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Abstract

The present work aims at investigating the ability of a Kinetic-Based Moment

Method (KBMM) to reproduce the statistics of turbulent particle-laden flows us-

ing the Anisotropic Gaussian (AG) closure. This method is the simplest KBMM

member that can account for Particle Trajectory Crossing (PTC) properly with

a well-posed mathematical structure [1]. In order to validate this model further,

we investigate here 3D turbulent flows that are more representative of the mix-

ing processes, which occurs in realistic applications. The chosen configuration

is a 3D statistically-stationary Homogeneous Isotropic Turbulence (HIT) loaded

with particles in a very dilute regime. The analysis focuses on the description of

the first three lowest order moments of the particulate flow: the number density,

the Eulerian velocity and the internal energy. A thorough numerical study on

a large range of particle inertia allows us to show that the AG closure extends

the ability of the Eulerian models to correctly reproduce the particle dynamics

up to a Stokes number based on the Eulerian turbulence macro-scale equal to

one, but also highlights the necessity of high-order numerical schemes to reach

mesh convergence, especially for the number density field.
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1. Introduction

In several industrial systems such as aeronautical combustors or fluidized

beds, turbulent particle- or droplet-laden flows play a central role. Simulating

such flows is still challenging because of the multi-scale character of the interac-

tions between the gaseous carrier phase and the disperse phase. Several methods

are available in the literature, ranging from the simulation at the particle scale

[2] to the ensemble-averaged simulation of a full system [3].

The present work focuses on the prediction of the dynamics of particles sub-

ject to drag force with a turbulent carrier phase in the very dilute regime. In

this context, the particles do not affect the carrier phase and the inter-particle

collisions are neglected. A point-particle approximation is considered, for which

particle-scale flow fluctuations are dissipated fast enough to be neglected. Under

these assumptions, the statistics of the disperse phase, i.e. its Number Density

Function (NDF), can be determined by a Generalized Population Balance Equa-

tion (GPBE). As stated in [4], a key aspect of this statistical description is the

particle velocity dispersion, called Random Uncorrelated Motion (RUM) due to

the Particles Trajectory Crossing (PTC). This velocity dispersion is typical for

inertial particles that are weakly correlated to the local fluid velocity field.

Solving the PBE directly is not feasible in realistic configurations due to the

high dimensionality of the phase space. To circumvent this issue, moment meth-

ods can be used. This efficient strategy significantly reduces the computational

cost by transporting moments of the NDF that only lie in the physical space.

However, for a given moment set to be solved, unsolved higher order moments

are required in order to close the moment equations. The closure must properly

describe the velocity dispersion in order to reproduce the physics of the flow.

In the literature, several closures can be found in the particulate flow commu-

nity, but also in the rarefied gases community. They can be separated into two
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families depending of the type of approximations: the Algebraic-Closure-Based

Moment Methods (ACBMM, [5, 6, 7, 8, 9]), which make assumptions on the

structure and evolution of the moments, and the Kinetic-Based Moment Meth-

ods (KBMM, [10, 11, 12, 13, 1, 14, 15] ), which make assumptions directly on

the shape of the NDF itself.

By essence, the two families share the objective of controlling moments up

to a given order. However, ACBMM always require fewer moments to be solved

because, when KBMM add an equation for any additional moments to be con-

trolled, ACBMM can rely on an algebraic relationship. In [16], a first comparison

between the 2 − ΦEASM model [7] and the Anisotropic Gaussian (AG) model

[1] has been performed, showing a comparable accuracy in a 2D turbulent con-

figuration. Both methods were targeting to control the second order moments,

but where AG has to solve the full set of second order moments (6 in 3D),

2 − ΦEASM model uses only one moment (the trace of the pressure matrix),

leading to a reduced computational effort. However, the design of numerical

methods is more difficult for ACBMM because of the presence of extra non-

linear terms preventing from a complete characterization of the mathematical

structure. On the other hand, KBMM lead to hyperbolic or weakly-hyperbolic

systems of equations [17], for which well-designed solvers exist in the literature

(see [18, 19] and references therein for example).

Even if the AG model has already been validated in 2D and compared with

a member of the ACBMM, it still has to be validated in 3D turbulent configura-

tions in order to evaluate its ability to tackle realistic industrial configurations.

This is the aim of the present paper.

In the following, the AG model is first presented along with the MonoKinetic

model (MK): a model only accurate for small inertia particles [20]. Numerical

methods are also briefly mentioned, while a more detailed description is provided

in Appendix B. Next, we aim at showing that the second-order AG model can

be viewed as an extension of the first-order MK model. To this purpose, a 3D

turbulent configuration is presented and the results obtained with the AG and

MK models are compared to a Lagrangian statistically-converged reference. The
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numerical study is performed in an as extensive manner as possible, by sweeping

a large range of the disperse regimes and looking at numerous representative

quantities to assess the strengths and weaknesses of the AG Eulerian model. By

this thorough numerical study, we assess the ability of the AG model to recover

the right statistics for a specified range of particle inertia.

2. Statistical modelling of particle-laden flows

The present work relies on the following assumptions:

• Point-particle approximation [21]: particles are considered to be much

smaller than any of the carrier phase scales.

• Negligible mass loading and volume fraction: the particles load does not

affect the carrier phase. The two phases are coupled only one-way: the car-

rier phase feeds the disperse phase with energy, but the particles retroac-

tion is neglected.

• Very dilute regime: the particles mean free path is much greater than

any dimension of the problem. The Knudsen number is considered to be

infinite and thus, inter-particles collisions are neglected.

• Large density ratio between particle and gas phases: the drag force is the

only force acting on the particles.

• Fixed-size monodisperse spherical particles: there is no need to track the

distribution in size.

• Stokes drag: particules Reynolds number does not affect their relaxation

time toward the underlying carrier velocity field.

In this framework, the NDF, f(t,~x,~c), of the disperse phase is described by

the following GPBE:

∂tf + ∂~x · (~cf) + ∂~c ·
(
~ug − ~c

τd
f

)
= 0, (1)

where ~c is the velocity of the particles in the phase space, ~ug is the gas velocity

and τd is the characteristic relaxation time of the particles.
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2.1. Eulerian method of moments

After multiplying equation (1) by ci1c
j
2c
k
3 and integrating over the phase

space, one gets a system of moment equations. In a three-dimensional physical

space, the general equation on the velocity moments is:

∂tMi,j,k + ∂~x ·


Mi+1,j,k

Mi,j+1,k

Mi,j,k+1

 =
1

τd

~ug ·


iMi−1,j,k

jMi,j−1,k

kMi,j,k−1

− (i+ j + k)Mi,j,k

 ,

(2)

where the general (i+ j + k)th order moment in velocity is:

Mi,j,k =

∫
ci1c

j
2c
k
3fdc1dc2dc3. (3)

This system is not closed: actually for every set of moments of order N which

contains the moments of order (i + j + k) ≤ N , moments of order N + 1

are needed to describe the higher order fluxes in physical space: Mi,j,k where

i+ j + k = N + 1 .

In order to close the moment system (2), one needs to provide:

• the moment set of order N :

{Mi,j,k, i+ j + k ≤ N} ,

• a closure relationship which allows to model the unknown fluxes. In the

Kinetic Based Moment Methods (KBMM), this is done by keeping the

link between the kinetic level and the macroscopic level, at the price of

the reconstruction of the NDF, which is generally supposed to have a given

shape.

The choice of the presumed shape of the NDF is of paramount importance for

a KBMM. It can be driven by the following guidelines:

• a one-to-one mapping between the moments and the parameters of the

NDF is essential to ensure the well-posedness of the system of equations;
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• an appropriate shape can also guarantee that the final moment system is

hyperbolic and has an entropic structure, usually relying on hydrodynamic

equilibrium assumption as in the Levermore hierarchy [22];

• the shape can also be chosen based on the physics of the problem in

sight, which can for instance suggest an equilibrium distribution (such as

a Maxwellian distribution in the case of collision-driven particulate flows);

• peculiar attention must be given to the border of the moment space (zero

pressure, zero density), to avoid numerical issues when dealing with tran-

sition between regions at the border and regions inside the moment space.

2.2. Monokinetic model

When no PTC occur, the disperse phase has a unique deterministic veloc-

ity at each time-space point (t,~x). Consequently, the velocity distribution is

monokinetic:

f(t,~x,~c) = n(t,~x)δ(~c− ~u(t,~x)), (4)

where n(t,~x) is the total number density of the disperse phase, and ~u(t,~x)

the Eulerian velocity. In this specific case, the system of moments closes at

first order, since the pressure tensor, its second order centered-moment, is null:

P =
∫

(~c − ~u(t,~x)) ⊗ (~c − ~u(t,~x))f(t,~x,~c) d~c = 0. Therefore, we get the

following weakly-hyperbolic system, identical to the Pressureless Gas Dynamics

(PGD) system [23, 24]:
∂tn+ ∂~x · (n~u) = 0,

∂t(n~u) + ∂~x · (n~u⊗ ~u) =
n(~ug − ~u)

τd
.

(5)

The MK model correctly reproduces the formation of depletion and accu-

mulation regions obtained for small Stokes numbers and dedicated numerical

schemes can be designed to properly account for such hypercompressible dy-

namics [20]. However, when PTC occur for moderate to high inertial particles,

the velocity dispersion cannot be captured by the single Dirac δ-function used for

6



the velocity distribution. Instead, at each PTC location, unphysical δ-shocks

are generated, and these are highly constraining from the numerical point of

view. Another constraint of this model is that it does not conserve the total

kinetic energy of the disperse phase [23, 25].

2.3. Anisotropic Gaussian model

To reproduce the velocity dispersion induced by the PTC, we consider the

AG closure, which is a second order model of the KBMM family:

f(t,~x,~c) = n(t,~x)N (~c− ~u(t,~x),Σ(t,~x)), (6)

where N is a joint Gaussian distribution centered in ~u and of covariance matrix

Σ = (σij) in the space of dimension Nd:

N (~c− ~u,Σ) =
|Σ|−1/2

(2π)Nd/2
exp

(
−1

2
(~c− ~u)TΣ−1(~c− ~u)

)
. (7)

This closure was inspired by the work of [26] in the context of out-of-equilibrium

rarefied gas dynamics and was called the 10-moment closure, and is the first

member of the Levermore hierarchy [22]. In the rarefied gases context, the good

mathematical properties of this model at the kinetic and at the moment levels

was highlighted in [27, 28] and a numerical approximation was proposed by [29]

and [30].

The resulting system of moments reads:

∂tn+ ∂~x · (n~u) = 0,

∂t(n~u) + ∂~x · (n~u⊗ ~u + P) =
n(~ug − ~u)

τd
,

∂t(nE) + ∂~x · ((nE + P) ∨ ~u) =
n(~ug ∨ ~u− 2E)

τd
,

(8)

where ∨ denotes the symmetric tensor outer product1, the total energy tensor

1The symmetric tensor outer product acts on a symmetric k-tensor and a symmetric l-

tensor by symmetrizing their (k + l)-order outer product tensor, see [26].
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E is given by E = 1
2~u⊗ ~u + P

2n and the anisotropic pressure tensor is given by

the equation of state P = nΣ. The resulting system is hyperbolic and admits

entropies [31]. This model was introduced for the first time for the modeling of

the disperse phase in the work of [1].

2.4. Realizable numerical schemes

An important requirement for the moment methods is to preserve the re-

alizability of the moment set, i.e. the fact that the moment set is the set of

moments of a positive NDF. Because the closure of the moment set is obtained

through assumptions on the NDF itself, the derived systems of moments pre-

serve the realizability of the moment set at the continuous level. When it comes

to solve the moment system using a given time and space discretization, intro-

ducing numerical errors, it is not straightforward to maintain the realizability

of the moments at the discrete level, especially since we want to cover the whole

moment space, including its frontier (zero density, zero pressure, ...).

In the present work, the two systems of interest are solved using numerical

methods expressly developed to ensure realizability and stability, as well as high

accuracy: a dedicated second order MUSCL-HLL scheme.

For the AG model, the MUSCL-HLL scheme developed in [1] has been ex-

tended to the 3D case. It is of second-order in time and space, also preserves

realizability of the moment set and behaves well at moment space boundaries.

More details are given in Appendix B.

It is important to note that for the Monokinetic approach, a second-order

Kinetic Scheme [32] can also be used. The realizability properties of this latter

are inherited from a linear and conservative reconstruction of the central mo-

ments n and u, and an exact evolution in time of the reconstructed NDF at the

kinetic level.

3. Numerical setup: 3D Forced Homogeneous Isotropic Turbulence

The configuration of interest is based on a 3D Forced Homogeneous Isotropic

Turbulence (FHIT) for the carrier phase, solved in a cubic domain, with periodic
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boundary conditions. This classical academic test case, auto-similar in terms of

Reynolds number, is essential for the validation of the disperse phase models,

since it represents one of the canonical samples of the physics faced in industrial

applications. These simulations are carried out at a low Reynolds number.

However, let us emphasize here that the evaluation and the application of the

Anisotropic Gaussian model is not limited to low turbulence flows.

All the values of the variables presented in this work are dimensionless:

u∗ =
u

uref
, t∗ =

t

tref
, L∗ =

L

Lref
, (9)

and the normalizing Reynolds number is Re0 = urefLref/ν = 103.

3.1. Velocity field and general properties

The FHIT is solved using the ASPHODELE code [33], which solves the

Navier-Stokes equations in the low-Mach number limit.

The initial turbulence field is generated using an isotropic random mode

generation and inverse Fourier transform in a cubic domain of size 53 using a

1283 mesh. The energy spectrum function introduced in [34] is used as the

model spectrum:

Em(κ) = C〈ε〉2/3κ−5/3fL(κL)fη(κη), (10)

with:

fL(κL) =

(
κL

[(κL)2 + cL]1/2

)5/3+p0

, (11)

fη(κη) = exp
(
−β[((κη)4 + c4η)1/4 − cη]

)
, (12)

where η =
(
ν3

〈ε〉

)1/4

is the Kolmogorov length scale given as a function of the car-

rier phase viscosity ν and the mean dissipation rate of turbulent kinetic energy

〈ε〉. In addition, the length scale L = 〈TKE〉3/2
〈ε〉 characterizes the large eddies,

where 〈TKE〉 is the mean turbulent kinetic energy. The initial parameters of the

spectrum are C = 1.5, β = 5.2 and p0 = 4 [34], cL = 0.019, 〈TKE〉 = 0.00667,

cη = 0.051, L = 4 and η = 0.027.
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The turbulent characteristics of the statistically-stationary HIT, including

the mean turbulent kinetic energy (〈TKE〉), the dissipation 〈ε〉, the Kolmogorov

time and length scales (time τK and length η), the Lagrangian integral time scale

τL, the Eulerian eddy turn-over time τeddy, the longitudinal integral length scale

L11, and the turbulent Reynolds number Re = ug,rmsL11/ν, where ug,rms is the

gas velocity fluctuations, are given in Table 1.

Table 1: Turbulence properties of the HIT.

〈TKE〉 〈ε〉 τK η τL τeddy L11 Re

0.00667 0.000635 1.2545 0.03535 4.7905 9.7864 0.65217 43.46

3.2. Characteristic time scale of the fluid

The Stokes number based on the Kolmogorov time scale StK is classically

used to characterize the occurrence of PTC, since it relies on the scales of the

turbulence of the shortest characteristic time. This choice, although very com-

mon in DNS, can be tempered because the Kolmogorov time scale τK =
√
ν/〈ε〉

represents an average time scale. Indeed, 〈ε〉 = ν < 2sijsij > is obtained as an

averaging over the spatial domain, where sij = 1
2

(
∂ug,i

∂xj
+

∂ug,j

∂xi

)
. Therefore,

shorter time scales may exist in the turbulence. To illustrate this possibility,

the distribution of the characteristic time scales of the fluid τlocal = 1/
√
sijsij is

plotted in Fig. 1. It shows the existence of short time scales that may generate

PTC, even if StK is below the critical value of 1. Such a behaviour has already

been reported in the literature, see for instance [35], and is of great interest

for modelling purpose, as it could suggest that even low-Stokes number flows

require the modelling of the second order moments.

3.3. Eulerian and Lagrangian simulations for the particles

Here we give details about the simulations that have been performed. For

the initialisation, 100M lagrangian particles are randomly loaded in the domain

following a homogeneous distribution. Eulerian simulations are also initially
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Figure 1: Distribution function of the local time scale of the gas velocity field for the FHIT

at t = 40 in black. The red line identifies the Kolmogorov time scale τk.

set to a homogeneous distribution. For both types of simulations, all parti-

cles are at rest at the beginning. The simulated Stokes number are StK =

[0.05, 0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 15.0]. Simulations are performed

up to t = 40, except for StK ≥ 8 that are simulated up to time t = 80 in order

to get relevant equilibrium statistics. Simulation times are reported in Table 2

for StK = 8.0, for a computation up to t = 80, on 512 intel Xeon E5-2690V3

processors.

Simul. Lag MK AG

Mesh 643 1283 2563 5123 643 1283 2563 5123

Time 1h37m 33s 3m 32m 7h6m 54s 5m 57m 15h19m

Table 2: Simulation time (wall time) for the particle solver using Lagrangian or Eulerian

solvers. Simulations are performed on 512 Intel Xeon E5-2690V3 on the supercomputer Oc-

cigen (CINES, France).

4. Results and discussions

The results are presented in a sequential manner, comparing the AG and MK

model to a Lagrangian reference. Eulerian quantities for the Lagrangian data
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are obtained using a box average based on the computational mesh. We first

investigate the ability to accurately reproduce the number density field. Then,

results on the Eulerian velocity are presented. Finally, the ability to predict the

energy partition in the particles dynamics is evaluated.

4.1. Number density field

4.1.1. Qualitative visualization

The first level of validation consists in a qualitative comparison of the number

density fields for three different Stokes numbers, see Fig. 2.

For StK = 1, the spatial structure to be captured is challenging from the

numerical point of view: we have to deal with very high concentration in thin

structures close to large depletion zones. In fact, the closer to the critical Stokes

number, the greater the probability to generate δ-shocks. At this particular

Stokes number, AG and MK models provide the same global structure of the

number density field, in agreement with the Lagrangian reference, despite the

fact that Lagrangian solution presents thinner structures.

For StK = 3, the underlying physics is expected to lead to significant PTC

In this case, the MK model is not expected to capture the right dynamics of the

particle-laden flow. This is clearly seen in Fig. 2, where particles accumulations

are highly overestimated by the MK model compared to the Lagrangian and AG

results. On the other hand, the AG model still captures the global structures,

their sizes and does not overestimate the accumulations.

These conclusions still hold for StK = 8, for which the MK model still

overestimates the level of particles accumulation. The Lagrangian reference

shows a lower level of accumulation compared to StK = 3, and the AG model

follows the same trend.

4.1.2. Segregation

In order to get a quantitative estimate of the level of accumulation and of

depletion in the number density field, we investigate the segregation, which rep-

resents the spatial correlation of the number density field at a given length scale

12



Figure 2: Number density field at t = 40 on the 1283 mesh for StK = 1 (top), StK = 3

(center) and StK = 8 (bottom), for the Lagrangian reference (left), the Mono-kinetic model

(center) and the Anisotropic Gaussian model (right).

[36]. This quantity is of paramount importance in the domain of combustion

since it strongly affects the evolution of the mean vapour mixture fraction [33].

The segregation G∆
pp is given by the following equation:

G∆
pp =

〈n2
∆〉

〈n∆〉2
, (13)
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where 〈·〉 is the averaging operator over the whole domain, and n∆ is the number

density field projected onto a mesh of grid size ∆, using a box filter. In the

following, ∆ is chosen to be equal to the largest mesh spacing used for the

Eulerian simulation, i.e. ∆ = L
64 . The time evolution of the segregation is

plotted in Fig. 3 for three Stokes numbers and several mesh refinements.

For StK = 1, both Eulerian models underestimate the segregation compared

to the Lagrangian reference. The MK model gives higher segregation than the

AG model, and is therefore closer to the Lagrangian segregation. When refining

the mesh, both Eulerian models yield higher segregation and seem to “converge”

to the Lagrangian reference. However for the 5123 mesh, the segregation of MK

slightly overestimates the Lagrangian one for t < 20, showing that this model is

not converging to the Lagrangian result. This can be explained by the fact that

the occurence of local strain rate higher than the average value used to compute

τk can lead to PTC that cannot be handled correctly by the MK model.

In the case of moderately inertial particles StK = 3, the segregation is overes-

timated by the MK model and diverges from the Lagrangian segregation curve,

when refining the mesh. On the other hand, the segregation level for the AG

model approaches to the Lagrangian one, when refining the mesh.

For inertial particles at StK = 8, the segregation is still largely overestimated

by the MK model, whereas the AG model is capturing the overall time evolution,

and is getting closer to the Lagrangian reference as we refine the mesh. However,

it should be noted that for long time t = 80, the most refined solution of the

AG model gives a slightly higher segregation than the Lagrangian reference.

From both high Stokes numbers, we clearly see the two main sources of

“diffusion” of the Eulerian solutions, the numerical error and the model:

• the numerical error is present in both MK and AG simulations, and ex-

hibits a first-order convergence in terms of segregation because the nu-

merical schemes are necessarily switching to first order in accumulation

zones and close to vacuum. The high sensitivity of Eulerian simulations to

numerical error has already been evidenced in the literature [37, 5, 38, 39];
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• for a given mesh, comparing AG and MK shows the “diffusive” effect of

solving for an additional internal energy: the AG model always giving a

lower segregation than the MK model.
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Figure 3: Time evolution of the segregation for the Lagrangian result (black solid line) and

Eulerian results using 643 (green), 1283 (blue), 2563 (red) and 5123 (grey) meshes, for StK = 1,

StK = 3 and StK = 8, for the MK model (dashed lines) and the AG model (dot-dashed lines).

Arrows indicate increasing mesh sizes for Eulerian simulations.

4.1.3. Distribution functions

To further investigate the number density field, we look at its distribution

in the physical domain for each Stokes number. At the critical Stokes number,

StK = 1, both Eulerian results approach the number density PDF of the La-

grangian result (Fig. 4) with mesh refinement. The number density PDF of the

MK-5123 result is however closer to the Lagrangian PDF than the most refined

AG one. This kind of differences has also been evidenced on the literature, see

[5]. Nonetheless, the MK result might diverge from the Lagrangian one with

even more refined meshes, since the PTC might occurs because of the smallest

time scales of the turbulence.

For a moderately inertial disperse phase (StK = 3), see Fig. 5, the number

density PDF of the AG result approaches the Lagrangian one when refining the

mesh, except for the underestimation of the vacuum zone. The MK number

density distribution is not converging to the Lagrangian one when refining the

mesh and gives a higher number of mesh cells where the number density is zero

15



0 0.5 1 1.5 2

Number density

10
-1

10
0

10
1

P
D

F

(a) MK

0 0.5 1 1.5 2

Number density

10
-1

10
0

10
1

P
D

F

(b) AG

Figure 4: Number density PDF for the Lagrangian (black histogram), AG (dot-dashed lines)

and MK (dashed lines) results on 643 (green), 1283 (blue), 2563 (red) and 5123 (gray) meshes

for StK = 1. Arrows indicate increasing mesh sizes for Eulerian simulations.

or very small due to the singularities created by this model at each PTC.
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Figure 5: Number density PDF for the Lagrangian (black histogram), AG (dot-dashed lines)

and MK (dashed lines) results on 643 (green), 1283 (blue), 2563 (red) and 5123 (gray) meshes

for StK = 3. Arrows indicate increasing mesh sizes for Eulerian simulations.

At an even higher Stokes number (StK = 8), the distribution of the number

density is plotted in Fig. 6, and the AG model is shown to properly capture the

number density distribution compared to the Lagrangian reference.
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Figure 6: Number density PDF for the Lagrangian (black histogram), AG (dot-dashed lines)

and MK (dashed lines) results on 643 (green), 1283 (blue), 2563 (red) and 5123 (gray) meshes

for StK = 8. Arrows indicate increasing mesh sizes for Eulerian simulations.

4.2. Eulerian velocity

The second moment of interest is the Eulerian velocity u. Here, we directly

investigate the distribution function of its component in the x-direction, see

Fig. 7. For StK = 1, we see again that the MK and AG models are close to

the Lagrangian reference, as only a negligible amount of PTC occur and the

main part of the particle dynamics is contained into the Eulerian velocity. For

StK = 3, the AG result matches the Lagrangian one except near zero velocity.

For the MK results the velocity in the x-direction is less concentrated near

the zero velocity and more spread toward the maximum and minimum values

(Fig. 7). The velocity PDF of the MK result is not affected significantly by

mesh refinement. For the AG result, the distribution level of the AG velocity

approaches the Lagrangian one with mesh refinement, this can be clearly seen

near zero-velocity. In fact, in this case the PTC now affect the motion of the

disperse phase because StK > 1. Finally, for StK = 8, the AG model is again

close to the Lagrangian reference, and the velocity distribution is not impacted

by mesh refinement.
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Figure 7: PDF of the x-velocity for the Lagrangian (black solid line), AG (dot-dashed line)

and MK (dashed line) results on 643 (green), 1283 (blue), 2563 (red) and 5123 (grey) meshes

for StK = 1, StK = 3 and StK = 8.

4.3. Total and internal energies

As a final validation, we investigate the mean total and internal energies:

MIE =
〈n tr (Σ)〉

2〈n〉
, (14)

MTE =

〈n

(∑
i

u2
i + tr (Σ)

)
〉

2〈n〉
. (15)

The study of the evolution of the mean internal energy (MIE) is essential, since

it is through the velocity variance or the internal agitation energy that the AG

model is capable of reproducing statistically the PTC. Indeed, at each cross-

ing an amount of the kinetic energy n
2

∑
i u

2
i is transferred into internal energy

n
2 tr (Σ). Then, the MIE is an evaluation of the occurrence of PTC. This mech-

anism of transfer of energy between the Eulerian velocity and the MIE has been

clearly depicted in [4], when looking at the equation of the internal energy:

∂t(n tr (Σ)) + ∂~x · (n tr (Σ) ~u) = −2ntr (Σ)

τd
− nΣ : ∂~x~u. (16)

where : is the contraction product of two tensors. In this equation the last term

corresponds to the transfer of energy from the Eulerian velocity to the internal

energy. Therefore, at crossing events, energy is transferred from the eulerian

velocity to the internal energy.

18



Next, since the mean total energy (MTE) is the total amount of energy

available in the whole domain, the knowledge of both MIE and MTE allows to

evaluate the transfer of mesoscopic momentum between the kinetic (correlated

motion) and the internal (uncorrelated motion) energies. In theory, this energy

transfer can be quantified, see [4].

In Fig. 8, the statistics are plotted for StK = 1. In Fig. 8(b) and 8(c),

the MTE is underestimated by the MK model, because of the destruction of

the kinetic energy during PTC. On the contrary, the AG model performs better

and better with mesh refinement. Its MIE is higher compared to the Lagrangian

reference but converges toward the right level when the numerical dissipation

decreases, thanks to the mesh refinement.
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Figure 8: Statistics evolution with time for Lagrangian results (black solid line) and Eulerian

results using 643 (green), 1283 (blue), 2563 (red) and 5123 (grey) meshes with projection

on the same 643 mesh for StK = 1, for the MK model (dashed lines) and the AG model

(dot-dashed lines). Arrows indicate increasing mesh sizes for Eulerian simulations.

In the case of moderately inertial particle StK = 3 (Fig. 9), the departure of

the MK from the Lagrangian result is obvious. For the AG model, refinement

improves the quality of the results for the MTE, but MIE seems to converge to

a higher value than the Lagrangian reference.

For an even more inertial disperse phase (StK = 8, Fig. 10), the AG model

has got the right long-time behaviour, but the MTE is now underestimated.
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Figure 9: Statistics evolution with time for Lagrangian results (black solid line) and Eulerian

results using 643 (green), 1283 (blue), 2563 (red) and 5123 (grey) meshes with projection

on the same 643 mesh for StK = 3, for the MK model (dashed lines) and the AG model

(dot-dashed lines). Arrows indicate increasing mesh sizes for Eulerian simulations.
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Figure 10: Statistics evolution with time for Lagrangian results (black solid line) and Eulerian

results using 643 (green), 1283 (blue), 2563 (red) and 5123 (grey) meshes with projection on

the same 643 mesh for StK = 8, for the MK model (dashed lines) and the AG model (dot-

dashed lines). Arrows indicate increasing mesh sizes for Eulerian simulations.

4.3.1. PDF of the trace of the pressure tensor

To accurately evaluate the degree of PTC captured by the AG model, the

distribution functions of the trace of the pressure tensor for the Lagrangian and

AG simulations on different meshes are plotted in Fig. 11. For StK = 1, the

distribution functions of the AG results converge to the Lagrangian one when

refining the mesh. Most of the particle eulerian field has zero or very small

pressure, since, as explained previously, the probability of having local Stokes

numbers higher than the critical one is non-negligible.

For moderately inertial particles, StK = 3, the form of the PDF of the trace
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of the pressure tensor of the AG result matches the Lagrangian one at high

pressures. However, the number of low-pressure particles is underestimated by

the AG results, especially on the coarsest mesh. When refining the mesh, the

difference between the AG and Lagrangian distribution functions of the internal

energy decreases. Actually, the internal energy includes two contributions:

• one is purely related to the model and is the reason why AG is able to

capture PTC;

• an other one is due to numerical error; because the numerical scheme is

“mixing” states of different velocities and energies, it necessarily leads to

the creation of “numerical” PTC, which contribute to the overall internal

energy.

This explains the convergence of the PDF of the internal energy using the AG

model when refining the mesh, since by doing so, the second contribution is

decreased and the physical behaviour becomes predominant; whereas for the

coarsest mesh, the dominant effect is the numerical diffusion.

For the highest Stokes number, StK = 8, the PDF of the trace of the pressure

tensor for the AG result is still close to the Lagrangian one.
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Figure 11: PDF of the pressure for the Lagrangian (black histogram) and AG results on 643

(green), 1283 (blue), 2563 (red) and 5123 (grey) meshes for StK = 1, StK = 3 and StK = 8.

Arrows indicate increasing mesh sizes for Eulerian simulations.
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4.4. Statistical quantities evolution with Stokes number

Finally, to summarize the ability of the AG model to reproduce the statistics

of the turbulent particle-laden flow, we look at the results at a final time that

depends on the Stokes number in order to reach a stationary state. This final

time tf is equal to the maximum between 4τd and the eddy turn over time of

the turbulence.

The results of the AG model are plotted in Fig. 12 for two meshes (1283

and 5123), for the segregation, the total and the internal energy. Two vertical

lines also indicate the unity Stokes numbers based on the Lagrangian integral

time scale of the fluid (StL) and the Eulerian time scale of the turbulence StE =

τp/τeddy. Overall, it clearly appears that the AG model is suitable as long as

StL = τp/τL is below one, and still gives reasonable results as long as StE is

below one. Total energy is still always well predicted, and the energy partition

between total and internal energy is well captured compared to the Lagrangian

reference, as shown in Fig. 13.

5. Conclusion

In this paper, the Anistropic Gaussian model, designed to capture Particle

Trajectory Crossings, has been evaluated on a 3D Forced Homogeneous Isotropic

Turbulence loaded with a dilute disperse phase. The AG results are compared

with a statistically-converged Lagrangian reference and with the MonoKinetic

closure, a simpler closure not capable of dealing with PTC. From the qualitative

and statistical results presented in this article, several conclusions can be drawn.

First, for particles having small inertia StK < 1, both Eulerian models (MK

and AG) lead to accurate results. The qualitative and quantitative results

highlight the inference that the MK and the AG reproduce the right physics in

this case, in comparison with the Lagrangian results. The MK model has the

advantage of being less expensive than the AG model since in 3D, the number

of equations to be solved is only 4, versus 10 equations for the AG model. Thus,

MK is preferred to AG for the simulation of a disperse phase having a Stokes
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Figure 12: Segregation (a), Total energy (b) and internal energy (c) as a function of the Stokes

number for Lagrangian result and Anisotropic Gaussian results on the 1283 and 5123 meshes

with projection on the same 643 mesh at tf . The vertical lines are: StK = 1 in black, StL = 1

in blue and StE = 1 in red.

number based on the Kolmogorov scale less than 1. It is important to note

that this model can be more accurate whenever solved with adapted numerical

methods such as a Finite Volume Kinetic Scheme or a realizability preserving

RKDG [40, 19]. However, one should keep in mind the fact that the AG model

has the advantage of capturing PTC that can locally occur when the local Stokes

number overcomes the critical one.

Second, for a moderately inertial to inertial disperse phase, the AG model

gives the right qualitative behavior, whereas the MK model ceases to repro-
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mesh at tf . The vertical lines are: StK = 1 in black, StL = 1 in red and StE = 1 in blue.

duce the right dynamics of the disperse phase for Stokes numbers StK > 1. In

addition, whenever the particle relaxation time is in the range between the Kol-

mogorov time scale and the integral time scale characterizing the large eddies,

the temporal evolution of the statistical mean variables is captured precisely

with the AG model.

Finally, for very inertial particles, StL ≥ 1, the AG model gives much better

results than the MK model, but starts to depart from the Lagrangian reference,

if we look at the statistics of the number density field, even if the Eulerian

velocity and the energies are relatively well captured. This is especially true in

the long time behaviour. The limits of the AG model can be explained by the

fact that it solves for a finite number of data of the statistics of the PTC: it

captures only the local effects of the trajectory crossing. Yet, when the Stokes

number grows, particles start to cross at a much larger scale and the AG model

ceases to be relevant.

Based on these different results, the domain of relevance of the AG model

extends from the unity Stokes number based on the Kolmogorov scale to the

unity Stokes number based on the integral scale. For higher Stokes number for

which AG starts to depart from the Lagrangian reference because of large-scale

crossings, our model can be embedded within a Large Eddy Simulation context,
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for which these PTC will contribute to an additional subgrid scale pressure [41].

Appendix A. Numerical convergence of the Eulerian simulations

In order to compare the Eulerian models in the context of a refinement

process, the results for MK and AG have been presented on the 643, 1283,

2563 and 5123 meshes in the result section. Hence, we aim at separating the

modeling influence from the numerical contributions on the capacity of our

strategy in predicting the proper physical behavior of the flow. Ideally, we

would be interested in the comparison of the models at numerical convergence,

which is hard to reach.

In this Appendix, we wish to go one step further in the convergence analysis,

and look at a qualitative assessment of the convergence of the different consid-

ered fields, as well as at a grid convergence index and regression tool in order

to estimate a converged solution.

Appendix A.1. Qualitative analysis of the Eulerian field convergence

First, we focus on the case St = 0.5 at time t = 40, since the flow is really

segregated and it is one of the most difficult one in terms of convergence, and

consider various result fields on 643, 1283, 2563 and 5123 meshes. The study is

only shown for the MK results, since at this Stokes number the results for both

Eulerian models are nearly the same. This comparison is performed on the 2-D

diagonal slice shown in Fig. A.14. From Fig. 15(a), we observe that the number

Figure A.14: The diagonal slice plan shown in red
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density field using MK is close to the Lagrangian one, even if some small details

are slightly different. The result on the 5123 grid captures the right structures,

the correct vacuum zones and even the thin high concentration filaments and

very small difference appears between the 2563 and 5123 meshes.

For the velocity, the results are not highly affected by mesh refinement, as shown

in Fig. 15(c). For the coarsest mesh the right motion is already captured, except

near the vacuum regions. Same conclusions can be drawn from the energy fields.

(a) Number density

(b) Momentum

(c) Velocity

Figure A.15: From left to right: Lagrangian, MK on 643, 1283, 2563 and 5123 meshes at

t = 40 for St = 0.5

So far the qualitative assessment of the fields convergence seems achieved,

but a further inquiry is necessary in order to reach quantitative conclusions.
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Appendix A.2. Convergence rate of the statistics for the AG model

We propose to analyze further the convergence of the simulations relying

on the AG model. To do so, we use the Grid Convergence Index [42], which

goal is to estimate the convergence rate as well as an estimate of the converged

solution, based on three results with different meshes. If ε128, ε256 and ε512 are

three scalar quantities of interest post-processed from the 1283, 2563 and 5123

meshes and if we suppose that we have reached the asymptotic convergence

regime of the numerical scheme, we may postulate that the variable ε evolves

with the mesh refinement as:

εk − ε∗ = C(hk)p, k = 128, 256, 512, (A.1)

where ε∗ is the theoretical value of the quantity ε at convergence, C is a constant,

hk is the characteristic size of mesh k, and p is an estimate of the order of

convergence. If we are in the asymptotic regime2, these two constants, C, p

are fixed and from the three equations (A.1) we can obtain the values of the

constants as well as an estimate of the scalar field at convergence:

p = − 1

log(2)
log
|ε512 − ε256|
|ε256 − ε128|

, C =
ε512 − ε256

hp512 − h
p
256

, ε∗ =
ε512 − 0.5pε256

1− 0.5p
.

(A.2)

We thus get an estimate of the finest result in the asymptotic regime using:

ϕ =

∣∣∣∣ε∗ − ε512

ε∗

∣∣∣∣ . (A.3)

Such an analysis relies heavily on the fact that we have reached the asymptotic

regime for the numerical scheme. If not, it could lead to inaccurate orders and

meaningless converged solutions.

In the following, this analysis is performed for the evolution of the mean

total energy plotted and of the segregation in Figs. 8(b), 9(b), 10(b) and 3.

The evolution with time of the estimated values at convergence of the MTE for

2For large enough discretization steps, we may be in a non-asymptotic regime and the

ordre of the method can change with the step size as analyzed in [43].
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Stokes numbers 1, 3 and 8 is plotted in Fig. A.16. The same has been done for

the segregation, see Fig. A.17.

Looking at the MTE, the asymptotic convergence regime seems to be reached,

with a convergence rate point-by-point in time p ∈ [1, 2] and most of the values

greater than 1.5. Also, the convergence estimate is very close to the reference

Lagrangian values.

(a) StK = 1 (b) StK = 3

(c) StK = 8

Figure A.16: Time evolution of the MTE for the Lagrangian result (black solid line), the AG

results (dot-dashed lines) with 1283 (grey), 2563 (red) and 5123 (blue) cells, and the estimate

of the segregation at convergence (dashed line with crosses), for three Stokes number.

However, when looking at the segregation, the computed orders of conver-

gence are around 0.12 at St = 1, 0.5 at St = 3 and 0.25 at St = 8, which

indicates that we are not yet in the convergence regime, even questioning if we

can reach such a regime using the segregation scalar field in such a case. In

these conditions, it is obvious that the asymptotic regime has not been reached.

This is even clearer when looking at the maximum of the extrapolated error

(A.3) in time, see table A.3. When the convergence error for the mean total

energy is globally lower than two percent, it is higher than 10% when looking

at the segregation of the disperse field and reacher 60% for the most segregated
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Stokes Number 1 3 8

Segregation 59.85% 10.58% 21.22%

Mean Total Energy 0.28% 0.16% 2.09%

Table A.3: Maximum of the extrapolated error (t ∈ [0, 40]) for segregation and MTE.

case. At this point, it has to be kept in mind that, even if segregation is a clas-

sical metric used in the literature to quantify number density fields, it is still

a metric that strongly magnifies errors on depletion zones and fine regions of

stiff accumulation because of its quadratic nature, and such regions are highly

affected by numerical errors, such as the extra dissipation coming from the lim-

iting strategies necessary to ensure stability and robustness of our simulations.

Looking at the evolution of the PDF in number density in Fig. 4.1.3, the NDF

is well predicted, showing that segregation is not necessarily a metric for which

we can analyze mesh convergence in such highly segregated flows.

(a) StK = 1 (b) StK = 3

(c) StK = 8

Figure A.17: Time evolution of the segregation for the Lagrangian result (black solid line),

the AG results (dot-dashed lines) with 1283 (grey), 2563 (red) and 5123 (blue) cells, and the

estimate of the segregation at convergence (dashed line with crosses), for three Stokes number.
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Appendix B. A Realizable Second-Order Dedicated Finite Volume

Scheme

Here, the realizable second-order MUSCL/HLL scheme [1] discussed in Sec. 2.4

is detailed. It is based on the MUSCL strategy [44], using a linear conserva-

tive reconstruction of the primitive variables, a realizable HLL scheme, and a

Strong-Stability-Preserving Runge-Kutta method. Multi-dimensional problems

are solved by a dimensional splitting strategy, so we focus on x-direction nu-

merical building block. For more details, one may refer to the work of [1].

Appendix B.1. Realizable and conservative reconstruction

Realizability constraints on the moment set are expressed more easily on

the primitive variables. Therefore, we apply the linear reconstruction on these

variables, and we impose moment conservation in each cell to ensure realizability

of the numerical scheme [1].

It starts by the evaluation of local slopes by means of the neighboring mean

values V :

Ṽi(x) = Vi +DV,i(x− xi). (B.1)

Contrary to the classical MUSCL reconstruction [45], the reconstruction of the

primitive variables V = (n,u,Σ)
T

needs to be corrected in order to ensure the

conservation of the conserved variables W = (n, nu, nE)
T

:

1

∆x

∫ xi+1/2

xi−1/2

W̃i(x)dx = Wi, (B.2)

where index i refers to the cell i. These latest constraints imply the following

corrected primitive mean values:

ni = ni, ui = ui −
Dn,iDu,i

ni

∆x2

12
, (B.3)

Σi = Σi −
∆x2

12
αD2

u,i −
∆x2

12

Dn,i

ni
DΣ,i, (B.4)
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where:

D2
u,i =


D2
ui

DuiDvi DuiDwi

Dui
Dvi D2

vi DviDwi

Dui
Dwi

DviDwi
D2
wi

 ,DΣ,i =


Dσ11,i Dσ12,i Dσ13,i

Dσ12,i Dσ22,i Dσ32,i

Dσ13,i Dσ23,i Dσ33,i


(B.5)

and α = 1 +
∆x2

12

D2
n,i

n2
i

.

Appendix B.2. Slope Limitation

Eq. B.5 shows a non-linear coupling between the reconstruction of each

primitive variables. Therefore, ensuring realizability constraint on a specific

variable may affect the other variables. In the following, we propose a sequential

strategy that limits the need of a non-linear optimization to find the best choice:

1. First the density field ni is limited using a classical minmod limiter that

ensures its positivity.

2. Next, the slopes for velocity are also limited to ensure the constraint of

positive internal energy. This limitation reads:

Du,i =
1

2
(sign (ui+1 − ui) + sign (ui − ui−1))

min

 |ui+1 − ui|

∆x
(

1− Dni

ni

∆x
6

) , |ui − ui−1|

∆x
(

1 +
Dni

ni

∆x
6

) ,Dmax,Σ
u,i ,

1

∆t

 , (B.6)

where:

Dmax,Σ
u,i =

√√√√ diag (Σ)

∆x2

12

(
1 + ∆x2

12

D2
ni

n2
i

) . (B.7)

To ensure the positivity of the determinant of the covariance matrix Σ, an

additional procedure is used (not detailed here), in the same way as in [1]

for the 2D case: if the computed slopes generate a negative determinant,

an additional limitation is applied on the slopes, knowing that for zero

slopes, realizability is ensured.
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3. Finally, the components of the covariance matrix Σ are limited in order

to ensure the preservation of the positivity of its diagonal terms:

diag (DΣ,i) =
1

2

[
sign

(
diag

(
Σ∗i+1

)
− diag (Σ∗i )

)
+ sign

(
diag (Σ∗i )− diag

(
Σ∗i−1

))]
×min

 |diag
(
Σ∗i+1

)
− diag (Σ∗i ) |

∆x
(

1− Dni

ρj
∆x
6

) ,
|diag (Σ∗i )− diag

(
Σ∗i−1

)
|

∆x
(

1 +
Dni

ni

∆x
6

)
 .

(B.8)

where Σ∗ = Σj −
∆x2

12
αD2

u. To ensure the positivity of the determinant

of Σ, a non-linear optimisation is still required, as in [1].

Appendix B.3. Flux evaluation

The numerical flux evaluation is performed by means of a classical HLL

approximate Riemann solver [46]:

FHLL(WL,WR) =
1

2
(F(WL) + F(WR))− 1

2
|λmin| (W∗ −WL)

− 1

2
|λmax| (WR −W∗) , (B.9)

where the intermediate state W∗ is

W∗ =
λminWL − λmaxWR

λmin − λmax
− F(WL)−F(WR)

λmin − λmax
, (B.10)

R and L stand respectively for the right and left side of the interface and λmin

and λmax are respectively the slowest and fastest characteristic waves of the

states on the left and right side of the interface.

This standard flux can be shown to be realizability-preserving in the sense

that, if S denotes the convex realizability constraints, then Wn
i−1,W

n
i ,W

n
i+1 ∈

S at time step n implies that the explicit first order Euler update

Wn+1
i = Wn

i −
∆t

∆x

(
FHLL

(
Wn

i ,W
n
i+1

)
−FHLL

(
Wn

i−1,W
n
i

))
also belongs to S under the classical CFL condition on the ratio ∆t

∆x for first

order finite volume schemes [47].

Then, by means of a strong stability preserving (SSP) 2-step Runge-Kutta

method, we reach second order in time while preserving the realizability of the

update.
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O. Thomine and L. Freret on Asphodele/Muses3D codes is gratefully ac-

knowledged.

References
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