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Abstract

In this paper we study the problem of parametric inference for multidimensional diffusions
based on observations at random stopping times. We work in the asymptotic framework of high
frequency data over a fixed horizon. Previous works on the subject (such as [Doh87, GJ93, Gob01,
AM04] among others) consider only deterministic, strongly predictable or random, independent
of the process, observation times, and do not cover our setting. Under mild assumptions we
construct a consistent sequence of estimators, for a large class of stopping time observation grids
(studied in [GL14, GS18]). Further we carry out the asymptotic analysis of the estimation error
and establish a Central Limit Theorem (CLT) with a mixed Gaussian limit. In addition, in
the case of a 1-dimensional parameter, for any sequence of estimators verifying CLT conditions
without bias, we prove a uniform a.s. lower bound on the asymptotic variance, and show that
this bound is sharp.

Keywords: diffusion coefficient estimation, observation at stopping times, consistent se-
quence of estimators, local asymptotic mixed normality, asymptotic variance, optimal lower
bound.

MSC2010: 62Mxx, 62Fxx, 60F05, 60G40, 60Gxx, 62F12.

1 Introduction
Statement of the problem. In this work we study the problem of parametric inference for a
d-dimensional Brownian semimartingale (St)0≤t≤T of the form

St = S0 +
∫ t

0
bsds+

∫ t

0
σ(s, Ss, ξ)dBs, t ∈ [0, T ], S0 ∈ Rd, (1.1)

based on a finite random number of observations of S at stopping times. The time horizon T > 0
and S0 are fixed. We assume that the observations are the values of a single trajectory of (St :
0 ≤ t ≤ T ) sampled from the model (1.1) with an unknown parameter ξ = ξ? ∈ Ξ. Our goal is to
estimate ξ? using these discrete observations and study the asymptotic properties of the estimator
sequence as the number of observations goes to infinity; we work in the high-frequency fixed horizon
setting. Handling data at random observation times is important in practice (see the examples in
[GW02, Fuk10] for instance) and it has a large impact on inference procedure, as it is argued in
[AM03].

A large number of works (see the references below) are devoted to the inference of diffusion
models in the case of deterministic, random independent or strongly predictable observation time
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grids. In most cases they are based on the approximations of the transition probability density of
the diffusion process, resulting in so called approximate maximum likelihood estimators (AMLEs).
However, in practice, the observation times may be random and, moreover, the randomness may be
(at least partly) endogenous, i.e. depending on the sampled process itself: see [GW02] for empirical
evidence about the connection of volatility and inter-transaction duration in finance, and [Fuk10] for
modeling bid or ask quotation data and tick time sampling. In other words, as motivated by those
examples, the observation grid may be given by a sequence of general stopping times with respect to
a general filtration; see the introduction of [GLS18] for additional motivation and discussion. To the
best of our knowledge this setting has not yet been studied in the literature, except in [LMR+14]
where a Central Limit Theorem (CLT) for estimating the integrated volatility in dimension 1 is
established assuming the convergence in probability of renormalized quarticity and tricity (however,
the authors do not characterize the stopping times for which these convergences hold). One reason
for this lack of studies in the literature is essentially that the necessary tools for the analysis of the
stopping time discretization grids for multidimensional processes were not available until recently.
In particular, the study of the asymptotic normality for a sequence of estimators requires a general
central limit theorem for discretization errors based on such grids. Such a result has been very
recently obtained in [GLS18] in a concrete setting (i.e. for explicitly defined class of grids, and
not given by abstract assumptions, as a difference with [LMR+14]), in several dimensions (as a
difference with above references) and with a tractable limit characterization. Note that in [Fuk11],
the derivation of CLT is achieved in the context of general stopping times, but the limit depends on
implicit conditions that are hardly tractable except in certain situations (notably in dimension 1).
Another issue is that it is delicate to design an appropriate AMLE method in this stopping times
setting: in general, approximation of the increment distribution seems hardly possible in this case,
since the expression for the distribution of (Sτ , τ), where τ is a stopping time, is out of reach in
multiple dimension even in the simplest cases.

In this work we aim at constructing a consistent sequence of estimators (ξn)n≥0 of the true
parameter ξ? in the case of random observation grids given by general stopping times. We provide
an asymptotic analysis that allows to directly apply the existing results of [GLS18] on CLTs for
discretization errors and show the convergence in distribution of the renormalized error

√
Nn
T (ξn−ξ?)

(where Nn
T is the number of observation times) to an explicitly defined mixture of normal variables.

Literature background. A number of works study the problem of inference for diffusions. For
general references, see the books [Sør04, Fuc13] and the lecture notes [Jac07].

The nonparametric estimation of the diffusion coefficient σ(.) is investigated in [FZ93] for equidis-
tant observations times on a fixed time interval. In [GJ93] the authors consider the problem of the
parametric estimation of a multidimensional diffusion under regular deterministic observation grids.
They construct consistent sequences of estimators of the unknown parameter based on the mini-
mization of certain contrasts and prove the weak convergence of the error renormalized at the
rate

√
n to a mixed Gaussian variable, where n is the number of observations. The problem of

achieving minimal variance estimator is investigated using the local asymptotic mixed normality
(LAMN) property, see e.g. [CY90, Chapter 5] for the definition: this LAMN property is established
in [Doh87] for one-dimensional S, and in [Gob01] for higher dimensions using Malliavin calculus
techniques, when the n observation times are equidistant on a fixed interval. These latter results
show the optimality of Gaussian AMLEs that achieve consistency with minimal variance.

If the time step between the observations is not small, one can use more advanced techniques
based on the expansions of transition densities in order to approximate the likelihood of the obser-
vations. See, for instance, [Ait99, Ait02, Ait08, CC11]. Note that these works consider only the
case of deterministic observation grids.
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In [GJ94] the authors study the case where each new observation time may be chosen by the
user depending on the previous observations (so that the times depend on the trajectory of S). The
authors exhibit a sequence of sampling schemes with an asymptotic conditional variance achieving
the optimal (over all such schemes with random times) bound for LAMN property for all the
parameter values simultaneously. We remark that though in [GJ94] the observation times are
random, they are not stopping times, and the perspective is quite different from ours: the authors
assume that observations at all times are, in principle, available, and aim at choosing adaptively
a finite number of them to optimize the asymptotic variance of the estimator. In our setting
observations are stopping times and are not chosen by the user in an anticipative way.

Several works are dedicated to the inference problem with observations at stopping times, but
under quite restrictive assumptions on those times as a difference with our general setting. More
precisely, in [AM03, DG04] the authors assume that the time increment τni − τni−1 depends only
on the information up to τni−1 and on extra independent noise. A similar condition is considered
in [HJY11], and it can take the form of strongly predictable times (τni is known at time τni−1). In
[AM04], the time increments are simply independent and identically distributed. In [Fuk10, FR12],
the authors consider the observation times as exit times of S from an interval in dimension 1:
because such one-dimensional exit time can be explicitly approximated, they are able to establish
some CLT results for the realized variance. For potentially more general stopping times, but still
in dimension 1, [LMR+14] provides CLT results under the extra condition of convergence of the
quarticity and tricity. To summarize, all the above results consider stopping times with significant
restrictions and, in any case, in one-dimensional setting for S. In the current study, we aim at
overcoming these restrictions.

Our contributions.

• To the best of our knowledge, this is the first work that analyzes the problem of parametric
inference for multidimensional diffusions based on observations at general stopping times.

• Under mild assumptions we construct a sequence of estimators and prove its consistency for
a large class of observations grids, which, following [GS18, Remark 1], contains most of the
examples, interesting in practice.

• Using our asymptotic analysis and applying the results of [GLS18] we prove the weak con-
vergence of the renormalized error to a mixture of normal variables, for a quite general class
of random observations, which includes exit times from general random domains, and allows
combination of endogenous and independent sources of randomness. In addition, we explicitly
compute the limit distribution. The asymptotic limit is, in general, biased, and we charac-
terize both asymptotic bias and variance. Such a bias has not been previously observed in
parametric inference problems due to centering property of Gaussian increments for strongly
predictable grids.

• We provide a uniform lower bound on the limit variance in the case of a 1-dimensional param-
eter ξ ∈ Ξ, and for the set of observation grids for which the weak convergence to a mixture
of normal variables without bias holds. We also prove that this bound is sharp in this class
of grids. To the best our knowledge, this result for parametric inference for diffusions is new,
and it allows for discussing optimal sampling procedure for instance.

Last, for other applications and results of stopping times in high-frequency regime, see [Fuk11,
GL14, GS18].
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Outline of the paper. In Section 2 we present the model for the observed process S, the random
observation grids, and construct a sequence of estimators (ξn)n≥0 based on the discretized version
of the integrated Kullback-Leibler divergence in the Gaussian case. Section 3 is devoted to the
statements of the main results of the paper. We continue with the proofs in Section 4. Several
technical points are postponed to Section A.

2 The model
Let (Bt)0≤t≤T be a d-dimensional Brownian motion on a probability space (Ω,F , (Ft)0≤t≤T ,P)

with a filtration (Ft)0≤t≤T verifying the usual conditions of being right-continuous and complete.
By | · | we denote the Euclidean norm on matrix and tensor vector spaces. Let Matm,n be the space
of real m × n matrices, denote by S++

m (resp. S+
m) the set of positive (resp. non-negative) definite

symmetric real m×m matrices.
Let Ξ ⊂ Rq, q ≥ 1, be a convex compact set, with non-empty interior to avoid degenerate cases.

We fix a parameter ξ? ∈ Ξ \ ∂Ξ (where ∂Ξ is the boundary of Ξ). The process serving for the
observation is a d-dimensional Brownian semimartingale (St)0≤t≤T of the form

St = S0 +
∫ t

0
bsds+

∫ t

0
σ(s, Ss, ξ?)dBs, t ∈ [0, T ], S0 ∈ Rd, (2.1)

verifying the following:
(HS): 1. σ : [0, T ]× Rd × Ξ→ Matd,d is a C1,2,2 function;

2. the matrix σ(t, St, ξ) is invertible for all ξ ∈ Ξ and t ∈ [0, T ] a.s.;

3. (bt)0≤t≤T is a continuous adapted Rd-valued process such that for some ηb > 0, for some a.s.
finite C and for any 0 ≤ s ≤ t ≤ T we have |bt − bs| ≤ C|t− s|ηb .

In what follows we denote for simplicity σt(ξ) := σ(t, St, ξ). Let ct(·) := σt(·)σt(·)T. We suppose,
in addition, the following parameter identifiability assumption.
(Hξ): For any ξ ∈ Ξ \ {ξ?} we have a.s. that the continuous trajectories t 7→ ct(ξ?) and t 7→ ct(ξ)
are not almost everywhere (w.r.t. the Lebesgue measure) equal on [0, T ].

2.1 Random observation grids

We consider a sequence of random observation grids

{(τn0 := 0 < τn1 < · · · < τni < · · · < τnNn
T

:= T ) : n ≥ 0}

on the interval [0, T ] and suppose that for each n, only the values (τni , Sτni )0≤i≤Nn
T

are available
for the parameter estimation: these are the observation data. For each n, (τni : 0 ≤ i ≤ Nn

T ) is a
sequence of F-stopping times and Nn

T is a.s. a finite random variable. Here we do not assume further
information on the structure of these stopping times (e.g. they are hitting times for S of such or such
boundary and so on): we are aware that having this structural information would presumably be
beneficial for the inference problem, by making the estimation more accurate. Proving optimality
results (like in [Doh87, Gob01]) given the sequence of observations {(τni , Sτni )0≤i≤Nn

T
: n ≥ 0} is

so far out of reach, and we leave these problems for further investigation. However we establish a
partial optimality result in Section 3.4.

Our statistics analysis is based on the asymptotic techniques, developed recently in [GL14, GS18,
GS17], for admissible random discretization grids in the setting of quadratic variation minimization.
In this work we adapt these techniques to the problem of parametric estimation.

4



We introduce the following assumptions that depend on the choice of a positive sequence (εn)n≥0
with εn → 0 and a parameter ρN ≥ 1 (compare to [GS18, Definition 1]):
(Aosc.

S ): The following non-negative random variable is a.s. finite:

sup
n≥0

ε−2
n sup

1≤i≤Nn
T

sup
t∈(τni−1,τ

n
i ]
|St − Sτni−1

|2
 < +∞. (2.2)

(AN ): For some ρN ∈ [1, (1 + 2ηb) ∧ 4/3) the following non-negative random variable is a.s. finite:

sup
n≥0

(ε2ρN
n Nn

T ) < +∞. (2.3)

Let us now fix (εn)n≥0 with εn → 0 and a sequence of discretization grids T . We assume for
some ρN ∈ [1, (1 + 2ηb) ∧ 4/3) the following hypothesis:
(HT ): For any subsequence (ει(n))n≥0 of (εn)n≥0 there exists another subsequence (ει′◦ι(n))n≥0 for
which the assumptions (Aosc.

S )-(AN ) (with the given ρN ) are verified.
Remark that the class of grids verifying (HT ) is very general and covers most of the settings

considered in the previous works on inference for diffusions. At the same time, it allows new types
of grids that were not studied before. In particular, it includes:

• The sequences of deterministic or strongly predictable discretization grids for which the time
steps are controlled from below and from above and for which the step size tends to zero.
Here ρN > 1, see [GS18, Remark 1].

• The sequences of grids based on exit times from general random domains and, possibly, extra
independent noise. Namely let {(Dn

t )0≤t≤T : n ≥ 0} be a sequence of general random adapted
processes with values in the set of domains in Rd, that are continuous and converging (in a
suitable sense, see the details in [GLS18, Section 2.2]) to an adapted continuous domain-valued
process (Dt)0≤t≤T . Consider also an i.i.d. family of random variables (Ui,n)n,i∈N uniform on
[0, 1] and an arbitrary P⊗B([0, 1])-measurable (P is the σ-field of predictable sets of [0, T ]×Ω)
mapping G : (t, ω, u) ∈ [0, T ] × Ω × [0, 1] 7→ R+ ∪ {+∞} (to simplify we write Gt(u)). Then
the discretization grids of the form T := {T n : n ≥ 0} with T n = {τni , i = 1, . . . , Nn

T } given
byτ

n
0 := 0,
τni := inf{t > τni−1 : (St − Sτni−1

) /∈ εnDn
τni−1
} ∧ (τni−1 + ε2

nGτni−1
(Un,i) + ∆n,i) ∧ T,

(2.4)

where (∆n,i)n,i∈N represents some negligible contribution, verify the assumption (HT ) with
ρN = 1 (see [GLS18, Section 3.3]). This class of discretization grids allows a coupling of
endogenous noise generated by hitting times and extra independent noise given, for example,
by a Poisson process with stochastic intensity (see [GLS18, Section 2.2.3]). In addition, we
can rely on a CLT for a general discretization error term based on such grids (see [GLS18,
Theorem 2.4]). The optimal observation grid in Section 3.4 is of the above form, taking some
ellipsoid for Dn and G(·) = +∞, ∆n,i = 0.

Subsequence formulation of the assumption (HT ) is motivated by the following subsequence
principle:

Lemma 2.1 ([Bil95, Theorem 20.5]). Consider real-valued random variables. Then Xn
P→

n→+∞
X

if, and only if, for any subsequence (Xι(n))n≥0 of (Xn)n≥0, we can extract another subsequence
(Xι◦ι′(n))n≥0 such that Xι◦ι′(n)

a.s.→
n→+∞

X .
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It allows to first prove a.s. results for the sequences of observation grids verifying (Aosc.
S )-(AN )

and
∑
n≥0 ε

2
n < +∞, and then pass to the equivalent results in probability in the general case.

2.2 Sequence of estimators

Suppose that T := {T n : n ≥ 0} is a sequence of random grids verifying (HT ) for some εn → 0,
and ρN ∈ [1, (1 + 2ηb) ∧ 4/3). Denote for any process H (where we omit the dependence on n)

ϕ(t) := max{τ ∈ T n : τ ≤ t}, ∆Ht := Ht −Hϕ(t). (2.5)

Parametric inference for a discretely observed process typically requires a discrete approxima-
tion of some criterion, whose optimization yields the true parameter ξ?. A standard approach is to
approximate the likelihood of Sτn0 , . . . , Sτni , or equivalently of the distribution of ∆Sτni conditionally
on Sτn0 , . . . , Sτni−1

. Gaussian approximations are often used when the distance between observation
times is small, see, for instance [GJ93]. The optimality of the Gaussian based likelihood approxi-
mations in the case of regular observation times has been proved in [Doh87, Gob01]. Although the
distribution of Sτ as τ is a stopping time may be quite different from Gaussian, we are inspired by
the same approach, because of the flexibility and tractability of the subsequent contrast estimator
with respect to the choice of observation times τni ; however, below we present a slightly different
interpretation of the same minimization criteria, since in the stopping time case the distribution of
process increments is not necessarily close to Gaussian. We also generalize the criteria to account
for non-equidistant distribution of the discretization points over [0, T ].

Denote pΣ(x) := (2π)−d/2(det Σ)−1/2 exp
(
−1

2x
TΣ−1x

)
the density of a centered d-dimensional

Gaussian variable Nd(0,Σ) with the covariance matrix Σ (assumed to be non-degenerate). Denote
the Kullback-Leibler (KL) divergence between the variables Nd(0,Σ1) and Nd(0,Σ2) by

DKL(Σ1,Σ2) :=
∫
Rd
pΣ1(x) log pΣ1(x)

pΣ2(x)dx. (2.6)

For some continuous weight function ω : [0, T ] × Rd →]0,+∞[ set ωt := ω(t, St); the process
(ωt)0≤t≤T is continuous adapted positive. Recall that DKL(Σ1,Σ2) is always non-negative and
equals 0 if and only if Σ1 = Σ2. Thus, in view of (Hξ), the minimization of

∫ T
0 DKL(ct(ξ?), ct(ξ))ωtdt

naturally yields the true parameter ξ?. Our goal is to construct a discretized version of this criterion
based on the observations of S. We write

DKL(Σ1,Σ2) = 1
2

∫
Rd

(
log(det Σ2)− log(det Σ1) + xTΣ−1

2 x− xTΣ−1
1 x

)
pΣ1(x)dx,

and thus ∫ T

0
DKL(ct(ξ?), ct(ξ))ωtdt = 1

2U
?(ξ) + C0, (2.7)

where C0 is independent of ξ and

U?(ξ) :=
∫ T

0

∫
Rd

(
log(det ct(ξ)) + xTc−1

t (ξ)x
)
pct(ξ?)(x)ωtdxdt

=
∫ T

0

(
log(det ct(ξ)) + Tr(σt(ξ?)Tc−1

t (ξ)σt(ξ?))
)
ωtdt.

(2.8)

Remark that
∫ T

0 Tr(σt(ξ?)Tc−1
t (ξ)σt(ξ?))ωtdt represents a quadratic variation. Thus we define the

following discretized version of U?(·), that uses only (τni , Sτni : 0 ≤ i ≤ Nn
T ),

Un(ξ) :=
∑

τni−1<T

ωτni−1
log

(
det cτni−1

(ξ)
)

(τni − τni−1) +
∑

τni−1<T

ωτni−1
∆ST

τni
c−1
τni−1

(ξ)∆Sτni . (2.9)

6



The random function Un(.) plays the role of a contrast function: it is asymptotically equal to U?(.),
which minimum is achieved at ξ?. In the case of regular grids and ωt = 1 the contrast (2.9) coincides
with [GJ93, eq. (3)].

Define the sequence of estimators (ξn)n≥0 as follows:

ξn := Argminξ∈Ξ U
n(ξ) (2.10)

(if the minimizing set of Un(·) is not a single point we take any of its elements). We expect that the
minimizer of Un(·) will asymptotically attain the minimizer of

∫ T
0 DKL(ct(ξ?), ct(ξ))ωtdt, i.e. ξ?.

Note that the user is free to choose the form of the process ωt. While the rigorous optimization
of the choice of ωt given only the observations (τni , Sτni , 0 ≤ i ≤ Nn

T ) is complicated, it seems
reasonable to increase ωt on the time intervals where the observation frequency is higher. We have
not investigated furthermore in this direction.

3 Main results
For the subsequent convergences, we adopt the following natural notations. By Oa.s.

n (1) (resp.
oa.s.
n (1)) we denote any a.s. bounded (resp. a.s. converging to 0) sequence of random variables; in
addition, denote Oa.s.

n (x) = xOa.s.
n (1), oa.s.

n (x) = xoa.s.
n (1). Similarly we write oPn(1) for sequences

converging to 0 in probability.
Besides, we introduce a convenient and short notation for denoting random vectors written as a

mixture of Gaussian random variables. Given a (possibly stochastic) matrix V ∈ S+
m, we denote by

N (0, V ) a random variable which is equal in distribution to V 1/2G where G is a centered Gaussian
m-dimensional vector with covariance matrix Idm, where V 1/2 is the principal square root of V ,
and where G is independent from everything else.

3.1 Consistency

The following result states the convergence of the estimators (ξn)n≥0 in probability to ξ? for any
sequence of random observation grids verifying (HT ). Its proof is postponed to Section 4.1.

Theorem 3.1. Assume (HS), (Hξ) and (HT ). Then for the sequence estimators (ξn)n≥0 given by
(2.10) we have the following convergence in probability

ξn
P−→

n→+∞
ξ?.

3.2 Asymptotic error analysis

We now proceed with the asymptotic analysis of the error sequence (ξn − ξ?)n≥0. Recall that
DKL(Σ1,Σ2) given in (2.6) is always non-negative and equals to 0 if and only if Σ1 = Σ2. Thus
for any t ∈ [0, T ] the point ξ? ∈ Ξ \ ∂Ξ is a minimum of DKL(ct(ξ?), ct(·)) which implies that
∇2
ξDKL(ct(ξ?), ct(ξ)) |ξ=ξ? is positive semidefinite a.s. for all t ∈ [0, T ]. We introduce the following

assumption:
(HH): There exists a subset I ⊂ [0, T ] of positive Lebesgue measure such that

∇2
ξDKL(ct(ξ?), ct(ξ)) |ξ=ξ? is positive definite for all t ∈ I.

7



Note that in practice, since ξ? is not known, the verification of (HH) is typically required for
all possible values of ξ? ∈ Ξ \ ∂Ξ. Assumption (HH) in particular implies that

HT := 2
∫ T

0

(
∇2
ξDKL(ct(ξ?), ct(ξ)) |ξ=ξ?

)
ωtdt = ∇2

ξU
?(ξ?) (3.1)

is positive definite, and where the second equality follows from (2.7) (note that we can interchange
differentiation and integration via the dominated convergence theorem).

In what follows we assume the following conventions. The gradient of an R-valued function
is assumed to be a column vector. For a Matd,d-valued function c = c(x), x ∈ Rm, the gradient
∇xc(·) is a element of Rm ⊗Matd,d. For an element x ⊗ y ∈ Rm ⊗Matd,d we denote Tr(x ⊗ y) :=
xTr(y), which extends linearly on the entire space Rm ⊗ Matd,d. For A ∈ Rm ⊗ Matd,d so that
A = [A1, · · · ,Am]T and x, y ∈ Rd we denote xTAy := [xTA1y, · · · , xTAmy]T ∈ Rm. By xTA
we denote the linear operator in Matm,d corresponding to y 7→ xTAy (similarly for x 7→ xTMy).
Finally, partial derivatives of a Matd,d-valued function are obtained by differentiating each matrix
component and take values in Matd,d.

For i = 1, . . . , d we denote ∇xiσ(ξ) := ∇xiσ(t, St, ξ), where σ = σ(t, x, ξ) is given by (HS)-1.
Define the processes (Mt)0≤t≤T and (At)0≤t≤T with values in Matm,d and Rm⊗Matd,d respectively
as follows:

Mt := 2ωtbT
t ∇ξc−1

t (ξ?) + M̄t, At := 2ωt∇ξc−1
t (ξ?)σt(ξ?), t ∈ [0, T ] (3.2)

where for 1 ≤ i ≤ m, 1 ≤ j ≤ d we define

M̄ij
t := 2ωt Tr(σt(ξ?)T∇ξic

−1
t (ξ?)∇xjσt(ξ?)). (3.3)

Here comes the main result of this section. This is a universal decomposition of the estimation
error, available for any stopping time grids, as in (HT ), which will be the starting point for showing
a CLT later.

Theorem 3.2. Assume (HS), (Hξ), (HT ) and (HH). Then, for ρN as in (AN ), we have

ε−ρNn (ξn − ξ?) = (H−1
T + oPn(1))ε−ρNn ZnT + oPn(1), (3.4)

where
Zns :=

∫ s

0
∆ST

t Aϕ(t)dBt +
∫ s

0
Mϕ(t)∆Stdt := Mn

s +Ans (3.5)

forMt and At defined in (3.2).

The proof is done in Section 4.2.

3.3 CLT in the case of ellipoid exit times

We start with the following lemma, that plays an important role in the sequel:

Lemma 3.3 ([GL14, Lemma 3.1]). Let y be a d × d-matrix symmetric non-negative real matrix.
Then the equation

2 Tr(x)x+ 4x2 = y2 (3.6)

admits exactly one solution x(y) ∈ S+
d .
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Theorem 3.2 shows that it is enough to study the convergence in distribution of
√
Nn
TZ

n
T to

obtain such a convergence for
√
Nn
T (ξn − ξ?). Indeed, from (3.4) we get√

Nn
T (ξn − ξ?) = (H−1

T + oPn(1))
√
Nn
TZ

n
T + oPn(

√
Nn
T ε

ρN
n )

where oPn(
√
Nn
T ε

ρN
n ) = oPn(1) from (HT ) and the subsequence principle (Lemma 2.1). This makes

possible the direct application of general results on CLT for discretization errors of the form (3.5);
we refer to [GLS18] for discussion and references on the subject.

Since we are particularly interesting in the case of stopping time discretization grids in the
multidimensional case, we use [GLS18, Theorem 2.4] where the CLT for discretization errors of the
form (3.5) with generalMt and At has been proved in a quite general setting. We state a particular
case of this setting, namely the exit times from random ellipsoids (as defined in (3.7)). This example
is, in particular, used in Section 3.4.

Let (Σt)0≤t≤T and (Σn
t )0≤t≤T , n ≥ 0, be adapted continuous S++

d -valued processes, characteriz-
ing the ellipsoids. Assume the following:
(HΣ): 1. For some η > 0 and a.s. finite C we have that sup0≤t≤T |Σt − Σn

t | ≤ Cεηn a.s.;

2. There exist positive continuous F-adapted processes (vt)0≤t≤T and (δt)0≤t≤T , such that we
have a.s. for all t ∈ [0, T ] that supt≤s≤ψ(t) |bs| ≤ vt, where ψ(t) := inf{s ≥ t : |Ss − St| ≥
δt} ∧ T, t ∈ [0, T ] (this condition is quite mild, see [GLS18, Example 1]).

3. The random variables b0 and Σ0 are bounded.

4. For some ησ > 0 we have |σt − σs| ≤ Cσ|t − s|ησ/2 for all 0 ≤ s < t ≤ T and the variable Cσ
verifies E(C4

σ) < +∞ (this condition, in particular, holds for a diffusion process with bounded
coefficients b and σ such that their derivatives are also bounded).

Define the sequence of discretization grids T = {T n : n ≥ 0} by

τn0 = 0, τni = inf{t > τni−1 : (St − Sτni−1
)TΣn

τni−1
(St − Sτni−1

) ≥ ε2
n} ∧ T. (3.7)

Such a sequence verifies (HT ) with ρN = 1 (which follows from [GLS18, Theorem 2.4], see the proof
of Theorem 3.4).

To simplify we note σt := σt(ξ?) till the end of this section. We consider the setting of [GLS18,
Section 2.2] with Dt = {x :∈ Rd : xTΣtx = 1} and Dn

t = {x :∈ Rd : xTΣn
t x = 1}. Define the

process mt :=
[
Tr(σT

t Σtσt)
]−1

. Following [GLS18], define, for any t ∈ [0, T ] and any measurable
function f : Rd 7→ R,

τ(t) := inf{s ≥ 0 : σtWs /∈ Dt}, Bt[f(·)] := Et
(
f(σtWτ(t))

)
, (3.8)

where W is an extra d-dimensional Brownian motion, independent from everything else. Denote
AT
t := [AT

1,t, . . . ,AT
m,t]T and Aijt := 1

2(Ai,tAT
j,t + AT

i,tAj,t). Since Aijt is symmetric, by [GLS18,
Lemma B.1] we may write Aijt = Aij+t − Aij−t , where Aij+t and Aij−t are continuous symmetric
non-negative definite matrices. Define a Matm,m-valued process (Kt)0≤t≤T by

Kijt := m−1
t Bt

[
f(x) := ((σ−1

t x)TXij+
t (σ−1

t x))2 − ((σ−1
t x)TXij−

t (σ−1
t x))2

]
, (3.9)

for all 1 ≤ i, j ≤ m, where Xij+
t (resp. Xij−

t ) is the solution of the matrix equation (3.6) for
c = σT

t A
ij+
t σt (resp. σT

t A
ij−
t σt). Remark that the process (Qt)0≤t≤T defined in [GLS18, eq. 2.18]
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is equal to 0 in our case since the domains Dt and Dn
t are symmetric, see [GLS18, Section 2.4].

Also note that the matrix equation (3.6) may be easily solved numerically, see the details in [GL14,
Section A.4]. However, analytic solution is only available in dimension 1. In general (especially
in multi-dimensional case), the computation of K is hardly explicit, and requires some numerical
methods, like Monte-Carlo schemes suitable for statistics of stopped processes, see e.g. [GM10].
The following result is an application of [GLS18, Theorem 2.4 and its proof].

Theorem 3.4. The process (Kt)0≤t≤T is continuous and Kt ∈ S+
m a.s. for all t ∈ [0, T ]. Denote

K1/2
t the matrix principal square root of Kt. Then there exists an m-dimensional Brownian motion

W̃ defined on an extended probability space (Ω̃, F̃ , P̃) and independent of B such that for the sequence
estimators (ξn)n≥0 given by (2.10) we have

√
Nn
T (ξn − ξ?) L−→ H−1

T

√∫ T

0
m−1
t dt

∫ T

0
K1/2
t dW̃t, (3.10)

where HT is defined in (3.1). More specifically, for Zn,Mn, An defined in (3.5), we have the
convergences

ε−2
n 〈Zn〉s

P−→
n→+∞

∫ s

0
Ktdt, for all s ∈ [0, T ],

ε−1
n 〈Zn, B〉s

P−→
n→+∞

0, for all s ∈ [0, T ],

ε−1
n sup

s∈[0,T ]
|Ans |

P−→
n→+∞

0,

ε2
nN

n
T

P−→
n→+∞

∫ T

0
m−1
t dt.

(3.11)

Proof. Our goal is to check the assumptions of [GLS18, Theorem 2.4]. First note that all random
variables σ0, σ−1

0 , M0 and A0 are bounded under our setting. Condition [GLS18, (HS)] follows
from (HS) and (HΣ)-4. Further [GLS18, (H∆)] follows from (HΣ)-2.

Conditions [GLS18, (H1
D), (H2

D)] are straightforward from the definition of Dt and Dn
t , and

(HΣ)-1. Namely, for Bd(0, 1) the unit ball in Rd centered at 0, we write

Dt = {Σ−1/2
t x : x ∈ Bd(0, 1)} and Dn

t = {(Σn
t )−1/2x : x ∈ Bd(0, 1)}

from which one may easily get (for the distance µ(·, ·) for domains, as defined in [GLS18, Section
2.2.1]) that µ(Dt, D

n
t ) ≤ 2|Σ−1/2

t − (Σn
t )−1/2|. The latter bound can be controlled uniformly in t

and n in view of the continuity and the non-degeneracy of Σt,Σn
t and the condition (HΣ)-1.

Finally [GLS18, (HG)] is trivial in this case since the function G(·) equals +∞ and ∆n,i = 0 (in
the notation of [GLS18]). Other assumptions of [GLS18, Theorem 2.4] follow from (HΣ)-3.

Note that the drift b does not enter in the parameters of the CLT, this is due to the symmetry
of the domain defining the observation times.

Because W̃ is independent of everything else, we have the identity

H−1
T

√∫ T

0
m−1
t dt

∫ T

0
K1/2
t dW̃t

d= H−1
T

√∫ T

0
m−1
t dt

(∫ T

0
Ktdt

)1/2

N (0, Idm)

with an extra independent m-dimensional Gaussian random variable N (0, Idm). In other words,
the (random) covariance limit of

√
Nn
T (ξn − ξ?) is

VT :=
(∫ T

0
m−1
t dt

)
H−1
T

(∫ T

0
Ktdt

)
H−1
T .
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3.4 Optimal uniform lower bound on the limit variance

In this section we assume q = 1, so that Ξ ⊂ R. Our aim is to seek the optimal observation
times (among ellipsoid based stopping times) achieving the lowest possible limit variance.

Let Xt(ξ) be the solution of the matrix equation (3.6) with

y2 = σt(ξ)T∇ξc−1
t (ξ)σt(ξ)σt(ξ)T∇ξc−1

t (ξ)σt(ξ)

(note that it is an element of Matd,d(R) for a scalar ξ). For HT given in (3.1) define

V opt.
T := H−2

T

(∫ T

0
2ωt Tr(Xt(ξ?))dt

)2

, (3.12)

which is fixed from now on. In the case where the weak convergence of the renormalized error to
a mixture of normal variables holds without bias (e.g. the case of deterministic grids, see [GJ93];
or the hitting times of symmetric boundaries, see [GLS18, Section 2.4] and Theorem 3.4) we prove
that V opt.

T is a uniform lower bound on the asymptotic variance of the sequence of estimators (2.10).
In addition, this lower bound is tight in the sense that one can find a sequence of observation times
achieving as close as possible this lower bound. This is formalized in the following definition.

Definition 1. Let κ0 > 0. A parametric family of discretization grid sequences {Tκ : κ ∈ (0, κ0]} is
κ-optimal if there exists an a.s. finite random variable C0 independent of κ such that

√
Nn
T (ξn− ξ?)

converges in distribution to a mixture of centered normal variables for all Tκ,√
Nn
T (ξn − ξ?) L−→ N (0, V κ

T ),

and the limit variance V κ
T associated with Tκ verifies the condition

0 ≤ V κ
T − V

opt.
T ≤ C0κ, ∀κ ∈ (0, κ0].

The subsequent κ-optimal observation times are related to some random ellipsoid hitting times,
which are built as follows. Let χ(.) be a smooth function such that 1(−∞,1/2] ≤ χ(.) ≤ 1(−∞,1], and
denote χκ(x) := χ(x/κ). Let Λt(ξ) := 2ωtσ−1

t (ξ)TXt(ξ)σ−1
t (ξ), define

Λκt (ξ) := Λt(ξ) + κχκ(λmin(Λt(ξ))) Idd,

where λmin(M) stands for the smallest eigenvalue ofM ∈ S+
d . Hence, Λκt (ξ) ∈ S++

d as soon as κ > 0.
Recall that under the general assumptions of Theorem 3.2 we have the decomposition (3.4), with
Zn given by (3.5). In view of (3.4), to study the weak convergence of

√
Nn
T (ξn − ξ?) we essentially

need to consider
√
Nn
TZ

n
T . The result below states that under standard conditions implying the

CLT for
√
Nn
TZ

n
T (and hence for

√
Nn
T (ξn − ξ?) ) there exists a uniform lower bound on the limit

variance. We also show the tightness of this bound in the sense of Definition 1.

Theorem 3.5. Assume (HS), (Hξ), (HT ) and (HH). Let (ξn)n≥0 be defined by (2.10). For some
ρ ∈ [1, ρN ] suppose that the semimartingale decomposition Znt := Mn

t +Ant in (3.5) verifies

ε−2ρ
n 〈Mn〉s

P−→
n→+∞

∫ s

0
Ktdt, for all s ∈ [0, T ],

ε−ρn 〈Mn, B〉s
P−→

n→+∞
0, for all s ∈ [0, T ],

ε−ρn sup
0≤t≤T

|Ant |
P−→

n→+∞
0

(3.13)

for some adapted non-negative continuous process (Kt)0≤t≤T . Assume also that Nn
T 〈Zn〉T converges

in probability to an a.s. finite random variable. Then, the following holds:
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(i)
√
Nn
T (ξn−ξ?) L−→ N (0, VT ) for some non-negative random variable VT (asymptotic variance).

(ii) The asymptotic variance VT satisfies the following uniform lower bound: VT ≥ V opt.
T a.s. for

V opt.
T defined in (3.12).

(iii) Assuming, in addition, (HΣ)-2,3,4, the lower bound V opt.
T is tight in the following sense: the

parametric family of discretization grid sequences {Tκ : κ ∈ (0, 1]} given for any εn → 0 by
Tκ = {T nκ : n ≥ 0} with T nκ = (τni )0≤i≤Nn

T
written as

τn0 := 0, τni = inf
{
t ≥ τni−1 : (St − Sτni−1

)TΛκτni−1
(ξ?)(St − Sτni−1

) > ε2
n

}
∧ T (3.14)

is κ-optimal for κ0 = 1 in the sense of Definition 1.

We remark that the class of discretization grids over which the universal variance lower bound is
obtained in Theorem 3.5 includes most of the examples for which a CLT has been established, since
the conditions of the type (3.13) are quite commonly required (see [JS02, Chapter IX, Theorem 7.3]
for a classical result). Typically for deterministic or strongly predictable grids the conditions will
hold with ρ = ρN > 1, while in the setting of [GLS18, Section 2.2] we have ρ = ρN = 1. See also
the discussion in Section 2.1 and [GS18, Remark 1].

As we may notice the κ-optimal sequence of discretization grids in (3.14) depends on the un-
known parameter ξ?. Besides, concerning the optimal variance V opt.

T in (3.12), it also involves ξ?,
as well as ωt: we argue in Section 2.2 that the rigorous optimization of ωt (to minimize V opt.

T ) is
out of reach because ξ? is unknown. However, for all these extra optimization steps, a heuristic
approach might be used. Namely in practice, one may pre-estimate ξ? on some initial interval [0, T1]
using any reasonable consistent estimator and then proceed with the estimation that achieves the
limit variance close to the optimum on [T1, T ] using this pre-estimator instead of ξ?. A similar
methodology has been designed and analyzed in [GS17]. A thorough analysis of the limit variance
in our case would be possible, although quite technical; we naturally expect that such a method
would constitute a κ-optimal family of strategies for T1 = κ2T in view of the robustness results for
the optimal sequence of discretization grids produced in [GS17, Section 3.1].

4 Proofs of the main results
The next lemma provides some important properties of the process σt(·).

Lemma 4.1. Assume (HS)-1. Let T be any sequence of observation grids verifying (Aosc.
S )-(AN )

with
∑
n≥0 ε

2
n < +∞. Then the following holds:

(i) For any ησ ∈ (0, 1) we have that for some a.s. finite random variable C0

|σt(ξ?)− σs(ξ?)| ≤ C0|t− s|ησ/2 ∀s, t ∈ [0, T ] a.s.

(ii) For (∇xσt(ξ?))0≤t≤T defined in Section 3.2 and any ρ > 0 we have

ε−(2−ρ)
n sup

0≤t≤T

∣∣∣∣∣σt(ξ?)− σϕ(t)(ξ?)−
d∑
i=1
∇xiσϕ(t)(ξ?)∆Sit

∣∣∣∣∣ a.s.−→
n→+∞

0.

Proof. To prove (i) remark that (St)0≤t≤T is Hölder continuous with any exponent smaller than 1/2
by [BY82, Theorem 5.1]. We conclude by using that σ = σ(t, x, ξ?) is locally Lipschitz in t and x
due to the continuous differentiability, and that (St)0≤t≤T is a.s. bounded on [0, T ].
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To prove (ii) we use the differentiability of σ(t, x, ξ?) in t and x by (HS)-1. We write

σt(ξ?)− σϕ(t)(ξ?) = σ(t, St, ξ?)− σ(ϕ(t), Sϕ(t), ξ
?)

= σ(ϕ(t), St, ξ?)− σ(ϕ(t), Sϕ(t), ξ
?) +Oa.s.

n (|∆t|)

=
d∑
i=1
∇xiσ(ϕ(t), Sϕ(t), ξ

?)∆Sit +Oa.s.
n (|∆t|+ |∆St|2).

From (Aosc.
S )-(AN ) and [GS18, Lemma 3.2] we get supt∈[0,T ]

∣∣Oa.s.
n (|∆t|+ |∆St|2)

∣∣ ≤ Cρε2−ρ
n for any

ρ > 0 and some a.s. finite Cρ, which finishes the proof.

The next lemma states the a.s. convergence of Un(·) to U?(·), as well as the corresponding results
for the derivatives ∇ξUn(·) and ∇2

ξU
n(·).

Lemma 4.2. Assume (HS)-1,2. Let T be any sequence of observation grids verifying (Aosc.
S )-(AN )

with
∑
n≥0 ε

2
n < +∞. Then the following convergences hold

sup
ξ∈Ξ
|Un(ξ)− U?(ξ)| a.s.−→

n→+∞
0, (4.1)

sup
ξ∈Ξ
|∇ξUn(ξ)−∇ξU?(ξ)|

a.s.−→
n→+∞

0, |∇2
ξU

n(ξ)−∇2
ξU

?(ξ)| a.s.−→
n→+∞

0, ∀ξ ∈ Ξ. (4.2)

Proof. Using (2.8) and Lemma A.1 we deduce the following expressions for∇ξkU?(ξ) and∇2
ξkξl

U?(ξ)
(1 ≤ k, l ≤ m):

∇ξkU
?(ξ) =

∫ T

0
Tr
(
∇ξkct(ξ)ct(ξ)

−1 + σt(ξ?)T∇ξkc
−1
t (ξ)σt(ξ?)

)
ωtdt, (4.3)

∇2
ξkξl

U?(ξ) =
∫ T

0
Tr
(
∇2
ξkξl

ct(ξ)c−1
t (ξ) +∇ξkct(ξ)∇ξlc

−1
t (ξ) + σt(ξ?)T∇2

ξkξl
c−1
t (ξ)σt(ξ?)

)
ωtdt.

(4.4)

Recall that

Un(ξ) =
∑

τi−1<T

ωτni−1
log(det cτni−1

(ξ))(τni − τni−1) +
∑

τni−1<T

ωτni−1
∆ST

τni
c−1
τni−1

(ξ)∆Sτni . (4.5)

Let us first prove that for any ξ ∈ Ξ

Un(ξ) a.s.−→
n→+∞

U?(ξ). (4.6)

The convergence of the first term in the right-hand side of (4.5) follows from the standard Riemann
integral approximation, using that sup ∆τni

a.s.−→
n→+∞

0 by [GS18, Lemma 3.2], so we get

∑
τi−1<T

ωτni−1
log(det cτni−1

(ξ))(τni − τni−1) a.s.−→
n→+∞

∫ T

0
log(det ct(ξ))ωtdt. (4.7)

For the second term we have by [GS18, Proposition 3.7]

∑
τni−1<T

ωτni−1
∆ST

τni
c−1
τni−1

(ξ)∆Sτni
a.s.−→

n→+∞

∫ T

0
Tr
(
σt(ξ?)Tc−1

t (ξ)σt(ξ?)
)
ωtdt. (4.8)
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Hence the convergence (4.6) follows now from taking the sum of (4.7) and (4.8). Further using
Lemma A.1 we obtain

∇ξkU
n(ξ) =

∑
τni−1<T

ωτni−1
Tr
(
∇ξkcτni−1

(ξ)c−1
τni−1

(ξ)
)

(τni − τni−1) (4.9)

+
∑

τni−1<T

ωτni−1
∆ST

τni
(∇ξkc

−1
τni−1

(ξ))∆Sτni ,

∇2
ξkξl

Un(ξ) =
∑

τni−1<T

ωτni−1
Tr
(
∇2
ξkξl

cτni−1
(ξ)c−1

τni−1
(ξ) +∇ξkcτni−1

(ξ)∇ξlc
−1
τni−1

(ξ)
)

(τni − τni−1) (4.10)

+
∑

τni−1<T

ωτni−1
∆ST

τni
∇2
ξkξl

c−1
τni−1

(ξ)∆Sτni .

Using (4.3), (4.4) and applying the same reasoning as for the proof of (4.6) we also show the
following convergences for any ξ ∈ Ξ

∇ξUn(ξ) a.s.−→
n→+∞

∇ξU?(ξ), ∇2
ξU

n(ξ) a.s.−→
n→+∞

∇2
ξU

?(ξ). (4.11)

Further from (4.9) and (4.10), using (HS)-1,2, the compactness of Ξ, the continuity of ωt and the
convergence

∑
τni ≤T

|∆Sτni |
2 a.s.−→
n→+∞

Tr(〈S〉T ) by [GS18, Proposition 3.7], we have a.s.

sup
n≥0

(
sup
ξ∈Ξ
|∇ξUn(ξ)|

)
≤ C sup

0≤t≤T

[
ωt

(
sup
ξ∈Ξ
|∇ξct(ξ)c−1

t (ξ)|+ sup
ξ∈Ξ
|∇ξc−1

t (ξ)|
)]

< +∞,

sup
n≥0

(
sup
ξ∈Ξ
|∇2

ξU
n(ξ)|

)
≤ C sup

0≤t≤T

[
ωt
(

sup
ξ∈Ξ

(|∇2
ξct(ξ)||c−1

t (ξ)|) + sup
ξ∈Ξ
|∇ξct(ξ)|2

+ sup
ξ∈Ξ
|∇2

ξc
−1
t (ξ)|

)]
< +∞,

for some a.s. finite C > 0. This implies that the sequences (Un(·))n≥0, (∇ξUn(·))n≥0 are equicon-
tinuous and hence the convergences in (4.6) and (4.11) are uniform in ξ ∈ Ξ. We are done.

4.1 Proof of Theorem 3.1

First suppose that
∑
n≥0 ε

2
n < +∞ and that the grid sequence T verifies (Aosc.

S )-(AN ).
Recall that DKL(ct(ξ?), ct(ξ)) ≥ 0 and the equality holds if and only if ct(ξ?) = ct(ξ). From

(Hξ) we have that for any ξ 6= ξ? the processes ct(ξ?) and ct(ξ) are not almost everywhere equal on
[0, T ]. Hence ξ? is the unique minimum of

∫ T
0 DKL(ct(ξ?), ct(ξ))ωtdt, and in view of (2.7) we have

that a.s.
ξ? = Argminξ∈Ξ U

?(ξ).

Further, Lemma 4.2 implies that Un(ξ) a.s.−→
n→+∞

U?(ξ) uniformly in ξ ∈ Ξ, from which we deduce

that ξn a.s.−→
n→+∞

ξ? since ξn = Argminξ∈Ξ U
n(ξ).

Finally the convergence ξn P−→
n→+∞

ξ? for T verifying (HT ) with general εn → 0 follows from the
subsequence principle in Lemma 2.1.

4.2 Proof of Theorem 3.2

First suppose that
∑
n≥0 ε

2
n < +∞ and the grid sequence T verifies (Aosc.

S )-(AN ).
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Step 1. We start by showing the convergence∫ 1

0
∇2
ξU

n(ξ? + u(ξn − ξ?))du a.s.−→
n→+∞

∇2
ξU

?(ξ?) =: HT . (4.12)

Let 1 ≤ k, l ≤ m. In view of the convergence ∇2
ξU

n(ξ?) a.s.−→
n→+∞

∇2
ξU

?(ξ?) from Lemma 4.2 it is
enough verify that ∫ 1

0
∇2
ξkξl

Un(ξ? + u(ξn − ξ?))du−∇2
ξkξl

Un(ξ?) a.s.−→
n→+∞

0. (4.13)

Denote γt(ξ) := Tr(∇2
ξkξl

ct(ξ)c−1
t (ξ) + ∇ξkct(ξ)∇ξlc

−1
t (ξ)). Using the representation (4.10) for

∇2
ξkξl

Un(·), we get that the left-hand side in (4.13) is equal to∑
τni−1<T

ωτni−1

(∫ 1

0
γτni−1

(ξ? + u(ξn − ξ?))du− γτni−1
(ξ?)

)
(τni − τni−1)

+
∑

τni−1<T

ωτni−1
∆ST

τni

(∫ 1

0
∇2
ξkξl

c−1
τni−1

(ξ? + u(ξn − ξ?))du−∇2
ξkξl

c−1
τni−1

(ξ?)
)

∆Sτni .

Now (4.13) follows from the convergence ξn a.s.−→
n→+∞

ξ? for T verifying (Aosc.
S )-(AN ) (see the proof of

Theorem 3.1) and the dominated convergence theorem (in view of the differentiability and invert-
ibility properties of σ from (HS)-1,2 and the compactness of Ξ).

Step 2: linearization. Our strategy is to analyse ξn − ξ? using the second order Taylor decom-
position of UnT (·) near ξ? and invoking Theorem 3.1. From (HH) the matrix HT = ∇2

ξU
?(ξ?) is

positive definite. Define the following sequence of events

Ωn := {ξn ∈ Ξ \ ∂Ξ} ∩
{∫ 1

0
∇2
ξU

n(ξ? + u(ξn − ξ?))du ∈ S++
q

}
.

From the convergences (4.12) and ξn a.s.−→
n→+∞

ξ?, and since ξ? /∈ ∂Ξ we obtain 1Ωn
a.s.−→

n→+∞
1. On Ωn

we have ∇ξUn(ξn) = 0, which implies

1Ωn(ξn − ξ?) = 1Ωn

(∫ 1

0
∇2
ξU

n(ξ? + u(ξn − ξ?))du
)−1
∇ξUn(ξ?)

by the Taylor formula. This implies, in view of (4.12) and since 1Ω\Ωn = 0 for n large enough, that

ε−ρNn (ξn − ξ?) =
(
H−1
T + oa.s.

n (1)
)
ε−ρNn ∇ξUn(ξ?) + oa.s.

n (1). (4.14)

Step 3: expansion of ∇ξUn(ξ?). Now let us analyze the term ∇ξUn(ξ?). Using the expression
(4.9) of ∇ξUn(·) and applying the Itô formula, we obtain

∇ξUn(ξ?) =
∑

τni−1<T

ωτni−1
Tr
(
∇ξcτni−1

(ξ?)c−1
τni−1

(ξ?)
)

(τni − τni−1) +
∑

τni−1<T

ωτni−1
∆ST

τni
∇ξc−1

τni−1
(ξ?)∆Sτni

=
∑

τni−1<T

ωτni−1
Tr
(
∇ξcτni−1

(ξ?)c−1
τni−1

(ξ?) + στni−1
(ξ?)T∇ξc−1

τni−1
(ξ?)στni−1

(ξ?)
)

(τni − τni−1)

+
∫ T

0
ωϕ(t) Tr

(
(σt(ξ?) + σϕ(t)(ξ?))T∇ξc−1

ϕ(t)(ξ
?)(σt(ξ?)− σϕ(t)(ξ?))

)
dt

+ 2
∫ T

0
ωϕ(t)∆ST

t ∇ξc−1
ϕ(t)(ξ

?)btdt+ 2
∫ T

0
ωϕ(t)∆ST

t ∇ξc−1
ϕ(t)(ξ

?)σt(ξ?)dBt. (4.15)
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Consider the four terms on the right-hand side of (4.15). The first term is equal to 0 since, using
that ∇ξc−1

τni−1
(ξ?) = −c−1

τni−1
(ξ?)∇ξcτni−1

(ξ?)c−1
τni−1

(ξ?), we have

Tr
(
στni−1

(ξ?)T∇ξc−1
τni−1

(ξ?)στni−1
(ξ?)

)
= −Tr

(
∇ξcτni−1

(ξ?)c−1
τni−1

(ξ?)
)
.

For the second term, using Lemma 4.1 and the properties (Aosc.
S )-(AN ) we deduce that∫ T

0
ωϕ(t) Tr

(
(σt(ξ?) + σϕ(t)(ξ?))T∇ξc−1

ϕ(t)(ξ
?)(σt(ξ?)− σϕ(t)(ξ?))

)
dt

= 2
∫ T

0
Tr
(
σϕ(t)(ξ?)T∇ξc−1

ϕ(t)(ξ
?)

d∑
i=1
∇xiσϕ(t)(ξ?)∆Sit

)
ωϕ(t)dt + enT

=
∫ T

0
M̄ϕ(t)∆Stdt + enT,2,

where for any ρ > 0 and any ησ ∈ (0, 1), using [GS18, Lemma 3.2] Lemma 4.1-(i) we have

|enT,2| ≤ C0(ε2−ρ
n + εn supt |t− ϕ(t)|ησ/2) ≤ C0ε

1+(2−ρ)ησ/2
n .

Here, C0 is a notation standing for any a.s. finite random variable (independent on n), which values
may change throughout the computations. Note that ε−ρNn |enT,2| ≤ C0ε

−ρN+1+(2−ρ)ησ/2
n

a.s.−→
n→+∞

0 for

ρ small enough, since ρN < 4/3 by (AN ). Also remark that the process (M̄t)0≤t≤T is the same as
defined in (3.3), Section 3.2.

The third term of (4.15) may be written as

2
∫ T

0
ωϕ(t)∆ST

t ∇ξc−1
ϕ(t)(ξ

?)bϕ(t)dt+ enT,3,

where, in view [GS18, Lemma 3.2] and Lemma 4.1-(i), we have

|enT,3| ≤ C0εn supt |t− ϕ(t)|ηb ≤ C0ε
1+(2−ρ)ηb
n .

Again (AN ) implies that ε−ρNn |enT,3|
a.s.−→

n→+∞
0 for ρ small enough.

Finally, the last term of (4.15) equals

2
∫ T

0
ωϕ(t)∆ST

t ∇ξc−1
ϕ(t)(ξ

?)σϕ(t)(ξ?)dBt + enT,4,

where, (ent,4)0≤t≤T : n ≥ 0) is a sequence of continuous local martingales verifying for some a.s. finite
C0, C1

〈en·,4〉T ≤ C0 sup
0≤t≤T

(
|∆St|2|σt(ξ?)− σϕ(t)(ξ?)|2

)
≤ C1ε

2+2ησ
n

for any ησ ∈ (0, 1) using (Aosc.
S ), Lemma 4.1-(i) and [GS18, Lemma 3.2]. This implies ε−ρNn |enT,4|

a.s.−→
n→+∞

0 via an application of [GL14, Corollary 2.1, p large enough] to the sequence ε−ρNn en.,4.
Hence, we deduce that ∇ξUn(ξ?) is equal, up to some negligible contribution, to ZnT given in

(3.5). So finally this implies

ε−ρNn (ξn − ξ?) =
(
H−1
T + oa.s.

n (1)
)
ε−ρNn ZnT + oa.s.

n (1).
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Step 4: convergence in probability. For a general T satisfying (HT ) with εn → 0 the result
is obtained via the subsequence principle (Lemma 2.1).

4.3 Proof of Theorem 3.5

Recall that Λt(ξ) = 2ωtσ−1
t (ξ)TXt(ξ)σ−1

t (ξ), where Xt(ξ) is the solution of the matrix equation
(3.6) with y2 = σt(ξ)T∇ξc−1

t (ξ)σt(ξ)σt(ξ)T∇ξc−1
t (ξ)σt(ξ).

Central Limit Theorem. All the conditions for applying the Central Limit Theorem of [GLS18,
Theorem 4.7] are fulfilled, and we get

ε−ρn ZnT
L−→

∫ T

0
K1/2
t dW̃t,

with an independent Brownian motion W̃ . Moreover, the above convergence is F-stable (see [JP12,
Section 2.2.1] for related definition and properties). Therefore, together with the convergence of
ε2ρ
n N

n
T , we deduce the announced result in (i).

Lower bound. We have

Nn
T 〈Zn〉T = Nn

T

∫ T

0
4ω2

t∆ST
t ∇ξc−1

t (ξ?)σt(ξ?)σt(ξ?)T∇ξc−1
t (ξ?)∆Stdt.

Take some subsequence ι(n) such that
∑
n≥0 ε

2
ι(n) < +∞ and such that the convergence ofN ι(n)

T 〈Zι(n)〉T
holds a.s.. Then H−2

T N
ι(n)
T 〈Zι(n)〉T

a.s.−→
n→+∞

VT where VT is the limit variance of
√
Nn
T (ξn − ξ?), in

view of the above arguments for proving (i). From the proof of [GS18, Theorem 4.2] we obtain that

VT = H−2
T limnN

ι(n)
T 〈Zι(n)〉T ≥ H−2

T

(∫ T

0
2ωt Tr(Xt(ξ?))dt

)2

=: V opt.
T a.s..

This finishes the proof of (ii).

κ-optimal sequence. We now prove (iii). Let Zn be defined in Theorem 3.2 based on T nκ ,
and (ξn)n≥0 be the corresponding estimator sequence. By Theorem 3.4 we get the convergence√
Nn
T (ξn − ξ?) L−→ N (0, V κ

T ). In addition, by Proposition B.1, since Nn
T

〈
Zn〉T

P−→
n→+∞

H2
TV

κ
T , we

obtain 0 ≤ V κ
T − V

opt.
T ≤ C0κ for some a.s. finite C0 independent of κ and εn.

Remark that taking κ = 0 in the definition of T κ would lead to a grid verifying (HT ) with
ρN > 1 which is not covered by Theorem 3.4.

A Technical results
Let G ∈ C2(Ξ,S++

d ). Define f : Matd,d(R)× Rd → R by

f(G, x) := log(detG) + xTG−1x.

The following preliminary lemma provides the expressions for ∇ξf(G(ξ), x) and ∇2
ξf(G(ξ), x).

17



Lemma A.1. We have (for all 1 ≤ k, l ≤ m)

∇ξk log(detG(ξ)) = Tr(∇ξkG(ξ)G−1(ξ)), (A.1)

∇2
ξkξl

log(detG(ξ)) = Tr
(
∇2
ξkξl

G(ξ)G−1(ξ) +∇ξkG(ξ)∇ξlG
−1(ξ)

)
, (A.2)

and, as a consequence,

∇ξkf(G(ξ), x) = Tr
(
∇ξkG(ξ)G−1(ξ)

)
+ xT∇ξkG

−1(ξ)x, (A.3)

∇2
ξkξl

f(G(ξ), x) = Tr
(
∇2
ξkξl

G(ξ)G−1(ξ) +∇ξkG(ξ)∇ξlG
−1(ξ)

)
+ xT∇2

ξkξl
G−1(ξ)x. (A.4)

Proof. Using the Jacobi formula we get

∇ξk log(detG(ξ)) = ∇ξk detG(ξ)
detG(ξ) = Tr

(
∇ξkG(ξ)G−1(ξ)

)
,

which gives (A.1), a second derivation now implies (A.2). The expressions (A.3) and (A.4) now
follow from the definition of f(G, x) and (A.1)-(A.2).

B κ-optimal discretization strategies
Let (St)0≤t≤T verify (HS). Let (At)0≤t≤T be given by (3.2). Fix i ∈ {1, . . . ,m} and let 2ωtHt =

Ait with Ht = ∇ξc−1
t (ξ?)σt(ξ?). Consider the discretization error process of the form

Zns :=
∫ s

0
2ωϕ(t)∆S>t Hϕ(t)dBt.

In this section to simplify we write σt := σt(ξ?). Let Xt be the solution of the matrix equation (3.6)
with y2 = σT

t HtH
T
t σt = σT

t ∇ξc−1
t σtσ

T
t ∇ξc−1

t σt. The next result essentially follows from [GL14,
Theorem 3.2].

Proposition B.1. Assume (HS), (Hξ) and (HH). Let κ ∈ (0, 1], for t ∈ [0, T ] set Λt :=
2ωt(σ−1

t )TXtσ
−1
t and Λκt := Λt + κχκ(λmin(Λt)) Idd (recall the definition of χκ(·) from Section

3.4). For a given n ∈ N, define the discretization grid T nκ by

τn0 := 0, τni = inf
{
t ≥ τni−1 : (St − Sτni−1

)TΛκτni−1
(St − Sτni−1

) > ε2
n

}
∧ T. (B.1)

Then, the sequence of strategies Tκ = {T nκ : n ≥ 0} verifies (HT ), and it is asymptotically κ-optimal
in the following sense: we have Nn

T

〈
Zn〉T

P−→
n→+∞

V κ
T with V κ

T verifying

0 ≤ V κ
T −

(∫ T

0
2ωt Tr(Xt)dt

)2

≤ C0κ (B.2)

for some a.s. finite random variable C0 independent of κ ∈ (0, 1].

Proof. First note that from Theorem 3.4 (note that Λκ0 is obviously bounded, as needed in (HΣ)-(3))
we get the convergence Nn

T

〈
Zn〉T

P−→
n→+∞

V κ
T . Take a subsequence of εn for which

∑
n≥0 ε

2
ι(n) < +∞

and the grid sequence T verifies (Aosc.
S )-(AN ). Without loss of generality we assume that for this

subsequence the convergence to V κ
T holds a.s. Let At :=

∫ t
0 bsds be the finite variation part and Mt

be the martingale part of St. Then, using [GS18, Lemma 3.2], we get for any ρ > 0 and for some

18



a.s. finite C > 0 that supt∈[0,T ] |∆At| ≤ |b|∞ supt∈[0,T ] |∆t| ≤ Cε2−ρ
n . Hence one may easily check

that for Z̄ns :=
∫ s

0 2ωϕ(t)∆M>t Hϕ(t)dBt we have

Nn
T

〈
Zn〉T −Nn

T

〈
Z̄n〉T

a.s.−→
n→+∞

0. (B.3)

By (Aosc.
S )-(AN ) and [GS18, Theorem 3.4], the sequence of grids Tκ is admissible for the process

Mt in the sense of [GL14]. Thus, for the subsequence (ει(n))n≥0, the statement follows from (B.3)
and [GL14, Theorem 3.2] applied to Nn

T

〈
Z̄n〉T , with

C0 :=
(

sup
κ∈(0,1]

Cκ

)(∫ T

0
χκ(λmin(Λt)) Tr

(
σtσ

T
t

)
dt
)

where Cκ :=
∫ T

0

(
8ωt Tr(Xt) + 3κχκ(λmin(Λt)) Tr(ct)

)
dt. For general case it is enough to note that

the limit V κ
T is the same for any subsequence due to the convergence in probability for the entire

sequence (εn)n≥0.
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