Parametric inference for diffusions observed at stopping times - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2020

Parametric inference for diffusions observed at stopping times

Résumé

In this paper we study the problem of parametric inference for multidimensional diffusions based on observations at random stopping times. We work in the asymptotic framework of high frequency data over a fixed horizon. Previous works on the subject (such as [Doh87, GJ93, Gob01, AM04] among others) consider only deterministic, strongly predictable or random, independent of the process, observation times, and do not cover our setting. Under mild assumptions we construct a consistent sequence of estimators, for a large class of stopping time observation grids (studied in [GL14, GS18]). Further we carry out the asymptotic analysis of the estimation error and establish a Central Limit Theorem (CLT) with a mixed Gaussian limit. In addition, in the case of a 1-dimensional parameter, for any sequence of estimators verifying CLT conditions without bias, we prove a uniform a.s. lower bound on the asymptotic variance, and show that this bound is sharp.
Fichier principal
Vignette du fichier
Param_Inference_based_on_stopping_times_vfinal.pdf (447.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01879286 , version 1 (23-09-2018)

Identifiants

Citer

Emmanuel Gobet, Uladzislau Stazhynski. Parametric inference for diffusions observed at stopping times. Electronic Journal of Statistics , 2020, 14 (1), ⟨10.1214/20-EJS1708⟩. ⟨hal-01879286⟩
109 Consultations
92 Téléchargements

Altmetric

Partager

More