Clustered Spanning Tree-Conditions for Feasibility - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2015

Clustered Spanning Tree-Conditions for Feasibility

Nili Guttmann-Beck
  • Fonction : Auteur
Zeev Sorek
  • Fonction : Auteur

Résumé

Let H =< G, S > be a hypergraph, where G = (V, E) is a complete undirected graph and S is a set of not necessarily disjoint clusters Si ⊆ V. The Clustered Spanning Tree problem is to find a spanning tree of G which satisifes that each cluster induces a subtree, when it exists. We provide an efficient and unique algorithm which finds a feasible solution tree for H when it exists, or states that no feasible solution exists. The paper also uses special structures of the intersection graph of H to construct a feasible solution more efficiently. For cases when the hypergraph does not have a feasible solution tree, we consider adding vertices to exactly one cluster in order to gain feasibility. We characterize when such addition can gain feasibility, find the appropriate cluster and a possible set of vertices to be added.
Fichier principal
Vignette du fichier
CSTFeasibilityBeckSorekStern.pdf (427.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01887552 , version 1 (04-10-2018)
hal-01887552 , version 2 (12-04-2019)
hal-01887552 , version 3 (29-07-2019)
hal-01887552 , version 4 (19-08-2019)

Identifiants

  • HAL Id : hal-01887552 , version 1

Citer

Nili Guttmann-Beck, Zeev Sorek, Michal Stern. Clustered Spanning Tree-Conditions for Feasibility. Discrete Mathematics and Theoretical Computer Science, 2015. ⟨hal-01887552v1⟩
100 Consultations
840 Téléchargements

Partager

More