Three-dimensional Numerical Simulation of Upflow Bubbling Fluidized Bed in Opaque Tube Under High Flux Solar Heating - Archive ouverte HAL
Article Dans Une Revue AIChE Journal Année : 2018

Three-dimensional Numerical Simulation of Upflow Bubbling Fluidized Bed in Opaque Tube Under High Flux Solar Heating

Résumé

Solid particles can be used as a heat transfer medium in concentrated solar power plants to operate at higher temperature and achieve higher heat conversion efficiency than using the current solar heat transfer fluids that only work below 600°C. Among various particle circulation concepts, the dense particle suspension (DPS) flow in tubes, also called upflow bubbling fluidized bed (UBFB), was studied in the frame of the CSP2 FP7 European project. The DPS capacity to extract heat from a tube absorber exposed to concentrated solar radiation was demonstrated and the first values of the tube wall-to-DPS heat transfer coefficient were measured. A stable outlet temperature of 750°C was reached with a metallic tube, and a particle reflux in the near tube wall region was evidenced. In this article, the UBFB behavior is studied using the multiphase flow code NEPTUNE_CFD. Hydrodynamics of SiC Geldart A-type particles and heat transfer imposed by a thermal flux at the wall are coupled in two-dimensional unsteady numerical simulations. The convective/diffusive heat transfer between the gas and dispersed phase, and the inter-particle radiative transfer (Rosseland approximation) are accounted for. Simulations and experiments are compared here and the temperature influence on the DPS flow is analyzed.
Fichier principal
Vignette du fichier
Benoit_20817.pdf (511.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01885182 , version 1 (01-10-2018)

Identifiants

Citer

Hadrien Benoit, Renaud Ansart, Hervé Neau, Pablo García-Triñanes, Gilles Flamant, et al.. Three-dimensional Numerical Simulation of Upflow Bubbling Fluidized Bed in Opaque Tube Under High Flux Solar Heating. AIChE Journal, 2018, 64 (11), pp.3857-3867. ⟨10.1002/aic.16218⟩. ⟨hal-01885182⟩
83 Consultations
57 Téléchargements

Altmetric

Partager

More