Statistical description of turbulent particle-laden flows in the very dilute regime using the Anisotropic Gaussian Moment Method
Résumé
The present work aims at investigating the ability of a Kinetic-Based Moment Method (KBMM) to reproduce the statistics of turbulent particle-laden flows using the Anisotropic Gaussian (AG) closure. This method is the simplest KBMM member that can account for Particle Trajectory Crossing (PTC) properly with a well-posed mathematical structure [1]. In order to validate this model further, we investigate here 3D turbulent flows that are more representative of the mixing processes, which occurs in realistic applications. The chosen configuration is a 3D statistically-stationary Homogeneous Isotropic Turbulence (HIT) loaded with particles in a very dilute regime. The analysis focuses on the description of the first three lowest order moments of the particulate flow: the number density, the Eulerian velocity and the internal energy. A thorough numerical study on a large range of particle inertia allows us to show that the AG closure extends the ability of the Eulerian models to correctly reproduce the particle dynamics up to a Stokes number based on the Eulerian turbulence macro-scale equal to one, but also highlights the necessity of high-order numerical schemes to reach mesh convergence, especially for the number density field.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...