Fractional Keller–Segel Equation: Global Well-posedness and Finite Time Blow-up - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Sciences Année : 2019

Fractional Keller–Segel Equation: Global Well-posedness and Finite Time Blow-up

Équation de Keller–Segel fractionnaire : Existence et unicité globales et explosion en temps fini

Résumé

This article studies the aggregation diffusion equation ∂ρ/∂t = ∆^(α/2) ρ + λ div((K * ρ)ρ), where ∆^(α/2) denotes the fractional Laplacian and K = x/|x|^a is an attractive kernel. This equation is a generalization of the classical Keller-Segel equation, which arises in the modeling of the motion of cells. In the diffusion dominated case a < α we prove global well-posedness for an L^1_k initial condition, and in the fair competition case a = α for an L^1_k ∩ L ln L initial condition. In the aggregation dominated case a > α, we prove global or local well posedness for an L^p initial condition, depending on some smallness condition on the L^p norm of the initial condition. We also prove that finite time blow-up of even solutions occurs, under some initial mass concentration criteria.
Fichier principal
Vignette du fichier
KellerSegel.pdf (588.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01875506 , version 1 (17-09-2018)

Licence

Identifiants

Citer

Laurent Lafleche, Samir Salem. Fractional Keller–Segel Equation: Global Well-posedness and Finite Time Blow-up. Communications in Mathematical Sciences, 2019, 17 (8), pp.2055-2087. ⟨10.4310/CMS.2019.v17.n8.a1⟩. ⟨hal-01875506⟩
306 Consultations
116 Téléchargements

Altmetric

Partager

More