if rℓ,k > ρ then

10: Iℓ ← Iℓ ∪ {k}

11: L̂ ← L̂ − 1

12: end if

13: end for

14: x̂ℓ ← fuse
{

x̌k; k ∈ Iℓ

}

15: ℓ ← ℓ+ 1

16: end while

Output: The HSI X̂ ,
[

x̂1, . . . , x̂
L̂

]T
after the merging

process.

III. EXPERIMENTAL RESULTS

This section reports some experiments conducted using

three HSIs described in Section III-A. The proposed split-

and-merge BS algorithm has been compared with other fusion

approaches: minimum noise fraction (MNF) [24], feature

selection based on feature similarity (FSFS) [25], Ward’s link-

age strategy using MI (WaLuMI), and Ward’s linkage strategy

using divergence (WaLuDi) [9]. For the WaluMi and WaluDi

methods, the number of bands needs to be a priori fixed.

To establish a fair comparison, in the conducted experiments,

it is selected as the same value as the one recovered by

the proposed split-and-merge algorithm. For each data set,

the selected bands are subsequently fused using the particle

swarm optimization image fusion proposed in [26] with the

root-mean-square error as the objective function to be mini-

mized. The performance of each BS approach is assessed by

Fig. 1. (Left) Composite color image of the Indian Pines AVIRIS image.
(Right) Ground-truth class labels.

conducted supervised classification. More precisely, benefiting

from the availability of ground truth associated with the

considered HSI, support vector machine (SVM) classifiers are

implemented, exploiting the fused band resulting from the BS

procedures. In this letter, the SVM-based classification task

has been conducted thanks to the LIBSVM software [27]

with a kernel chosen as the Gaussian radial basis function.

Classification performance is monitored using the OA and

Cohen’s kappa index. The number of bands recovered by each

BS method is also provided as a complementary information,

which allows the tradeoff between the number of selected

bands and the amount of relevant information (assessed by

classification performance) to be evaluated. Note that, since the

proposed method automatically infers the number of relevant

bands, to provide fair comparison, the compared methods have

been tailored to reach a result obtained with the same number

of retrieved bands, by adjusting the corresponding algorithmic

parameters.

A. Data Sets

The first hyperspectral data set considered is the so-called

Indian Pines image acquired by the Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS). This image originally con-

sists of 220 spectral bands in the 0.4–2.5-µm VNIR range [28].

Each band is a 145× 145 pixel image. The corrected Indian

Pines used in the conducted experiment has been reduced to

only 200 bands after removing bands covering the region of

water absorption. Fig. 1(left) shows a color composition of the

scene, with spectral bands 28, 19, and 10 used for the red–

green–blue (RGB) channels, respectively. For the performance

assessment by SVM classification, the training set has been

randomly selected as a 60% of the labeled pixels and the

whole set of data has been used for computing the OA and

kappa index. In the implementation of the proposed split-

and-merge BS algorithm for the AVIRIS data set, the tuning

parameters have been empirically selected after several trials

as δλmin = 0.1 and ρ = 0.8 in the proposed split-and-merge

BS algorithm.

The second hyperspectral data used have been acquired by

the Reflective Optics System Imaging Spectrometer (ROSIS)

over Pavia, consisting of 103 spectral bands in the range

430–770 nm [28]. Each band is a 610 × 340 pixel image.

A color composite image of the scene is depicted in Fig. 2(left)

where spectral bands 28, 19, and 10 are used for the RGB

channels, respectively. Within the SVM classification, the size

of randomly selected training set has been set as a 10% of the

labeled pixels and the whole data have been used as test pixels

for computing the OA and kappa figures of merit. For this



Fig. 2. (Left) Composite color image of the Pavia University ROSIS image.
(Right) Ground-truth class labels.

Fig. 3. (Left) Composite color image of the Pavia Center ROSIS image.
(Right) Ground-truth class labels.

ROSIS data set, the minimum wavelength stepsize has been

fixed as δλmin = 0.5 while the correlation threshold has been

fixed as ρ = 0.975.

The third hyperspectral data used have been acquired over

Pavia Center also by ROSIS with the same spectral character-

istics reported above. Each band is a 1096× 715 pixel image

after removing spurious pixels. A color composite image of the

scene is depicted in Fig. 3(left) where spectral bands 28, 19,

and 10 are used for the RGB channels, respectively. Within the

SVM classification, the size of randomly selected training set

has been set as a 1% of the labeled pixels and the whole data

have been used as test pixels for computing the OA and kappa

figures of merit. Again, for this ROSIS data set, the minimum

wavelength stepsize has been fixed as δλmin = 0.5 while the

correlation threshold has been fixed as ρ = 0.975.

B. Results

This section reports and discusses the results obtained by

the considered algorithms on the three data sets, namely,

Indian Pines, Pavia University, and Pavia Center. Table I

reports the OAs, kappa indices, and corresponding number of

selected bands recovered by the other unsupervised BS meth-

ods (MNF, FSFS, WaluMi, and WaluDi) and the proposed

split-and-merge approach (denoted S&M).

These results show that for the AVIRIS Indian Pines data

set, the proposed split-and-merge algorithm provides better

results in terms of OA and kappa index in comparison with the

other four unsupervised BS methods (MNF, FSFS, WaluMi,

and WaluDi) where the number of bands has been significantly

TABLE I

OA, KAPPA, AND NUMBER OF BANDS (♯) FOR EACH METHOD

ON INDIAN PINES AND PAVIA DATA SETS

reduced from 200 to 40 bands. For the ROSIS Pavia University

data set, the split-and-merge algorithm performs better than

the four unsupervised BS methods and also gives better results

than the whole band set in terms of kappa indices. The

new S&M performs better in terms of OA for the ROSIS

data set when reducing the number of bands significantly

from 103 to 28. Also, for the ROSIS Pavia Center data

set, our new algorithm outperforms the four unsupervised

BS methods and succeeds in reducing the number of selected

bands from 103 to 29. Note that we adjusted the number

of bands to be the same in our experiments to establish

a fair comparison between our new algorithm and the four

unsupervised BS methods.

IV. CONCLUSION

Although hyperspectral imaging provides a huge amount

of information regarding the sensed scene, hyperspectral dat-

acubes are composed of highly correlated single-band images.

This implies the need for designing efficient BS techniques to

select the most informative bands and hence to reduce the com-

putational efforts while decreasing the storage space. In this

letter, we proposed a new unsupervised BS approach based

on a split-and-merge concept. The new algorithm performed

a split step once two adjacent spectral bands were detected

as weakly correlated. The splitting step was conducted by

creating two virtual sub-bands between the two original bands.

This splitting procedure was repeated for the sub-bands as

long as they are weakly correlated. In a second stage of

the proposed algorithm, the algorithm applied a merge step

by fusing all bands that are determined as highly correlated.

The experiments conducted on three different public data sets,

namely, AVIRIS Indian Pines, ROSIS Pavia University, and

ROSIS Pavia Center images, showed the potential of the pro-

posed split-and-merge approach. Future work includes inves-

tigations on the use of alternative correlation measures to be

exploited within the split and merge steps. Furthermore, efforts

will be dedicated to tune efficiently and in an unsupervised

way the algorithmic parameters of the proposed split-and-

merge technique (i.e., δλmin and ρ). Since these parameters are

expected to be highly dependent on the hyperspectral sensor,

a strategy would be to learn beforehand optimal parameter

values associated with different HSIs. Note that the values

reported in Section III for the AVIRIS and ROSIS data sets

can be useful to analyze other data sets coming from these

two particular sensors.
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