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FRACTIONAL KELLER-SEGEL EQUATION: GLOBAL
WELL-POSEDNESS AND FINITE TIME BLOW-UP

LAURENT LAFLECHE AND SAMIR SALEM

Abstract. This article studies the aggregation diffusion equation

∂tρ = ∆
α
2 ρ+ λ div((K ∗ ρ)ρ),

where ∆
α
2 denotes the fractional Laplacian and K = x

|x|a is an attractive
kernel. This equation is a generalization of the classical Keller-Segel equation,
which arises in the modeling of the motion of cells. In the diffusion dominated
case a < α we prove global well-posedness for an L1

k initial condition, and in
the fair competition case a = α for an L1

k ∩ L lnL initial condition. In the
aggregation dominated case a > α, we prove global or local well posedness
for an Lp initial condition, depending on some smallness condition on the Lp

norm of the initial condition. We also prove that finite time blow-up of even
solutions occurs, under some initial mass concentration criteria.
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1. Introduction

The models arising in the context of the chemotaxis of cells have been thoroughly
studied in recent years. Among those, the (parabolic-elliptic) Keller-Segel equation
models the competition between the aggregation and diffusion of cells (see [8] and
references therein for a proper biological and mathematical introduction on the
topic). In this paper we consider a variant of this classical model where the diffusion
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is modeled with a fractional laplacian. Such a choice is biologically motivated (see
for instance [17, 9] and references therein). From a mathematical point of view, it
is then interesting to study how such a diffusion competes with an aggregation field
which singularity is up to the Newtonian one.

More precisely for some (α, a) ∈ R2
+, we consider the fractional Keller-Segel

equation

(FKS) ∂tρ = ∆α
2 ρ+ λ div((K ∗ ρ)ρ),

where λ > 0 is a parameter encoding the chemosensitivity, or the intensity of the
aggregation. The interaction kernel is given by

K(x) := x

|x|a
,

and I := ∆α
2 denotes the fractional Laplacian defined by

(1) I (u) = ∆α
2 u := cd,α

∫
Rd

u(y)− u(x)
|x− y|d+α dy.

The constant cd,α can be written cd,α = −(2π)α ω−α
ωd+α

> 0 where ωd = 2πd/2

Γ(d/2) is the
size of the unit sphere in Rd when d ∈ N∗.

Particular cases of equation (FKS) have been studied by numerous authors re-
cently. The classical case corresponds to the choice α = a = d = 2 and has
been thoroughly studied in the past years. In [8], the authors show the global well-
posedness when the initial massM0 is smaller than the critical oneMc = 4π

λ . Above
this mass, a finite time blow-up is shown to appear. In [14] is also established the
well posedness for an L∞ initial condition. This assumption is sufficient to enjoy
the Log-Lipschitz regularity of the nonlinear drift K ∗ ρ, as in this case K is the
Newtonian kernel (see for instance [29]). It is possible to relax this assumption to
L lnL initial data [16] or even measure initial data [1]. Large time behavior is also
studied in [8, 10, 16]. In higher dimension, the variant case α = 2, a = d = 3 is
studied in [15], where a finite time blow-up is obtained under a concentration of
initial mass condition.

The literature on the fractional case α < 2, is also large and growing. In a
significant part of it, the kernel K is the Newtonian one (a = d). In the one
dimensional case, [9] provides a well posedness result for an Lp initial condition
with p > 1

α when α ∈ (0, 1) and p > 1 when a ∈ (0, 1), as well as a finite time
blow-up of even solutions under some concentration of initial mass criteria. In the
case d ≥ 2, [6] also provides some concentration of initial mass criteria leading to
a blow-up of even solutions when α ∈ [1, 2) and non even when α ∈ (0, 2). Still in
the Newtonian case, [25] provides similar results in the range α ∈ (0, 2). See also
on the limiting case α = 0, [2] for a ∈ [0, 1), [3] for a = 1, and [26] for a ∈ (1, 2).
For α = 2 and a ∈ (0, 2), see [20] and [18], and for a = 1 and α ∈ (0, 1), see [23, 24]
and [5]. For a wider than segment range of results see [30] of the second author,
and [7, 5] which results are summarized in Figure 1 below.
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Figure 1. Existing results of (FKS).

2. Main Results

We will work on weighted spaces defined by

Mk := {ρ ∈M, 〈x〉kρ ∈M}

Lpk := {ρ ∈ Lp, 〈x〉kρ ∈ Lp},

where 〈x〉 =
√

1 + |x|2, Lp = Lp(Rd) andM =M(Rd) denote the space of bounded
measures. We also define the space of functions with finite entropy by

L lnL := {ρ ∈ L1, ρ ln(ρ) ∈ L1}.(2)

For s ∈ (0, 1), we will denote by CS
d,s the best Sobolev’s constant such that for any

f ∈ Hs

CS
d,s‖f‖2

L
2d
d−2s

≤ |f |2Hs ,

and for a ∈ (0, d) and p, q > 1 satisfying 2 − a
d = 1

p + 1
q , we will denote by CHLS

d,a,p

the best Hardy-Littlewood-Sobolev’s constant such that for any f ∈ Lp, g ∈ Lq,

(3)
∣∣∣∣∫∫

R2d
|x− y|−af(x)g(y) dxdy

∣∣∣∣ ≤ CHLS
d,a,p‖f‖Lp‖g‖Lq .
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Finally for s ∈ [0, d) and r = 2d
d−s , we denote CGNS

d,s the best Gagliardo-Nirenberg-
Sobolev’s constant such that it holds

CGNS
d,s ‖f‖2Lr ≤ ‖f‖L2 |f |Hs .

For a given given couple (a, α) we define the following exponents for the Lp
spaces which will characterize the integrability of the density

pa,α := d

d+ α− a
(4)

pa := pa,0 = d

d− a
.(5)

Taking K = x
|x|a let appear two main difficulties. The first one is the singularity

at x = 0 and the second is the behavior when x→∞. We will therefore write

K = K0 +Kc = χK + (1− χ)K,

where χ ∈ C∞c verifies 1B1 ≤ χ ≤ 1B2 . Several parts of our analysis could be easily
generalized to more general kernels with similar behavior.

Definition 2.1. For any T > 0, we say that ρ is a weak solution to the (FKS)
equation on (0, T ) with initial condition ρin ∈M if it satisfies

ρ ∈ C0 ([0, T ),M(1−a)+

)
if a ∈ (0, 2]

ρ ∈ C0 ([0, T ),M) ∩ L1
loc ((0, T ), Lpa,2) if a ∈ (2, d+ 2),

and for any ϕ ∈ C2
c

∫
Rd

(
ρ(t)− ρin)ϕ =

∫ t

0

∫
Rd
ρ(s) (I(ϕ)−Kc ∗ (ρ(s) · ∇ϕ))

(6)

+
∫∫

R2d
K0(x− y)(∇ϕ(x)−∇ϕ(y))ρ(s,dx)ρ(s,dy) ds.

We say that this solution is global if we can take T = +∞.

The definition makes sense since it is easy to notice that

Kc ∗ (ρ∇ϕ) ∈ C0 ∩ L∞(〈x〉a−1)
K0(x− y)(∇ϕ(x)−∇ϕ(y)) ∈ C0 ∩ L∞(R2d) if a ∈ (0, 2).

Moreover, if a ∈ (2, d + 2), the last term in Definition 2.1 is bounded thanks to
Hardy-Littlewood-Sobolev inequality. Remark that at least formally, this equation
conserves the mass which we will denote by

M0 :=
∫
Rd
ρin.

First we obtain a global or local well-posedness result, depending on the regime,
given in the

Theorem 1. Let (α, a) ∈ [0, 2)× [0, d) be such that a+α > 1 and k ∈ [(1−a)+, α).
• When a < α and ρin ∈ L1

k, there exists a unique and global weak solution to the
(FKS) equation.
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• When a = α, if ρin ∈ L1
k ∩ L lnL satisfies

(7) λM0 < Ca,d = 4(2π)a

(d− a)

(
ω2d

ωd

)
ωd−a
ω2d−a

max
(
ωd−a
ωd+a

,
ω2
d−a/2

ω2
d+a/2

)
,

then there exists a unique and global weak solution to the (FKS) equation.
• When a > α and ρin ∈ L1

k ∩Lp with p ∈ (pa,α, pa), there exists a time T > 0 such
that there is a unique solution to the (FKS) equation on (0, T ). Moreover there is
a constant Cλ,p(M0) such that if

(8) ‖ρin‖Lp ≤ Cλ,p(M0),
then the solution is global.

Remark 2.1. The constraint a + α > 1 comes from the necessity to propagate
moments, which is necessary for our notion of solution and gives us compactness.
Remark that it is only due to the behaviour at infinity of the interaction kernel,
which we denoted by Kc, and not to the singularity. Therefore, our Theorem would
hold also for example for the following kernel

K(x) = x

|x|a
χ(x) + x

|x|β
(1− χ(x)),

for any β > 1−α and which relaxes the condition a+α > 1. As it can be seen in the
proof, this condition can also be removed by assuming ρ even. It is interesting also
to notice that formula (20) could also provide an alternative definition of solution
which does not need moments. However, it is not clear whether it is sufficient to
provide compactness.

Remark 2.2. The explicit value of CHLS
d,a,p for a ∈ (0, d) and p = q in (3) and

CS
d,s for s ∈ (0, 1) are known, see for instance [27, 28]. Remarking that the HLS

conjugate as defined in (3) of pa/2 is itself, it holds

CHLS
d,a,pa/2

= π
a
2

Γ
(
d−a

2
)

Γ
(
d− a

2
) (Γ

(
d
2
)

Γ(d)

)−1+ a
d

= ω2d−a

ωd−a

(
ω2d

ωd

) a−d
d

CS
d,s =

22sπs Γ
(
d+2s

2
)

Γ
(
d−2s

2
) (

Γ
(
d
2
)

Γ(d)

) 2s
d

= (2π)2sωd−2s

ωd+2s

(
ω2d

ωd

) 2s
d

,

where we recall that ωd = 2πd/2

Γ(d/2) .

In the case a ≤ α, this theorem enlarges the existing result by Biler et al. [7],
where global existence is proved for d = 2, 3 in the case α ≤ d

2 , and is a novelty in
higher dimension. Also it is provided with larger class of initial condition, and a
uniqueness result. Note that the case α = a is only the object of some remark in
[7, Remark 3.2]. As for the case α < α < 2, it seems it has not been treated yet to
the best of the authors’ knowledges. See also [6] and [25] for the case a = 2.

Let us briefly sketch the proof of this theorem in the case of an L lnL initial
condition. Formally differentiating the Boltzmann’s entropy along (FKS) (see for
instance ([8, Section 2.2]) provides a control of the L1([0, T ), Lp) for p ∈ [1, pα] by
fractional Sobolev’s embedding, for any initial mass in the diffusion dominated case
and for small initial mass in the fair competition case. Then a slight modification of
standard coupling argument enables to obtain stability in this space when p ∈ [1, pa)
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and uniqueness when p = pa. The other assumption on the initial condition are
meant to control the L1([0, T ), Lpa) norm of the solution in the different regimes.

When global existence holds, we also retrieve some additional properties as a
quantitative rate of convergence to 0 in the aggregation dominated case and a gain
of local integrability in the diffusion dominated case.

Theorem 2. Let (α, a) ∈ [0, 2)× [0, d) and ρ be a solution of the (FKS) equation
as given by Theorem 1.
• When a < α, the gain of integrability is given for any p ∈ (1, pa) by

‖ρ(t)‖Lp ≤ CM0t
− d
αq + Cλ(M0).

• When α < a and for a given p ∈ (pa,α, pa), ‖ρin‖Lp < Cλ,p(M0) defined by (8),
then there exists a constant C = Ca,α,p(ρin) > 0 such that

‖ρ‖Lp ≤ CM0t
− d
αq .

• When a = α, the condition becomes

λM0 < Ca,d,p =
4CS
d,a/2

p(d− a)CHLS
d,a,r

,
1
r

:= p

p+ 1
1
p

+ 1
p+ 1

1
pa
,

which gives both a gain of integrabilty and an asymptotic behavior for any p ∈ (1, pa)

λM0 ≤ Ca,d,p =⇒ ‖ρ‖Lp ≤ CM0t
− d
αq ,(9)

where C depends only on M0, d, p, a and α.

Remark 2.3. If ρ is a weak solution to the (FKS) equation as given by defini-
tion 2.1 with a = α and λM0 < Cd,a,p for a given p > 1, we are not able to assert
the uniqueness unless we assume that ρin ∈ L lnL.

Finally we obtain a finite time blow-up for even solutions to (FKS) under some
concentration of mass condition stated in the

Theorem 3. Let (α, a) ∈ [0, 2) × [0, d) be such that a > α and ρ ∈ C0(R+, L
1
k)

be an even weak solution to the (FKS) equation with initial condition ρin ∈ L1
k

verifying

(10)
∫
Rd
ρin〈x〉k ≤ C∗λ

k
2(a−k)M

2a−k
2(a−k)

0 ,

for a given universal constant C∗ depending only on a, α, k and d. Then the
solution ceases to be in L1 in finite time.

The proof of this theorem relies on the time differentiation of an adequate mo-
ment, which is adapted to the fractional diffusion and not Newtonian aggregation
case, and which leads to a contradiction. We summarize our results in the following
figure
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Figure 2. Range of application of Theorems 1 and 3. We empha-
size that for d > 2 the results extend to the segment (α, a) ∈
{2} × (0, d).

One of the strength of the result of Theorem 3, even if it deals only with even
solutions, is that it applies to weakly singular interactions, i.e. a < 2. Indeed
it seems that so far most of finite time blow-up results for aggregation fractional
diffusion equation dealt with the case of a Newtonian interaction at the exception
of [5, Theorem 2.2], which deals with interactions of the from x

|x| near the origin.
Considering a less singular kernel than the Newtonian erases some algebraic fa-
cilities and requires a thinner estimation of the competing terms. We emphasize
that it also covers the purely aggregative case α = 0, giving stronger results than
[3, 26] for the case a ≥ 2. For a ≤ 2, the blow-up was already proved in [2] using a
Lagrangian point of view.

Finally, let us comment about the disjunction of the different global existence
and finite time blow-up conditions. Condition (8) in Theorem 1 is heuristically in
contradiction with the assumption of Theorem 3. First remark that if we require
that ρin is concentrated around zero, for instance with a condition of the type
‖ρin‖L1

k
< CM0 for a given constant C which does not depend on ρin, then the
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condition of blow-up (10) is equivalent to

λM0 ≥ C ′,

where C ′ is a positive constant that depends only on a, α, k and d. Moreover, in
a more general setting, for k > 0, q = p′ ∈ (1,∞) and ρ ∈ L1

k ∩ Lp, the following
inequality

∫
ρ ≤ C

(∫
ρ〈x〉k

) d
d+kq

‖ρ‖
kq
d+kq
Lp ,

holds with C depending only on d, k and q. With fixed M0, this inequality is
enough to exclude a priori (8) from (10), at least in the range of arbitrarily large
(or small) ‖ρin‖Lp or

∫
ρin〈x〉k. When this is not the case, we expect that no other

behavior appear in the remaining cases.
We bound ourselves to check that in the simple case α = a = 2 < d, the

global well-posedness condition (7) is coherent with the classical large mass blow-
up criteria. Indeed take a solution to (FKS) in that case, it is possible to consider
initial condition ρin ∈ L1

2 and then classically

d
dt

∫
ρ|x|2 =

∫
Rd
ρ∆(|x|2)− λ

∫∫
R2d

K(x− y) · (x− y)ρ(dx)ρ(dy)

= 2dM0 − λM2
0

= 2dM0

(
1− λM0

2d

)
,

so that the condition λM0 > 2d yields to final time blow-up. And since ωa+2 =
2π
a ωa, it holds

C2,d = 4(2π)2

(d− 2)
ω2d

ωd

ωd−2

ω2d−2
max

(
ωd−2

ωd+2
,
ω2
d−1
ω2
d+1

)
= 4(2π)2

(d− 2)
d− 2
2d− 2 max

(
d(d− 2)

(2π)2 ,
(d− 1)2

(2π)2

)
= 2(d− 1) < 2d,

so that the two conditions can not be realized simultaneously.
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Figure 3. Lower bound of the threshold of condition (7) for d =
2, 3, 4 and a ∈ (0, 2). For the case a ≤ 1

2 see Remark 2.1.

3. Proof of Theorem 1 and Theorem 2

3.1. A Priori estimates. We begin this section with an a priori moment estimate
given in the

Proposition 3.1 (Propagation of weight). Assume 1−a < α and let k ∈ [1−a, α)
and ρ be a solution of the (FKS) equation with initial condition ρin ∈ L1

k. Then

ρ ∈ L∞loc(R+, L
1
k).

Proof. Let m = 〈x〉k and Mk = ‖ρ‖L1
k
. When k ≥ 1, the convexity of m leads to

dMk

dt =
∫
Rd
ρ I (m)− λ

∫∫
R2d

hm(x, y)ρ(dx)ρ(dy)(11)

≤
∫
Rd
ρ I (m),

where hm(x, y) = (∇m(x)−∇m(y))·(x−y)
|x−y|a ≥ 0. From [4, Remark 4.2] and [21, Propo-

sition 2.2], we know that for any k ∈ (0, α),

(12) I (m) ≤ Cα,km(x)〈x〉−α.

Since m(x)〈x〉−α ≤ 1, the following inequality holds

dMk

dt ≤ Cα,kM0.
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When k ∈ [1 − a, α ∧ 1), there exists R > 0 such that m is strictly convex on BR.
Therefore, a part of the second term in (11) is still nonpositive

−
∫∫
|x−y|≤R

hm(x, y)ρ(dx)ρ(dy) ≤ −
∫∫
|x−y|≤R

|x− y|2−aρ(dx)ρ(dy).

The other part can be controlled as follows

−
∫∫
|x−y|>R

hm(x, y)ρ(dx)ρ(dy) ≤ k
∫∫
|x−y|>R

(x · y)(〈x〉k−2 + 〈y〉k−2)
|x− y|a

ρ(dx)ρ(dy)

≤ 2k
∫∫
|x−y|>R

(x · y)〈x〉k−2

|x− y|a
ρ(dx)ρ(dy)

≤ 4k
∫∫
|x−y|>R,|x|>|y|

|x||y|〈x〉k−2

|x− y|a
ρ(dx)ρ(dy)

≤ 4k(I1 + I2),
where

I1 =
∫∫
|x−y|>R,2|x|<|y|

|y|〈x〉k−1

|x− y|a
ρ(dx)ρ(dy)

I2 =
∫∫
|x−y|>R,|x|<|y|<2|x|

|y|〈x〉k−1

|x− y|a
ρ(dx)ρ(dy).

Since |x− y| > ||y| − |x|| > |y||1− |x|/|y|| > |y|/2 when |y| > 2|x|, we get

I1 ≤ 2a
∫∫
|x−y|>R,2|x|<|y|

|y|1−a〈x〉k−1ρ(dx)ρ(dy)

≤ 2aM1−aM0.

For I2, we use the fact that |y| < 2〈x〉 to obtain

I2 ≤
2
Ra

∫∫
|x−y|>R,|x|<|y|<2|x|

〈x〉kρ(dx)ρ(dy)

≤ 2
Ra

MkM0.

Combining these three inequalities with (11) and (12), we obtain
dMk

dt ≤ Cα,kMk−α + λM0

(
21−aM1−a + 2

Ra
Mk

)
.

In particular, since 1− a ≤ k and k − α < 0, we get
dMk

dt Mk ≤M0

(
Cα,k + λ

(
21−a + 2

Ra

)
Mk

)
.

By Gronwall’s Lemma, this leads to

Mk ≤
(
M in
k + Cα,k

λCa,R

)
eλCa,RM0t,

which proves the result. �

The second type of estimates are a priori bounds of integrability. Let us first
briefly emphasize that the quantities we estimate will take the form∫

Rd
Φ(u(x)) dx,
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where u ≥ 0 and Φ : R+ → R+ is a non-decreasing convex mapping such that
Φ(0) = 0 and u 7→ uΦ′′(u) ∈ L1

loc. Then we can define

Ψ(u) :=
∫ u

0
vΦ′′(v) dv(13)

ψ(u) := 1
2

∫ u

0

√
Φ′′.(14)

For p = q′ > 1 and u ≥ 0, we recover Lebesgue norms and Boltzmann’s entropy as
follow

Φp(u) := 1
p−1u

p =⇒ Ψp(u) = up

ψp(u) = 2√
pu

p/2

Φ1(u) := u ln(u) =⇒ Ψ(u) = u

ψ1(u) = 2u1/2.

Lemma 3.1 (General estimate). Assume that (α, a) ∈ (0, 2]× (0, d) (with α 6= 2 if
d = 2) and let ρ be a smooth solution to the (FKS) equation, Φ be a non-decreasing
convex mapping, Ψ and ψ be defined respectively by (13) and (14) and b ∈ (1, pa).
Then there holds

d
dt

(∫
Rd

Φ(ρ)
)
≤ λ(d− a)CHLS

d,a,b‖ρ‖Ls‖Ψ(ρ)‖Lb − |ψ(ρ)|2
H
α
2
,(15)

≤ λ(d− a)CHLS
d,a,b‖ρ‖Ls‖Ψ(ρ)‖Lb − CS

d,α/2‖ψ(ρ)‖2
Lb̃
,(16)

where
1
s

= 2− a

d
− 1
b
,

2
b̃

= 1− α

d
.

Proof. We define the "Carré du Champs" and the Φ-dissipation by

Γ(u, v) := cd,α
2

∫
Rd

(u(y)− u(x))(v(y)− v(x))
|x− y|d+α dy dx(17)

DΦ(u) := Γ(u,Φ′(u)),(18)
where cd,α is defined in (1). With these definitions, we have∫

Rd
I (u)v =

∫
Rd
u I (v) = −

∫
Rd

Γ(u, v).

In particular, since Φ is convex,∫
Rd

I (u)Φ′(u) = −
∫
Rd

DΦ(u) ≤ 0.

We remark that

|ψ(u)− ψ(v)|2 =
∣∣∣∣∫ v

u

√
Φ′′
∣∣∣∣2

≤
(∫ v

u

ds
)(∫ v

u

Φ′′
)

≤ (u− v)(Φ′(u)− Φ′(v)),
which by definition (17) leads to

Γ(ψ(u), ψ(u)) ≤ Γ(u,Φ′(u)).
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Therefore

(19) |ψ(u)|2
H
α
2

=
∫
Rd

Γ(ψ(u), ψ(u)) ≤
∫
Rd

Γ(u,Φ′(u)) =
∫
Rd

DΦ(u).

Let ρ be a nonegative solution to the (FKS) equation. Then formally
d
dt

(∫
Rd

Φ(ρ)
)

=
∫
Rd

Φ′(ρ) I (ρ)− λΦ′′(ρ)∇ρ · (K ∗ ρ)ρ

= −
∫
Rd

DΦ(ρ)−
∫
Rd
λ∇(Ψ(ρ)) · (K ∗ ρ)

= −
∫
Rd

DΦ(ρ) + λ

∫
Rd

Ψ(ρ)(div(K) ∗ ρ)

= −
∫
Rd

DΦ(ρ) + λ(d− a)
∫
Rd

(
1
|x|a
∗ ρ
)
.(20)

We remark that by Hardy-Littlewood-Sobolev inequality, we have

(d− a)
∫
Rd

(
1
|x|a
∗ ρ
)

Ψ(ρ) ≤ (d− a)CHLS
d,a,b‖ρ‖Ls‖Ψ(ρ)‖Lb ,

and by (19) and Sobolev embeddings, we have

−
∫
Rd

DΦ(ρ) ≤ −|ψ(ρ)|2
H
α
2
≤ −CS

d,α/2‖ψ(ρ)‖2
Lb̃
,

which ends the proof. �

Proposition 3.2 (L lnL estimate). Let a = α and ρ be a smooth function satisfying
the (FKS) equation with initial condition ρin ∈ L lnL. Then it holds∫

Rd
ρ ln(ρ) + 4C−1

a,d (λM0 − Ca,d)
∫ t

0
|√ρ|2

H
a
2
≤
∫
Rd
ρin ln(ρin),

with ρ = ρ(t, ·) and

Ca,d =
4(CGNS

d,a/2)2

(d− a)CHLS
d,a,pa/2

.

Moreover if λM0 < Ca,d and for some T, k > 0, ρ ∈ L∞((0, T ), L1
k), then

(21) ρ ∈ L1((0, T ), Lpa).

Remark 3.1. The explicit value for CGNS
d,a/2 does not seem to be known, however the

following lower bound holds

(22) CGNS
d,s ≥ max

(
CS
d,s/2, (CS

d,s)1/2
)
.

Indeed, a first way to get the Gagliardo-Nirenberg-Sobolev inequality is to first use
Sobolev’s inequality and then interpolation between Hs spaces

CS
d,s/2‖f‖

2
Lr ≤ |f |2H s

2
≤ ‖f‖L2 |f |Hs .

A second way is to first interpolate between Lebesgue spaces and then to use Sobolev’s
inequality

(CS
d,s)1/2‖f‖2Lr ≤ (CS

d,s)1/2‖f‖L2‖f‖Lr2 ≤ ‖f‖L2‖f‖Hs ,

where r2 := 2d
d−2s .
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Proof. We use inequality (15) for Φ = Φ1, ψ1(u) = 2u1/2 and b = s = pa/2 to
obtain

d
dt

∫
Rd
ρ ln(ρ) ≤ λ(d− a)CHLS

d,a,b‖ρ‖2Lb − |ψ1(ρ)|2
H
a
2
.

Then, by Gagliardo-Nirenberg-Sobolev’s inequality, we have

(CGNS
d,a/2)2‖ρ‖2Lb = (CGNS

d,a/2)2‖ρ1/2‖4L2b

≤ ‖ρ1/2‖2L2 |ρ1/2|2
H
a
2

= M0|ρ1/2|2
H
a
2
.

Hence, since ψ1(u) = 2u1/2, we have

4(CGNS
d,a/2)2‖ρ‖2Lb ≤M0|ψ1(ρ)|2

H
a
2
.

This yields
d
dt

∫
Rd
ρ ln(ρ) ≤ C−1

a,d (λM0 − Ca,d) |ψ1(ρ)|2
H
a
2
,

which proves the first assertion. Formula (21) comes form the fact for k > 0,
defining λk > 0 such that

∫
Rd e

−λk〈x〉kdx = 1, with h(u) = u ln u − u + 1 ≥ 0 it
holds∫

Rd
ρ log ρ =

∫
Rd
h
(
ρeλk〈x〉

k
)
e−λk〈x〉

k

+
∫
Rd
ρ ln(e−λk〈x〉

k

) ≥ −λk
∫
Rd
ρ〈x〉k.

Combined with the following Sobolev’s inequality

4CS
d,a/2‖ρ‖Lpa = CS

d,a/2‖ψ1(ρ)‖2L2pa ≤ |ψ1(ρ)|2
H
a
2
,

it yields

0 ≤
(∫

Rd
ρ ln(ρ) + λk〈x〉kρ

)
+ 4CS

d,a/2C
−1
a,d (Ca,d − λM0)

∫ t

0
‖ρ‖Lpa

≤
∫
Rd
ρin ln(ρin) + λk‖ρ‖L∞(0,T ;L1

k
),

and the conclusion follows. �

Proposition 3.3 (Lp estimates). Let (α, a) ∈ [0, 2) × [0, d). Then, when a < α
and p = q′ ∈ (1, pa), we get a gain of integrability from L1 to Lp and a global in
time propagation of the Lp norm

(23) ‖ρ(t)‖Lp ≤ CM0 max
(
t−

d
αq ,M

d
q(α−a)

0

)
,

where C > 0 is a constant depending on d, a, α, p and λ. When a > α, then for any
p ∈ (pa,α, pa), there exists two constants C = Ca,α,p > 0 and C in = Ca,α,p(‖ρin‖Lp)
such that

‖ρin‖Lp < CM0(λM0)−
d

(a−α)q =⇒ ‖ρ‖Lp ≤ C inM0t
− d
αq(24)

‖ρin‖Lp > CM0(λM0)−
d

(a−α)q =⇒ ρ ∈ L∞((0, T ), Lp)(25)

‖ρin‖Lp = CM0(λM0)−
d

(a−α)q =⇒ ρ ∈ L∞(R+, L
p),(26)

where T < Ca,α,p(λ,M0)‖ρin‖−pbLp with

b = α

p(α− a) + d(p− 1) .
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When a = α, then there exists a constant

Ca,d,p =
4CS
d,α/2

(d− a)CHLS
d,a,r

,

such that for any p ∈ (1, pa),

λM0 ≤ Ca,d,p =⇒ ‖ρ‖Lp ≤M0(C inb)− 1
b t−

d
αq(27)

λM0 ≥ Ca,d,p =⇒ ρ ∈ L∞((0, T ), Lp),(28)

where C in is a nonnegative constant depending on the initial data and

T >
1

bC in

(
M0

‖ρin‖Lp

)αq
d

.

Remark 3.2. The critical mass is clearly not optimal since we could use optimal
constants in the Gagliardo-Nirenberg type embeddings, as it is done in the L lnL
estimate, instead of using Sobolev’s embeddings and interpolation between Lebesgue
spaces.

Proof. We will separate the proof into severals steps.
Step 1. Differential inequality for the Lp norm. We recall that

1
r

= p

p+ 1
1
p

+ 1
p+ 1

1
pa
.

Since p < pa, it implies that r ∈ (p, pa) and in particular r/p > 1. Therefore, by
taking Φ = Φp, r = s and b = r/p in inequality (16) and defining r̃ = pb̃

2 , we obtain

d
dt

(∫
Rd

Φp(ρ)
)
≤ λCa,r‖ρ‖p+1

Lr −
Cα
p ‖ρ‖

p
Lr̃ ,(29)

where Ca,r = (d− a)CHLS
d,a,r, Cα = 4CS

d,α/2 and

p+ 1
r

= 2− a

d
(30)

p

r̃
= 1− α

d
.(31)

We also remark that

r ≤ r̃ ⇔ 1
p

(
1− α

d

)
≤ 1

p+1
(
2− a

d

)
⇔
(

1 + 1
p

)
(d− α) ≤ (2d− a)

⇔ p ≥ d− α
d+ α− a

.

Since p ≥ pa,α ≥ d−α
d+α−a , we deduce that r ≤ r̃.

We will now use interpolation between Lebesgue spaces to express the left hand
side of (29) in terms ofM0 and the Lp norm only. Let ε ∈ (0, 1) to be choosen later
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and

b0 := a− α(1− ε)
εd(p− 1) = α

d(p− 1) + a− α
εd(p− 1)(32)

θ1 := εp

p+ 1(1 + b0)(33)

θ2 := (1− ε)p
p+ 1(34)

θ0 := 1− θ1 − θ2.(35)

Since p > 1 and ε ∈ (0, 1), we deduce that θ2 ∈ [0, 1). Moreover, using the respective
definitions (30) and (31) of r and r̃, we have

θ1

p
+ θ2

r̃
+ θ0 = ε(1 + b0)p

p+ 1

(
1
p
− 1
)

+ (1− ε)p
p+ 1

(
1
r̃
− 1
)

+ 1

= 1
p+ 1

(
ε(1− p)(1 + b0) + (1− ε)

(
1− α

d
− p
)

+ p+ 1
)

= 1
p+ 1

(
ε(1− p)− a− α(1− ε)

d
+ 2− α

d
− ε (1− p) + ε

α

d

)
= 1
p+ 1

(
2− a

d

)
= 1
r
.

Therefore, if we can choose ε ∈ (0, 1) such that (θ0, θ1) ∈ [0, 1]2, we obtain by
interpolation

‖ρ‖p+1
Lr ≤M

θ0(p+1)
0 ‖ρ‖pε(1+b0)

Lp ‖ρ‖p(1−ε)Lr̃ = AεB1−ε.

Then, by using the standard Young’s inequality aεb1−ε ≤ εa + (1 − ε)b, for any
ε0 > 0, we have

AεB1−ε =
((

1− ε
ε0

) 1−ε
ε

A

)ε(
ε0B

1− ε

)1−ε
≤ Cε,ε0A+ ε0B,

with Cε,ε0 = ε
(

1−ε
ε0

) 1−ε
ε . Coming back to (29), it yields

d
dt

(∫
Rd

Φp(ρ)
)
≤ (λCa,r)1/εCε,ε0M

θ0(p+1)/ε
0 ‖ρ‖p(1+b0)

Lp +
(
ε0 − Cαp

)
‖ρ‖pLr̃ ,(36)

where we take ε0 smaller than Cα/p. Since 1 ≤ p ≤ r̃, again by interpolation, we
get

‖ρ‖p(1+b1)
Lp ≤Mpb1

0 ‖ρ‖pLr̃ ,
with

b1 = α

d(p− 1) .

Thus, inequality (36) becomes

d
dt‖ρ‖

p
Lp ≤ C1M

θ0(p+1)/ε
0 ‖ρ‖p(1+b0)

Lp − C2M
−pb1
0 ‖ρ‖p(1+b1)

Lp ,(37)

where C1 = (p− 1)(λCa,r)1/εCε,ε0 and C2 = (p− 1)
(
Cα
p − ε0

)
.
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Step 2. Conditions on ε. We still have to verify that we can choose ε so that
(θ0, θ1) ∈ [0, 1]2. By definition (33) of θ1, we get

θ1 ≥ 0⇔ b0 ≥ −1
⇔ a− α+ αε > −εd(p− 1)

⇔ ε ≥ α− a
α+ d(p− 1) = εm.

Moreover, by definition (35) of θ0

θ0 ≥ 0⇔ θ1 + θ2 ≤ 1

⇔ p

p+ 1 (1 + εb0) ≤ 1

⇔ εb0 ≤
1
p

⇔ a− α(1− ε)
d(p− 1) ≤ 1

p

⇔ ε ≤ 1− 1
α

(
a− d

q

)
= εM .

Since p < pa, εM < 1. Let us check that it is nonnegative. We have

εM ≥ 0⇔ a− d

q
≤ α⇔ 1

q
≥ a− α

d
.

Since q = p′ ≥ 1, this is always verified when a ≤ α. When a > α, it is verified by
hypothesis since we can also read previous formula as

εM ≥ 0⇔ p ≥ d

d+ α− a
= pa,α.

When a < α, we also have to verify that εm ≤ εM . We have, indeed
εM
εm

= (p(α− a) + d(p− 1))(α+ d(p− 1))
pα(α− a)

= pα(α− a) + d(p(p− 1)(α− a) + α(p− 1) + d(p− 1)2)
pα(α− a)

= 1 + d(p− 1)p(α− a) + α+ d(p− 1)
pα(α− a) > 1.

Therefore, since θ2 ≥ 0 and θ0 + θ1 + θ2 = 1, we proved that for any ε ∈
[max(εm, 0),min(εM , 1)],

(θ0, θ1, θ2) ∈ [0, 1]3.
By looking at (37), we want to take ε which minimizes b0. Hence, we take

ε = εm when a < α,

ε = εM when a > α.

Step 3. Case a < α. In this case, we have ε = εm, which yields b0 = −1.
Moreover, since

θ0(p+ 1) = p+ 1− (1− ε)p = 1 + εp,

by (37), we obtain
d
dt‖ρ‖

p
Lp ≤ C1M

p+1/ε
0 − C2M

−pb1
0 ‖ρ‖p(1+b1)

Lp .
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Then, either

(38) C2M
−pb1
0 ‖ρ‖p(1+b1)

Lp ≤ 2C1M
p+1/ε
0 ,

or

(39) d
dt‖ρ‖

p
Lp ≤ −

1
2C2M

−pb1
0 ‖ρ‖p(1+b1)

Lp .

Inequality (38) is equivalent to

‖ρ‖pLp ≤
(

2C1

C2

) 1
1+b1

M
p+ 1

ε(1+b1)
0 =: C(M0),

and by Gronwall’s inequality, (39) leads to

‖ρ‖pLp ≤
(

1
2C2M

−pb1
0 b1t

)−1/b1
= Mp

0
(
b1
2 C2t

)−1/b1

Step 4. Case a > α. In this case, we have

ε = εM = p(α− a) + d(p− 1)
αp

= 1
pb
,

which by definition (32) leads to

b0 = 1
d(p− 1)

(
α+ a− α

ε

)
= α

d(p− 1)

(
p(α− a) + d(p− 1) + p(a− α)

p(α− a) + d(p− 1)

)
= α

p(α− a) + d(p− 1) = b,

and by inequality (37), to
d
dt‖ρ‖

p
Lp ≤ C1M

θ0(p+1)/ε
0 ‖ρ‖p(1+b)

Lp − C2M
−pb1
0 ‖ρ‖p(1+b1)

Lp .

As remarked previously, ε = εM ≥ 0. Therefore, since a > α,

(40) b = b1 + a− α
εd(p− 1) ≥ b1.

The estimate on the Lp norm is then obtained by analyzing the corresponding ODE
which is of the form

y′(t) = Ay(t)1+b −By(t)1+b1 ,

with A and B nonnegative. It has a fixed point at y = 0 and at

y] =
(
B

A

) 1
b−b1

≥ 0.

Therefore, when y(0) ∈ [0, y]), it yields y(t) ∈ [0, y]) for any t > 0, and since y′ ≤ 0
in this interval, it implies the existence of a constant C = C(y(0)in) < 1 such that

Ay1+b ≤ CBy1+b1 .

It implies that
y′ ≤ −(1− C)By1+b1 ,

which, by Gronwall’s inequality, leads to

∀t ∈ R+, y ≤
1

(y(0)−b1 + b1(1− C)Bt)
1
b1
≤ Mp

0

(b1(1− C)C2t)
1
b1
.
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When y(0) > y], we can still write that

y′ ≤ Ay1+b.

It implies that the solution is bounded in [0, T ] for some T > 0 and

∀t ∈ [0, T ], y(t) ≤ 1
(y(0)−b − bAt) 1

b

T <
1

bAy(0)b .

We deduce the corresponding results for the Lp norm of ρ by Gronwall’s inequality.
When y = y], all we get that y is constant and therefore that ‖ρ‖pLp ≤ y] for any
t > 0. We can compute more precisely

y] =
(

C2M
−pb1
0

C1M
θ0(p+1)/ε
0

) 1
b−b1

=
(
C2

C1

) 1
b−b1 (

M
−θ0(p+1)/ε−pb1
0

) 1
b−b1

.

Now by the definitions of C1 and C2 in step 1, by (40) and the definition (35) of
θ0, we have

θ0(p+ 1) = 1− εpb = 0

(b− b1)ε = a− α
d(p− 1)

C1 = (p− 1)(λCa,r)1/εCε,ε0

C2 = (p− 1)
(
Cα
p − ε0

)
.

This leads to

y] =
(

Cα − ε0p

(λCa,r)1/εCε,ε0p

) 1
b−b1 (

M
p(b−b1)−1/ε
0

) 1
b−b1

= Cpa,α,pM
p− d(p−1)

a−α
0 λ

d(p−1)
a−α .

Step 5. Case a = α. When a = α, by definition (32), b0 does not depend on ε
and

b = b0 = b1 = α

d(p− 1)
θ0(p+ 1) = 1− εpb.

Moreover, we can take any ε ∈ (εm, εM ] = (0, d/(αq)]. Thus, by inequality (37),
we get

d
dt‖ρ‖

p
Lp ≤ C1M

(1−εpb)/ε
0 ‖ρ‖p(1+b)

Lp − C2M
−pb
0 ‖ρ‖p(1+b)

Lp

≤ ‖ρ‖p(1+b)
Lp M−pb0

(
C1M

1/ε
0 − C2

)
.

The left hand side will be negative when

(41) M0 ≤
(
C2

C1

)ε
= (Cα/p− ε0)ε

λCa,r

(
ε0

1− ε

)1−ε
ε−ε = uε(ε0).
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Taking ε0 maximizing the right hand side, we get

ε0 = (1− ε)Cα/p

uε(ε0) = Cα
pλCa,r

= Ca,d,p
λ

.

When this is the case, then C in := |C1M
1/ε
0 −C2| > 0 and by Gronwall’s inequality

∀t ∈ R+, ‖ρ‖pLp ≤
1

(‖ρin‖−pbLp + bM−pb0 C int) 1
b

≤ Mp
0

(bC int) 1
b

,

which proves (27). When M0 > M∗0 we only get the existence of T > 0 such that

∀t ∈ [0, T ], ‖ρ‖pLp ≤
1

(‖ρin‖−pbLp − bM
−pb
0 C int) 1

b

.

Moreover, T verifies

T >
1

bC in

(
M0

‖ρin‖Lp

)pb
,

which proves (28). �

Corollary 3.1. When a < α and ρin ∈ L1, then for any p < pα

(42) ρ ∈ L1
loc(R+, L

p),

which holds in particular if p = pa. When a > α and ρin ∈ Lp for a given p ∈
(pa,α, pa), then there exists T > 0 such that

(43) ρ ∈ Lp((0, T ), Lr̃),

where r̃ = ppα ≥ pa. Moreover, if (24) is verified,

ρ ∈ Lploc(R+, L
r̃).

Proof of Corollary 3.1. Equation (42) comes from inequality (23) by remark-
ing that p < pα implies d/(αq) ≤ 1 and integrating in time. Equation (43) is a
consequence of (36), which by integrating in time leads to

‖ρ‖pLp(t) + C2

∫ t

0
‖ρ(s)‖pLr̃ ds ≤ ‖ρin‖pLp + C1M

θ0(p+1)/ε
0

∫ t

0
‖ρ(s)‖p(1+b0)

Lp ds.

If ρ ∈ L∞([0, T ], Lp), then we deduce that

C2

∫ t

0
‖ρ(s)‖pLr̃ ds ≤ ‖ρin‖pLp + C1M

θ0(p+1)/ε
0 T‖ρ‖p(1+b0)

L∞([0,T ],Lp),

and we conclude by using (24) or (25). �

3.2. Tightness and coupling. For the rest of the section we consider some given
stochastic basis (Ω,F , (Ft)t≥0,P). The expectation with respect to P will be de-
noted E. We frist provide a generalization of [13, Proposition 3.1] in the

Lemma 3.2. Let be a ≤ d, k ≥ 1 and p ≥ pa. There exists a constant C depending
only on d, p, a such that for any ρ1, ρ2 ∈ Pk ∩ Lp and X, X̄ two i.i.d. random
variables of law ρ1 (respectively Y, Ȳ two i.i.d. of law ρ2), it holds when p > pa

(i) E
[
|X − Y |k−1 ∣∣K(X − X̄)−K(Y − Ȳ )

∣∣] ≤ CCρ1,ρ2Ek,
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and when p = pa,

(ii) E
[
|X − Y |k−1 ∣∣K(X − X̄)−K(Y − Ȳ )

∣∣] ≤ CCρ1,ρ2Ek
(

1 + ln−(Ek)
k

)
,

where Cρ1,ρ2 = 1 + ‖ρ1‖Lp + ‖ρ2‖Lp and Ek = E
∣∣[X − Y |k].

Remark 3.3. The point (i) of this Lemma has been extensively used in the literature
(See for instance [12, 11, 18, 30]). So has the point (ii) in the Newtonian case a = d
and thus pa =∞ (see for instance [29, 19, 13]). However to the best of the authors’
knowledge, its generalization to a general Riesz interaction kernel a ∈ (0, d) is a
novelty. A similar technique can be found in [22]. Since this observation is crucial
with respect to the competition between diffusion and aggregation, we detail the
proof.

Proof. We start with the classical inequality (see [19, (3.9)], [18, Lemma 2.5], [11,
(3.26)], [12, (3.5)]) which holds for any (x, y) ∈ (Rd)2

|K(x)−K(y)| ≤ (|∇K(x)|+ |∇K(y)|) |x− y|.

Then denote π = L(X,Y ) = L(X̄, Ȳ ) ∈ P(R2d).
Step 1. Proof of (i). We assume here that p > pa. Then we have

E
[
|X − Y |k−1 ∣∣K(X − X̄)−K(Y − Ȳ )

∣∣]
≤ E

[
|X − Y |k−1(|X − Y |+

∣∣X̄ − Ȳ ∣∣) (|∇K(X − X̄)|+ |∇K(Y − Ȳ )|
)]

:= I1 + I2.

We first estimate I1. Since X and X̄ are independent we get

I1 = E
[
|X − Y |k E

[(
|∇K(X − X̄)|+ |∇K(Y − Ȳ )|

)
|X,Y

]]
= E

[
|X − Y |k

(∫∫
R2d

(|∇K(X − x)|+ |∇K(Y − y)|)π(dx,dy)
)]

= E
[
|X − Y |k

(∫
Rd
|∇K(X − x)|ρ1(x) dx+

∫
Rd
|∇K(Y − y)|ρ2(y) dy

)]
.

But since |∇K| ≤ Ca|x|−a with Ca = max(1− a, a), we obtain

C−1
a

∫
Rd
|∇K(X − x)|ρ1(x) dx ≤

∫
Rd
|X − x|−aρ1(x) dx

≤
∫
|X−x|≤r

|X − x|−aρ1(x) dx+ r−a‖ρ1‖L1

≤ ‖ρ1‖Lp
(∫
|x|<r

|x|−aq dx
)1/q

+ r−a‖ρ1‖L1 ,

where q = p′ and r > 0. Since p > pa, we get aq < d so that |x|−aq is locally
integrable and we obtain

C−1
a

∫
Rd
|∇K(X − x)|ρ1(x) dx ≤ CKrd/q‖ρ1‖Lp + r−a‖ρ1‖L1 ,

where CK =
(

ωd
d−aq

)1/q
.
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Step 2. Proof of (ii). Note that for any (x, y) ∈ (Rd)2 and r > 0, it holds

|K(x)−K(y)| ≤
{
|K(x)|+ |K(y)| if |x| ∧ |y| ≤ r
(|∇K(x)|+ |∇K(y)|) |x− y| else.

So that

E
[
|X − Y |k−1 ∣∣K(X − X̄)−K(Y − Ȳ )

∣∣] ≤
E
[
|X − Y |k−1 (|K(X − X̄)|+ |K(Y − Ȳ )|

)
1|X−X̄|∧|Y−Ȳ |≤r

]
+ E[|X − Y |k−1 (|X − Y |+

∣∣X̄ − Ȳ ∣∣)(
|∇K(X − X̄)|+ |∇K(Y − Ȳ )|

)
1|X−X̄|∧|Y−Ȳ |>r]

=: I1 + I2.

To estimate I1, we write

I1 = I1
1 + I2

1 + I3
1

:= E
[
|X − Y |k−1 (|K(X − X̄)|+ |K(Y − Ȳ )|

)
1|X−X̄|∨|Y−Ȳ |≤r

]
+ E

[
|X − Y |k−1 (|K(X − X̄)|+ |K(Y − Ȳ )|

)
1|X−X|>r≥|Y−Y |

]
+ E

[
|X − Y |k−1 (|K(X − X̄)|+ |K(Y − Ȳ )|

)
1|X−X|≤r<|Y−Y |

]
.

Then, for the estimate of I1
1 , we get by independence of X̄ and X (resp. Ȳ and Y )

I1
1 = E

[
E
[(
|K(X − X̄)|+ |K(Y − Ȳ )|

)
1|X−X|∨|Y−Y |≤r|X,Y

]
|X − Y |k−1

]
≤ E

[(∫
|X−x|≤r

ρ1(x)
|X − x|a−1 dx+

∫
|Y−y|≤r

ρ2(y)
|Y − y|a−1 dy

)
|X − Y |k−1

]

≤ (‖ρ1‖Lpa + ‖ρ2‖Lpa )
(∫
|z|≤r

|z|−(a−1) da dz

) a
d

E
[
|X − Y |k−1].

Since ∫
|z|≤r

|z|−(a−1) da dz = ωd

∫ r

0
ud−1−(a−1) da ds = aωd

d
r
d
a =: (C ′d,ar)

d
a ,

we get

I1
1 ≤ C ′d,ar (‖ρ1‖Lpa + ‖ρ2‖Lpa )E

[
|X − Y |k−1] .

For I2
1 , we have

I2
1 ≤ E

[
2

|Y − Y |a−1
1|Y−Y |≤r|X − Y |

k−1
]

= 2E
[(∫

|Y−y|≤r

ρ2(y)
|Y − y|a−1 dy

)
|X − Y |k−1

]
≤ 2C ′d,ar ‖ρ2‖Lpa E

[
|X − Y |k−1] .
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We then estimate I3
1 similarly. Combining the above estimates, we obtain

I1 ≤ 3C ′d,ar (‖ρ1‖Lpa + ‖ρ2‖Lpa )E
[
|X − Y |k−1]

≤ 3C ′d,ar (‖ρ1‖Lpa + ‖ρ2‖Lpa )E
[
|X − Y |k

](k−1)/k
.

Next, we estimate I2 by writing

I2 = Ca(I1
2 + I2

2 )

:= Ca E
[
|X − Y |k

(
1

|X −X|a
+ 1
|Y − Y |a

)
1|X−X|∧|Y−Y |>r

]
+ Ca E

[
|X − Y |k−1|X − Y |

(
1

|X −X|a
+ 1
|Y − Y |a

)
1|X−X|∧|Y−Y |>r

]
.

First we easily obtain since 1a∧b≥r = 1a≥r1b≥r

I1
2 = E

[
|X − Y |k E

[(
1

|X −X|a
+ 1
|Y − Y |a

)
1|X−X|∧|Y−Y |>r|X,Y

]]
≤ E

[
|X − Y |k

(∫
|X−x|≥r

ρ1(x)
|X − x|a

dx+
∫
|Y−y|≥r

ρ2(y)
|Y − y|a

dy
)]

.

We then consider two cases: r > 1 and 0 < r ≤ 1. For r ≤ 1, we get∫
|X−x|≥r

ρ1(x)
|X − x|a

dx =
∫
|X−x|>1

ρ1(x)
|X − x|a

dx+
∫
|X−x|∈[r,1]

ρ1(x)
|X − x|a

dx

≤ ‖ρ1‖L1 + ‖ρ1‖Lpa

(∫
|X−x|∈[r,1]

1
|X − x|d

dx
) a
d

≤ ‖ρ1‖L1 + ωd‖ρ1‖Lpa ln−(r) ad

≤ Cd (‖ρ1‖Lpa + ‖ρ1‖L1) (1 + ln− r) .

For the case r > 1, it is clear to obtain∫
|X−x|≥r

ρ1(x)
|X − x|a

dx ≤ ‖ρ1‖L1 .

This yields

I1
2 ≤ Cd (‖ρ1‖Lpa + ‖ρ2‖Lpa + 2)E

[
|X − Y |k

]
(1 + ln− r) .

On the other hand, by Hölder’s inequality

I2
2 ≤ E

[
|X − Y |k

(
1

|X −X|a
+ 1
|Y − Y |a

)
1|X−X|∧|Y−Y |>r

]1/k

× E
[
|X − Y |k

(
1

|X −X|a
+ 1
|Y − Y |a

)
1|X−X|∧|Y−Y |>r

]1−1/k
.

The second term of the product is some power of ther term I1
2 which has already

been dealt with, and so is the second term by symmetry of the roles of (X,Y ) and
(X,Y ). So that

I2 ≤ Cd,a (‖ρ1‖Lpa + ‖ρ2‖Lpa + 2)E
[
|X − Y |k

]
(1 + ln− r) .
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Putting all these estimates together yields for any r > 0

E[|X − Y |k−1 ∣∣K(X − X̄)−K(Y − Ȳ )
∣∣]

≤ C ′d,a (‖ρ1‖Lpa + ‖ρ2‖Lpa ) rE
[
|X − Y |k

]1−1/k

+ Cd,a (‖ρ1‖Lpa + ‖ρ2‖Lpa + 2)E
[
|X − Y |k

]
(1 + ln− r) .

Choosing r = E
[
|X − Y |k

]1/k yields the desired result. �

Proof of Theorem 1. Let ρin be such as the assumptions of Theorem 1. For
ε > 0 define

Kε(x) =
{
K(x) if |x| ≥ ε
ε−ax else,

and consider the following nonlinear PDE with smooth coefficient

(44) ∂tρε = I (ρε) + λ div((Kε ∗ ρε)ρε)

with the initial condition ρin
ε = ρin. Since the kernel Kε is (ε−a)-Lipschitz, the

difficulty for the well posedness of (44) does not come from the quadratic nonlinear
term. Existence and uniqueness of solution for this nonlinear problem is straight-
forward in the case a ∈ (1, 2). Indeed it is sufficient to apply a standard fix point
in C([0, T ],Pk) technique using Wasserstein metric, since in this case the solution
a priori enjoys some k ∈ (1, a) moment. In the case a ∈ (0, 1], it is no more pos-
sible to use the completeness of C([0, T ],Pκ), κ > 1, and we have to proceed by
compactness (see [30, Appendix B]).

Then due to Proposition 3.2 (if α = a), Corollary 3.1 (if a 6= α), and Proposi-
tion 3.1, ρε ∈ L1([0, T ], Lp) ∩ L∞([0, T ], L1

k) for some p ≥ pa and T > 0 depending
or not on ρin, uniformly w.r.t. ε > 0.
Step 1. Tightness. Let X0 be a random variable on Rd of law M−1

0 ρin and
(Zαt )t≥0 be an α-stable Lévy process independent of X0. We denote by (Xε

t )t≥0
(respectively (Xε′

t )t≥0) the solution to the following SDE

Xε
t = X0 − λ

∫ t

0

∫
Rd
Kε(Xε

s − x)ρε(dx) ds+ Zαt .

Note that (µε(t))t≥0 := (L(Xε
t ))t≥0 solves the linear PDE

∂tµε = I(µε) + λ div((Kε ∗ ρε)µε),

with initial condition µin
ε = M−1

0 ρin. Therefore L(Xε
t ) = M−1

0 ρε(t) by uniqueness
of solution to this linear PDE with smooth coefficient.

Assume first 0 < 1− a < α. It is direct to obtain in this case for any β > 1

Kβε :=
∫∫

R2d
|Kε(x− y)|βρε(dx)ρε(dy)

≤ Ca,β
∫∫

R2d
(|x− y| ∨ ε)β(1−a)

ρε(dx)ρε(dy)

≤ Ca,β
∫
Rd

(
|x|(1−a)β + ε(1−a)β

)
ρε(dx).
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Then choose β = k
1−a > 1 and use the symmetry between x and y to get

sup
0<ε<1

∫ T

0
Kβε (t) dt ≤ sup

0<ε<1

∫ T

0

∫∫
R2d

Ca,β

(
|x|(1−a)β + ε(1−a)β

)
ρε(dx)ρε(dy) dt

≤ Ca,β,T
(

sup
ε>0
‖ρε‖L∞((0,T ),L1

k
) + 1

)
<∞.

Assume now that a > 1. First note that Hardy-Littlewood-Sobolev inequality yields
for any ε > 0 and β > 1 to be fixed later

Kβε ≤
∫∫

R2d
|x− y|−(a−1)βρε(dx)ρε(dy) ≤ C‖ρε‖2

L
d

d+β(1−a)/2
.

By interpolation between Lebesgue spaces, if β < 2(p−1)d
a−1 , then

‖ρε‖
L

d
d+β(1−a)/2

≤ ‖ρε‖θLp‖ρε‖1−θL1 ,

where θ = β (a−1)q
2d with q = p′. Therefore

sup
ε>0

∫ T

0
Kβε (t) dt ≤ sup

ε>0

∫ T

0
‖ρε‖2

L
d

d+β(1−a)/2
dt

≤ sup
ε>0

∫ T

0
‖ρε‖

β
(a−1)q
d

Lp dt <∞,

provided that β ∈
(

1, d
(a−1)q

)
. Then in both cases, denote the stochastic process

Jεt = −λ
∫ t

0

∫
Rd
Kε(Xε

s − x)ρε(dx) ds,

and observe that for any 0 ≤ s < t ≤ T , it holds by Holder’s inequalitiy

|Jεt − Jεs | ≤
∣∣∣∣∫ t

s

∫
Rd
Kε(Xε

u − x)ρε(dx) du
∣∣∣∣

≤
∫ t

s

∫
Rd
|Kε(Xε

u − x)| ρε(dx) du

≤ |t− s|1/β
′
∫ T

0

(∫
Rd
|Kε(Xε

u − x)|βρε(dx)
)1/β

du,

so that by the estimates carried out in the beginning of this step and Jensen’s
inequality

sup
0<ε<1

E
[

sup
0≤s<t≤T

|Jεt − Jεs |
|t− s|1/β′

]
≤
∫ T

0
E

[(∫
Rd
|Kε(Xε

u − x)|βρε(dx)
)1/β

]
du

≤
∫ T

0

(
E
[∫

Rd
|Kε(Xε

u − x)|βρε(dx)
])1/β

du

≤ T 1/β′
(∫ T

0
Kβε (t) dt

)1/β

<∞.
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We then deduce that the family of law of the processes (Jεt )t∈[0,T ] is tight in
P(C([0, T ],Rd)). Indeed let us denote

KR :=
{
f ∈ C([0, T ],Rd), f(0) = 0, sup

0≤s<t≤T

|f(t)− f(s)|
|t− s|1/β′

≤ R
}
,

which is compact due to Ascoli-Azerla’s Theorem. By Markov’s inequality we get
for any ε > 0

P ((Jεt )0≤t≤T /∈ KR) = P
(

sup
0≤s<t≤T

|Jεt − Jεs |
|t− s|1/β′

> R

)
≤ R−1 sup

1>ε>0
E
[

sup
0≤s<t≤T

|Jεt − Jεs |
|t− s|1/β′

]
.

Hence the family of law of the processes Lε = L ((Xε
t = X0 + Jεt + Zαt )0≤t≤T ) ∈

P(D([0, T ],Rd)) is tight. Thus, we can find a sequence εn going to 0 such that
Lεn goes weakly to some π ∈ P(D([0, T ],Rd)). For any t ∈ [0, T ], we define
et : γ ∈ D([0, T ],Rd) 7→ γ(t) ∈ Rd and ρ(t) := (et)#π ∈ P the push-forward of ρ
by et. Since for any t ∈ [0, T ], (et)#Lε = ρε(t), ρεn(t) goes weakly to ρ(t) in Pk,
Step 2. A priori properties of the limit point. By lower semi continuity of
‖ · ‖Lp and ‖ · ‖L1

k
with respect to the weak convergence of measures and Fatou’s

Lemma, it holds ρ ∈ L1([0, T ], Lp) ∩ L∞([0, T ], L1
k). We now show that ρ satisfies

(6). Indeed for ϕ ∈ C2
c denote

F(ρ, t) =
∫
Rd

(
ρ(t)− ρin)ϕ− ∫ t

0

∫
Rd
ρ(s) (I(ϕ)−Kc ∗ (ρ(s) · ∇ϕ)) ds

−
∫ t

0

∫∫
R2d

K0(x− y)(∇ϕ(x)−∇ϕ(y))ρ(s,dx)ρ(s,dy) ds.

Since ρε solves (44), it holds for any t > 0
Fε(ρε, t) = 0,

where Fε is the same functional as F with K replaced with Kε. So that for any
t ∈ [0, T ]
|F(ρ, t)| ≤ |F(ρ, t)−Fη(ρ, t)|+ |Fη(ρ, t)−Fη(ρε, t)|+ |Fη(ρε, t)−Fε(ρε, t)| .

But note that for η > ε ≥ 0
|Kε(x)−Kη(x)| ≤ 1ε≤|x|≤η|x|1−a ≤ η|x|−a.

We deduce that for any % ∈ L1([0, T ];Lpa), by (3), it holds

|Fη(%, t)−Fε(%, t)| ≤ η
∫ t

0

∫∫
|x− y|−a%s( dx)%s( dy) ds

≤ η CHLS
d,a,pa/2

∫ t

0
‖%‖2

L
2d

2d−a
ds ≤ η CHLS

d,a,pa/2

∫ t

0
‖%‖Lpa ds.

So that

|F(ρ, t)| ≤ η CHLS
d,a,pa/2

(∫ t

0
‖ρ‖Lpa ds+ sup

0<ε<1

∫ t

0
‖ρε‖Lpa ds

)
+ | Fη(ρ, t)−Fη(ρε, t)|.

Letting first ε go to 0 makes the second term in the r.h.s. vanishes, since for fixed
η > 0, Fη is a smooth function on L1([0, T ];Lpa) and ρε goes weakly to ρ as ε goes
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to 0, then letting η go to 0 yields F(ρ, t) = 0, and ρ is a solution to (FKS) in the
sense of Definition 2.1.
Step 3. Uniqueness of the limiting point. We now show that there exists at
most one such solution. Let ρ, ρ̃ ∈ L1([0, T ], Lp) ∩ L∞([0, T ], L1

k) for some p ≥ pa
and T > 0 be two solutions to the (FKS) equation with initial condition ρin. We
argue by a coupling argument. Define

Xt := X0 − λ
∫ t

0

∫
Rd
K(Xs − y)ρ(dy) ds+ Zαt

Yt := X0 − λ
∫ t

0

∫
Rd
K(Ys − y)ρ̃(dy) ds+ Zαt .

Due to the Lp regularity of ρ and ρ̃ and Lemma 3.2, K ∗ ρ and K ∗ ρ̃ are Lipschitz
if p > pa and log-Lipschitz if p = pa. But µ(t) := L(Xt) solves the linear PDE

∂tµ = I (µ) + λ div ((K ∗ ρ)µ) ,

for the initial condition µ(0) = M−1
0 ρin. By uniqueness of solution to this linear

PDE with Lipschitz or log-Lipschitz coefficient, L(Xt) = M−1
0 ρ(t) (respectively

L(Yt) = M−1
0 ρ̃(t)). Denoting Zs = Xs − Ys, and πs = L(Xs, Ys) yields

|Zt|2 = −2λ
∫ t

0

∫∫
R2d

Zs · (K(Xs − x)−K(Ys − y))πs(dx, dy) ds.

Introducing X̄s i.i.d. from Xs (resp. Ȳs i.i.d. from Ys) and taking the expectation
yields

E
[
|Zt|2

]
≤ 2λ

∫ t

0
E
[
|Zs||K(Xs − X̄s)−K(Ys − Ȳs)|

]
ds

≤

C
∫ t

0 (‖ρ‖Lp + ‖ρ̃‖Lp + 2)E
[
|Zs|2

]
ds, if p > pa

C
∫ t

0 (‖ρ‖Lpa + ‖ρ̃‖Lpa + 2)E
[
|Zs|2

](
1 + ln−(E[|Zs|2])

2

)
ds else.

where we used Lemma 3.2. By Gronwall’s inequality, we get

∀t ∈ [0, T ],E
[
|Zt|2

]
= 0, i.e. ∀t ∈ [0, T ], ρ(t) = ρ̃(t),

which yields the desired results. �

4. Proof of Theorem 3

4.1. Fractional Laplacian of truncated polynomials.

Proposition 4.1. Let ϕ ∈ C∞c be such that
∫
Rd ϕ = 1. Then for any a > α

(45) |I (|x|aϕ)| ≤ C〈x〉−(d+α).

Proof. Let ϕa := |x|aϕ and R > 0 be such that supp(ϕ) ⊂ BR. For any x ∈ BcR,
we get

(46) I (ϕa)(x) =
∫
BR

ϕa(y) dy
|x− y|d+α ∈

(
mϕa

(|x|+R)d+α ,
mϕa

(|x| −R)d+α

)
.

Now, assume x ∈ Br for a given r > R. Then we write the fractional Laplacian as

I (ϕa) =
∫
Rd
hα,a(y) dy,
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where

hα,a(y) = ϕa(y)− ϕa(x)
|x− y|d+α when α ∈ (0, 1)

hα,a(y) = ϕa(y)− ϕa(x)− (y − x) · ∇ϕa(x)
|x− y|d+α when α ∈ [1, 2).

Then since ϕa ∈ W a,∞, we obtain that hα,a(y) ≤ C|x − y|−d+a−α, which, since
a > α, implies that hα,a ∈ L1

loc. Moreover, when |y| > r, then

hα,a(y) ≤ Cϕr
α

(|y| − r)d+α ∈ L
1(Bcr).

Therefore, hα,a ∈ L1 uniformly in x ∈ Br. Hence I (ϕa) ∈ L∞(Br), which, com-
bined with (46), leads to the expected result. �

Proposition 4.2. Let ϕ ∈ C∞c be such that
∫
Rd ϕ = 1 and 1Br ≤ ϕ ≤ 1B2r . Then

for any k ∈ (0, α)

(47)
∣∣I (|x|kϕc)

∣∣ ≤ C〈x〉k−α,
where ϕc = 1− ϕ.

Proof. The proof is similar to [4, Remark 4.2] for k > 1 and [21, Proposition 2.2]
for k < 1. �

4.2. Blow-up for even solutions.

Proposition 4.3. Assume 0 < k < α < a and let ρ ∈ L∞((0, T ), L1
(1−a)+

) be an
even solution of the (FKS) equation with initial condition ρin and verifying

(48)
(∫

Rd
ρin〈x〉k

)2( ak−1)
< C∗λM

2a
k −1

0 ,

for a universal constant C∗ depending only on d, a, α and k. Then the solution
ceases to exist in finite time.

Proof. Let ϕ ∈ C∞c (R) even and nonincreasing be such that
∫
R ϕ = 1 and 1Br ≤

ϕ ≤ 1B2r for a given r ∈ (0, 1/2) and ϕc = 1− ϕ. We define

m(x) := ϕ(|x|)|x|a + ϕc(|x|)|x|k.

By (45) and (47), we get

(49) I (m) ≤ C〈x〉k−α.

Assuming the existence of ρ ∈ L∞((0, T ), L1
k) to the (FKS) equation, we get

d
dt

(∫
Rd
ρm

)
=
∫
Rd
ρ I (m)− λ

∫∫
R2d

(∇m(x)−∇m(y)) · (x− y)
|x− y|a

ρ(dx)ρ(dy)

=
∫
Rd
ρ I (m)− λ

∫∫
R2d

g(x, y)− h(x, y)x · y
|x− y|a

ρ(dx)ρ(dy),

where m′(|x|) = ∇m(x) · x|x| and

g(x, y) = m′(|x|)|x|+m′(|y|)|y|
h(x, y) = m′(|x|)|x|−1 +m′(|y|)|y|−1.
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Since |x− y|a ≤ 2a(|x|a + |y|a), h is symmetric and ρ is even, we get∫∫
R2d

g(x, y)
|x− y|a

(1− h(x, y)x · y) ρ(dx)ρ(dy) ≥
∫∫

R2d

g(x, y)− h(x, y)x · y
2a(|x|a + |y|a) ρ(dx)ρ(dy)

≥
∫∫

R2d

g(x, y)
2a(|x|a + |y|a)ρ(dx)ρ(dy).(50)

We remark that if (x, y) ∈ B2
r ,

g(x, y)
2a(|x|a + |y|a) = a

2a .

If (x, y) ∈ (Bc2r)2,
g(x, y)

2a(|x|a + |y|a) = k(|x|k + |y|k)
2a(|x|a + |y|a) ≥

k(2r)a−k

2a(|x||y|)a−k .

If (x, y) ∈ Br ×Bc2r,
g(x, y)

2a(|x|a + |y|a) = a|x|a + k|y|k

2a(|x|a + |y|a) ≥
k|y|k

2a(r + |y|a) .

Moreover, when x ∈ B2r\Br,

m′(|x|)|x| = ϕ′(|x|)(|x|a+1 − |x|k+1) + aϕ(|x|)|x|a + kϕc(|x|)|x|k.
Remarking that we can take ϕ decreasing and r < 1/2, which implies that |x| ≤ 1
and

m′(|x|)|x| ≥ aϕ(|x|)|x|a + kϕc(|x|)|x|k ≥ k|x|a,
it allows us to do the same kind of estimates for the remaining (x, y) ∈ R2d and
obtain

(51) g(x, y)
2a(|x|a + |y|a) ≥ C〈x〉

k−a〈y〉k−a.

Combining (49), (50) and (51), we obtain
d
dt

(∫
Rd
ρm

)
≤ C1

∫
Rd
ρ〈x〉k−α − C2λ

∫∫
R2d
〈x〉k−a〈y〉k−aρ(dx)ρ(dy)

≤ C1Mk−α − C2λM
2
k−a,(52)

where Mk =
∫
Rd ρ〈x〉

k. We define

Y := M0 +
∫
Rd
ρm =

∫
Rd
ρ(1 +m).

Remarking that
1
2(1 +m) ≤ 〈x〉k ≤ 2k/2(1 +m),

we obtain that Y can always be compared to Mk up to a constant depending on k.
Therefore, Hölder’s inequality yield

M0 ≤M
k
a

k−aM
1− ka
k ≤ CM

k
a

k−aY
1− ka .

Thus, using the fact that Mk−α < M0 because k − α < 0 and the conservation of
the mass M0, we obtain

dY
dt ≤ C1M0 − C ′2λM

2a
k

0 Y 2(1− ak ).
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By assumption (48) for the appropriate C∗,

ε := C2

(
1− C1Y

2( ak−1)(0)

C2λM
2a
k −1

0

)
> 0.

Then for any t ≥ 0, dY
dt ≤ 0 and

Y 2( ak−1)(t) ≤ Y 2( ak−1)(0) = C2 − ε
C1

λM
2a
k −1

0 ,

and
dY
dt ≤ −ελM

2a
k

0 Y 2(1− ak ).

By Gronwall’s inequality, we deduce

Y (t) ≤
(
Y (0) 2a

k −1 − ελ
( 2a
k − 1

)
M

2a
k

0 t
) k

2a−k
.

Since Y is positive and the above inequality goes to 0 in finite time, we deduce that
the solution ceases to be well defined in L1 in a finite time T ∗ verifying

T ∗ <
kY (0) 2a

k −1

ελ(2a− k)M
2a
k

0

= k

2a− k
Y (0) 2a

k −1

C2λM
2a
k

0 − C1Y 2( ak−1)(0)M0

.
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